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Abstract

Comparing and contrasting examples is a core cognitive process that supports learning in

children and adults across a variety of topics. In this experimental study, we evaluated the

benefits of supporting comparison in a classroom context for children learning about

computational estimation. Fifth- and sixth-grade students (n = 157) learned about estimation

either by comparing alternative solution strategies or by reflecting on the strategies one at a time.

At posttest and retention test, students who compared were more flexible problem solvers on a

variety of measures. Comparison also supported greater conceptual knowledge, but only for

students who already knew some estimation strategies. These findings indicate that comparison

is an effective learning and instructional practice in a domain with multiple acceptable answers.

KEYWORDS: learning processes; computational estimation; mathematics education; comparing

solution strategies; flexibility; conceptual and procedural knowledge
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It Pays to Compare: An Experimental Study on Computational Estimation

There is currently a push to make psychological research more educationally relevant by

applying established results from cognitive science toward the improvement of pressing

educational problems (National Research Council, 2000). Typically this process begins with the

identification of a body of literature from cognitive science that has the potential to inform

educational practice; researchers then build upon existing laboratory studies of the phenomena

by conducting studies in school settings, using rigorous experimental designs. The present study

is an example of this approach. We evaluated whether supporting a core cognitive process –

comparison – in a classroom context supported children’s learning about computational

estimation.

Comparison

A robust literature in cognitive science makes a strong case that comparison – identifying

similarities and differences in multiple examples – is a critical and fundamental pathway to

flexible, transferable knowledge (Gentner, Loewenstein, & Thompson, 2003; Kurtz, Miao, &

Gentner, 2001; Loewenstein & Gentner, 2001; Namy & Gentner, 2002; Oakes & Ribar, 2005;

Schwartz & Bransford, 1998). For example, college students who were prompted to compare two

business cases by reflecting on their similarities were much more likely to transfer the solution

strategy to a new case than were students who read and reflected on the cases independently

(Gentner et al., 2003).

Much of the existing research on comparison has not been done with K-12 students, or in

classroom settings. Nevertheless, having students compare and contrast alternative solution

strategies is one of the core principles in current reform pedagogy in mathematics (Silver,

Ghousseini, Gosen, Charalambous, & Strawhun, 2005). Case studies of expert mathematics
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teachers emphasize the importance of students actively comparing solution strategies (Ball,

1993; Fraivillig, Murphy, & Fuson, 1999; Hufferd-Ackles, Fuson, & Sherin, 2004; Lampert,

1990; Silver et al., 2005). Furthermore, teachers in high-performing countries such as Japan and

Hong Kong often have students produce and discuss multiple solution strategies (Richland, Zur,

& Holyoak, 2007; Stigler & Hiebert, 1999). This emphasis on sharing and comparing solution

strategies was formalized in the National Council of Teachers of Mathematics (NCTM)

Standards (NCTM, 1989, 2000, 2006). However, little empirical evidence directly links this

teaching practice to student learning.

Recently, Rittle-Johnson and Star (2007) provided initial evidence that the benefits of

comparison as demonstrated in laboratory tasks are also applicable to students’ learning of

algebra in classrooms. Seventy seventh-grade students were randomly assigned to learn about

algebra equation solving by either 1) comparing and contrasting alternative solution strategies or

2) reflecting on the same solution strategies one at a time. At posttest, students in the compare

group had made greater gains in procedural knowledge and flexibility and comparable gains in

conceptual knowledge.

Despite the success of this study, there is a compelling need to replicate the findings from

Rittle-Johnson and Star (2007), for several reasons. First, no prior studies could be found that

assessed the causal influence of comparing contrasting strategies on student learning in

mathematics. Additional studies are needed to confirm this finding. Second, there was no

retention test to evaluate whether the benefits of comparison persisted over a delay. Third, while

Rittle-Johnson and Star found comparison to be effective at improving students’ procedural

knowledge and flexibility, comparison was not found to differentially impact conceptual

knowledge. Given the critical importance of conceptual knowledge to students’ learning of
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mathematics (Hiebert & Carpenter, 1992), additional studies are needed to demonstrate that

comparing multiple strategies improves both procedural and conceptual knowledge. Finally,

comparing solution strategies may only facilitate learning in rule-based domains such as algebra

equation solving. Many mathematical domains are rule-based, but some areas of mathematics,

such as estimation, are less rule-driven and there are multiple correct answers for a given

problem. Is comparison effective in less constrained domains such as computational estimation?

Computational Estimation

Estimation is a critically useful skill in everyday life and in mathematics. We often must

make quick computations or judgments of numerical magnitude without the aid of calculator or

paper and pencil. In addition to being a fundamental, real-world skill, the ability to quickly and

accurately perform mental computations and estimations has two additional benefits: 1) It allows

students to check the reasonableness of their answers found through other means, and 2) it may

help students develop a better understanding of place value, mathematical operations, and

general number sense (Beishuizen, van Putten, & van Mulken, 1997; National Research Council,

2001). These benefits are encapsulated in the “Adding It Up” report from the National Research

Council: “The curriculum should provide opportunities for students to develop and use

techniques for mental arithmetic and estimation as a means of promoting deeper number sense”

(2001, p. 415). Unfortunately, current instructional methods have not been particularly effective

at supporting estimation knowledge. It is well documented that a large majority of students have

difficulty estimating the answers to problems in their heads (e.g., Case & Sowder, 1990; Hope &

Sherrill, 1987; Reys, Bestgen, Rybolt, & Wyatt, 1980; Sowder, 1992).
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Estimation is also a domain in which comparing multiple strategies is thought to be

beneficial. According to the recent US National Mathematics Advisory Panel (2008)

recommendation:

Textbooks need to explicitly explain that the purpose of estimation is to produce an

appropriate approximation. Illustrating multiple useful estimation procedures for a single

problem, and explaining how each procedure achieves the goal of accurate estimation, is

a useful means for achieving this goal. Contrasting these procedures with others that

produce less appropriate estimates is also likely to be helpful. (p. 27)

In this study, we focus on computational estimation, which is defined as the process of

mentally generating an approximate calculation for a given arithmetic problem (Rubenstein,

1985). Computational estimation is an interesting domain in which to extend the work of Rittle-

Johnson and Star (2007) for several reasons. First, as noted above, estimation is less constrained

than other mathematical domains such as equation solving. Second, there are a wide variety of

estimation strategies that can lead to accurate estimates, and good estimators know and use many

estimation strategies (Dowker, 1992, 1997; Dowker et al., 1996).

Third, computational estimation problems do not have a single correct answer; rather, the

correctness or ‘goodness’ of an estimate depends on two sometimes-competing goals. The first,

simplicity, refers to how easy it is to compute an estimate (Reys & Bestgen, 1981; LeFevre,

Greenham & Waheed, 1993). For example, to compute an estimate for 31 x 46, students may

round both numbers to the nearest ten (round both; i.e., 30 x 50) or round one number to the

nearest ten (round one; e.g., 30 x 46). For many elementary school students, it seems plausible

that the first strategy is easier. The second goal, proximity, refers to how close the estimate is to

the exact answer (Reys & Bestgen, 1981; LeFevre, Greenham & Waheed, 1993). In this
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example, round one leads to an estimate that is closer to the exact value than round both. Note

these two goals often compete with each other, in that an easy-to-compute estimate is often not

very proximal to the exact value, or conversely, the strategy leading to most proximal answer is

not the easiest to compute (Lemaire, Lecacheur, & Farioli, 2000).

These features of estimation make it an ideal domain to extend the work of Rittle-

Johnson and Star (2007) because of the many ways in which this domain is different from

algebra equation solving (the content used in Rittle-Johnson and Star). In fact, a case can be

made that comparison is less likely to be effective in computational estimation than it was in

algebra equation solving, for at least two reasons. First, when comparing estimation strategies,

learners need to look at both the strategy and the estimate in order to evaluate the relative

effectiveness of a strategy. In contrast, when comparing equation solving strategies, a learner can

essentially ignore the answer and instead focus on similarities and differences between strategies.

Second, the efficiency of solution strategies, which is a key criterion on which multiple strategies

can be compared, is less obvious in estimation as compared to equation solving. One advantage

to using equation solving is that it is relatively easy (and visually apparent) to judge the relative

efficiency of two strategies for solving an equation. In contrast, when computing an estimate,

efficiency and ease of computation are often individual and subjective judgments.

Overall, comparing solution strategies is much more complex for computational

estimation than for algebra, and thus it seems plausible that learners will find it more difficult to

learn from comparing multiple strategies in estimation than in algebra equation solving. As a

result, computational estimation is an interesting and important domain in which to replicate and

extend the results of Rittle-Johnson and Star (2007).
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Target Outcomes

Our target outcomes were three critical components of mathematical competence:

procedural knowledge, procedural flexibility, and conceptual knowledge (Hiebert, 1986;

National Research Council, 2001). Procedural knowledge is the ability to execute action

sequences to solve problems, including the ability to adapt known procedures to novel problems

(the later ability is sometimes labeled “transfer”) (Rittle-Johnson, Siegler, & Alibali, 2001).

Procedural flexibility incorporates knowledge of multiple ways to solve problems and when to

use them (National Research Council, 2001; Star, 2005, 2007) and is an important component of

mathematical competence (Beishuizen et al., 1997; Blöte, Van der Burg, & Klein, 2001;

Dowker, 1992; Star & Rittle-Johnson, 2008; Star & Seifert, 2006). To disentangle knowledge

from use, we included an independent measure of flexibility knowledge as well as coded for

flexible use of strategies on the procedural knowledge assessment. Finally, conceptual

knowledge is “an integrated and functional grasp of mathematical ideas” (National Research

Council, 2001, p. 118). This knowledge is flexible and not tied to specific problem types, and is

therefore generalizable (although it may not be verbalizable).

Current Study

We compared learning from comparing multiple solutions (compare condition) to

learning from studying sequentially presented solutions (sequential condition) for fifth- and

sixth-grade students learning how to compute estimates for multi-digit multiplication problems.

Students in both conditions studied worked examples of hypothetical students’ estimation

strategies and answered questions about the strategies with a partner.

Three features of our study design merit a brief justification. First, we chose to provide

students with worked examples because doing so insured exposure to multiple strategies for all
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students and facilitated side-by-side comparison of these strategies for students in the compare

condition. Many studies have shown that students from elementary school to university—both in

the laboratory and in the classroom—learn more efficiently and deeply if they study worked

examples paired with practice problems rather than solve the equivalent problems on their own

(see Atkinson, Derry, Renkl, & Wortham, 2000 for a review). Second, we chose to have students

work with a partner because past research indicates that students who collaborate with a partner

tend to learn more than those who work alone (e.g., Johnson & Johnson, 1994; Webb, 1991) and

teaching students to generate conceptual explanations for their partners improves their own

learning (e.g., Cobb & Bauersfeld, 1995; Fuchs et al., 1997). And third, we chose to prompt

students to generate explanations when studying worked examples because there is a great deal

of evidence that doing so leads to greater learning, as compared to cases when students are not

asked to provide explanations (e.g., Bielaczyc, Pirolli, & Brown, 1995; Chi, de Leeuw, Chiu, &

LaVancher, 1994).

We hypothesized that students in the compare group would show greater improvements

from pretest to posttest, with gains persisting on a retention test, on three outcome measures 1)

procedural knowledge (particularly transfer), 2) procedural flexibility, and 3) conceptual

knowledge – than students in the sequential group. We expected these differences to emerge as a

result of students making more explicit comparisons between strategies and answers, which

should highlight the ease and efficiency of multiple estimation strategies and illuminate

relationships between estimation strategies, problem types, and attainment of estimation goals

(simplicity and proximity).
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Method

Participants

Students from two schools participated in the study. School A is a private urban school

where 69 fifth-grade students participated (32 female). There were four fifth-grade mathematics

classes (all taught by the same teacher) at the school. Students’ mean age was 10.6 years (range:

10.0 years to 11.4 years); a majority were Caucasian (13% minority, with 13% African-

American). Approximately 10% of students at School A received financial aid. School B is a

small rural school where 45 fifth graders and 46 sixth graders participated. At School B, 5th

grade students’ mean age was 10.7 years (range: 10.0 years to 11.8) while sixth grade students’

mean age was 11.8 years (range: 11.0 years to 13.1 years) There were two fifth grade classes

(taught by the same teacher) and two sixth grade classes (taught by the same teacher). A majority

of participating students were Caucasian. Approximately 36% of students at School B received

financial aid. Across the schools, three students were dropped from the study because they were

absent from school and missed more than one intervention session. Thus the analysis below

includes data from a total of 157 students.

Design

We used a pretest-intervention-posttest design, including a retention test. For the

intervention, students were randomly paired with another student in their class, and then pairs of

students were randomly assigned to condition, with approximately equal numbers of pairs in

each condition within each class. Students in the compare condition (n = 82) studied sets of two

worked examples for the same problem and answered questions encouraging comparison of the

two examples. Students in the sequential condition (n = 75) studied the same two worked
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examples on two isomorphic problems and answered questions encouraging reflection on a

single example.

Materials

Intervention. The intervention focused on three estimation strategies for multiplying one,

two, and three-digit integers (see Table 1). In addition to round one and round both, the third

strategy was to truncate (or trunc) each multiplicand, covering up or ignoring the ones digits and

multiplying the tens digits, and subsequently adding two zeros to the resulting product (for 13 x

27, 1 x 2 yields 2, and then adding two zeros yields an estimate of 200). This strategy is

relatively easy and fast and has been advocated for by researchers on computational estimation

(Sowder & Wheeler, 1989). The strategies were presented to students by way of worked

examples. Worked examples in the compare condition typically illustrated two different

estimation strategies for each problem, with the two strategies differing either in terms of

proximity to the exact value, ease of computation, or both. On some worked examples, three

different estimation strategies were presented for the same problem; on other examples, the same

strategy was used to solve two different problems.

Two packets of worked examples were created for each condition (see Figure 1). In the

compare packets, there were 15 sets of worked examples (13 pairs and two groups of 3)

presented side-by-side on the same page for a total of 32 worked examples. At the bottom of

each page were questions prompting students to compare and contrast the worked examples.

During the first day of problem solving, the questions that accompanied the worked examples

focused on ease of computation, such as “Whose way is easiest? Why?” and “If the number

problem were changed [from 13 x 88] to 47 x 88, would that student’s way still be easiest? Why

or why not?”. On the second and third day of problem solving, the questions focused on
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proximity to the exact answer, such as “Without knowing the exact value, whose estimate is

closer to the exact value of her number problem?” and “Look at the two ways shown above. Do

you think one way will always give a closer estimate than the other way on any multiplication

problem? Why or why not?”.

In the sequential packets, there were also 32 worked examples. The same estimation

strategies were presented, in some cases with identical problems and in some cases with

isomorphic problems (e.g., 27 x 63 and 57 x 43 are isomorphic), but with each worked example

presented on a separate sheet. Thus, exposure to multiple strategies of estimation was equivalent

across the two conditions. At the bottom of each page was one question prompting students to

reflect on that estimation strategy, with an equal number of prompts in the two conditions. The

initial questions focused on the ease of a single strategy, such as “If the number problem were

changed [from 38 x 63] to 234 x 71, would Casey’s way be easy to do? Why or why not?”. The

later questions focused on closeness to exact value, such as “Without calculating the exact value,

how far is your estimate from the exact value?”.

Practice problems were integrated into each packet. Each practice problem set asked

students to estimate the solution to two problems and then answer one question about their

strategy(s) of estimation. In the compare packet, students were asked to estimate the solution to

the same problem in two different ways. In the sequential packet, students were asked to estimate

the solution to two problems, one of which was identical to the problem in the compare packet

and the second of which was isomorphic to the first.

Assessment. The same assessment was used as an individual pretest, posttest, and

retention test (see Table 2). It was designed to assess procedural knowledge, flexibility, and

conceptual knowledge. Procedural knowledge measures assessed knowledge of how to estimate,
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using both familiar (six problems, such as 12 x 24 and 113 x 27) and transfer problems (six

problems, such as 1.19 x 2.39 and 102 ÷ 9). In addition, three mental estimation problems

assessed students’ ability to compute an estimate quickly and mentally. Flexibility knowledge

measures assessed students’ ability to recognize, implement, and evaluate multiple strategies for

computing estimates. Flexibility items fell into three categories: (a) Knowledge of multiple

strategies, where two questions asked students to compute estimates in multiple ways; (b)

Recognize and evaluate ease of use, where two questions determined whether students knew

which strategies were computationally easier to implement; and (c) Recognize and evaluate

closeness of estimate, where five questions determined whether students knew which strategies

resulted in an estimate that was most proximal to the exact value. Ten conceptual knowledge

items assessed students’ knowledge of core concepts related to estimation. Conceptual

knowledge items were modified from past research (Sowder, 1992; Sowder & Wheeler, 1989;

Dowker, 2005) and focused on: (a) definitions of estimation, including an open-ended item

(What does "estimate" mean?) and multiple choice rating of definitions of estimation, (b) the

acceptance of multiple strategies of estimation and multiple values of estimates, and (c) the

impact of estimation strategies on distance from the correct answer (e.g., under- vs.

overestimate).

Procedure

The study occurred during one week of students’ regular mathematics classes and

replaced the students’ regular instruction on computational estimation. On Monday, students

completed a 30-minute written pretest and then were provided with a 10-minute introduction

lesson by a member of the research team. The goals of the introduction lesson were to introduce
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students to the idea of estimation as getting an approximate answer and to show students trunc,

an estimation strategy that they may not be familiar with.

On Tuesday, students were divided into pairs to begin work on the intervention packet.

During the partner work, the pairs of students were asked to first explain their answers verbally

to one another and then write down a summary of their answer on the packet. We recorded the

verbal interactions (using an audiotape recorder and microphones for each pair). During the

partner work, the regular classroom teacher and members of the project team circulated and

provided help when requested (e.g., by re-phrasing and breaking down questions, by providing

general encouragement and by helping students implement steps during problem solving, without

providing any guidance on what to do next or why you might use a particular strategy). At the

conclusion of each class, students were given a brief homework assignment to practice

completing estimation problems.

On Wednesday, there was a brief scripted lesson on proximity. The lesson introduced

students to the use of the number line and the idea of proximity or closeness to the exact value as

a means to evaluate estimates. Then, pairs were given the day’s intervention packet. On

Thursday, students spent the first 30 minutes completing the packet focused on proximity that

they had begun on Wednesday. At the end of the class session, a member of the research team

provided a scripted 10-minute integrative lesson, providing some points of closure about

estimation. The lesson reminded students that estimation is a way to get an approximate answer,

that there are many ways to arrive at an estimate, and that different ways of estimating give

different estimates. In addition, the lesson pointed out two criteria that may be used in evaluating

whether one estimate is better than another (simplicity and proximity). On Friday, students
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completed the posttest. Two weeks later, children completed the assessment again to assess

retention.

Coding

Assessment. The 15 problems on the procedural knowledge assessment were scored for

accuracy of the answer; an accurate estimate was defined as one within 30% of the exact value

(Rubenstein, 1985). In addition to scoring accuracy, students’ solution strategies were coded into

categories based on the strategy of estimation used (trunc, round both, and round one). (Some

students used a variety of other, idiosyncratic estimation strategies; in rare cases, students

calculated the exact value rather than computing an estimate. In all such cases, these strategies

were coded as “other”.) Inter-rater reliability for coding strategies of estimation (based on 20%

of the sample) was 92% (exact agreement).

On the conceptual knowledge assessment, students received one point for correctly

answering each of the objective questions. In addition, students explained their reasoning on

three items, and these explanations were scored on a 2-point scale. These explanation scores

were added to students’ conceptual knowledge totals. A conceptual knowledge score was

calculated as a percentage of possible points. Inter-rater reliability for the three explanation items

(based on 20% of the sample) was 93% (exact agreement).

For the flexibility assessment’s three components, the percentage of possible points on

each component was calculated, and the three percentages were averaged to yield an overall

flexibility score. Inter-rater reliability on 20% of the sample was calculated for the items on the

flexibility assessment that were not objective, and exact agreement was 96% for all subjective

flexibility items.
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Strategy optimization. As an additional measure of flexibility, students’ strategies on the

six familiar procedural knowledge items were coded for the selection of the optimal estimation

strategy, both in terms of ease and for proximity, for each problem.

The optimal strategy in terms of proximity was the strategy of estimation that yielded an

estimate that was closest to the exact value. On four of the six problems, round both was

optimal; on one problem (37 x 17), round one was optimal; and on one problem (23 x 52), round

both and trunc were equally optimal in terms of proximity.

The optimal strategy in terms of ease was the strategy of estimation that was the fastest to

execute. On four of the six problems, we expected trunc to be fastest, on one problem (8 x 76)

round one should be fastest, and on one problem (12 x 24), round one or trunc was expected to

be fastest. In order to verify which strategies were optimal in terms of ease, we conducted a

reaction time study with a sub-sample of 26 of the students who agreed to participate several

months after the conclusion of the main study. Students were reminded of the solution strategies

and were asked to use a given strategy on a block of 8 problems. Two blocks of problems

incorporated a range of two two-digit numbers and students were asked to use trunc on one block

and round both on the other. Two other blocks of problems involved numbers where one

multiplicand was near 10 (e.g., 13 x 58) and students were asked to use round one on one block

and round both on the other. Order of presentation of the blocks and which strategy was

specified to use first were counterbalanced. Problems were administered using E-Prime and

shown to participants on a laptop. As expected, for problems with one multiplicand near 10,

round one (M = 3.9 s, SD = 1.4) was faster than round both (M = 5.0 s, SD = 1.5), t(25) = 4.517,

p < .001. For the other problems, trunc (M = 5.1 s, SD = 1.1) was faster than round both (M =

6.8 s, SD = 1.7), t(25) = 5.883, p < .001.
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Intervention. Students’ answers to intervention questions were coded for the following

features: mention of multiple ways to compute an estimate, and comparison of steps, simplicity,

proximity, or no comparison. Inter-rater reliability for coding of students’ intervention question

responses (based on 20% of the sample) was 87% (exact agreement).

Data Analysis

Given that random assignment occurred at the dyad, not the individual, level, and that

knowledge was assessed multiple times, we ran a 3-level unconditional means models in HLM

(Raudenbush, Bryk, & Congdon, 2003) to evaluate non-independence in dyads (Raudenbush &

Bryk, 2002; Singer & Willett, 2003). After controlling for school, no more than 3% of the

variance was between-dyad, and chi-square tests confirmed that this variance was not

significantly greater than 0 (all p’s above .17, with most above .5). There was not sufficient

variation at the dyad level to model this level, so we ignored dyad and conducted our analyses at

the individual level using repeated-measures ANCOVAs.

Some students were absent on an assessment day. Three students did not complete the

pretest, three did not complete the posttest, and two did not complete the retention test, and no

student missed more than one assessment. Statisticians strongly recommend the use of

imputation, rather than the traditional approach of omitting participants with missing data,

because it leads to more precise and unbiased conclusions (Peugh & Enders, 2004; Schafer &

Graham, 2002). When the data is missing at random and no more than 5% of the data is missing

(as in this study), simulation studies indicate that imputation leads to the same conclusions as

when there is no missing data (e.g., Barzi & Woodward, 2004). As recommended by Schafer and

Graham (2002), we used the expectation-maximization (EM) algorithm for Maximum

Likelihood Estimation via the missing value analysis module of SPSS. The students’ missing
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scores were estimated from all non-missing values on the variables that were included in the

analyses presented below. Findings were the same when we deleted students with missing data

from the analyses.

Results

We begin by describing students’ results at pretest. We then report the effect of condition

on gains in students’ knowledge from pretest to posttest and retention test. Finally, we examine

the effects of the manipulation during the intervention; in particular, we report on solution

strategies and explanation quality during the intervention.

Pretest Knowledge

Many students began the study with some knowledge of estimation strategies and

concepts. As shown in Table 3, students on average were able to generate accurate estimates for

3 or 4 of the 12 pretest procedural knowledge items and also had some success on measures of

conceptual knowledge and flexibility. Round both was the most commonly used strategy on the

pretest (see Table 4). Also, at pretest, there were no significant differences between conditions

on measures of procedural knowledge, conceptual knowledge, or flexibility, F(1,155) = 0.360,

0.728, and 0.006, respectively.

Knowledge Gains from Pretest to Posttest and Retention

Students in the compare condition were expected to have higher procedural knowledge,

procedural flexibility and conceptual knowledge at posttest and retention test. Separate repeated-

measures ANCOVAs were conducted for each outcome, with time of assessment as a within-

subject factor (posttest and retention test) and with condition as the between-subjects factor.

Pretest scores on each measure, school, and grade level were included as covariates to control for
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prior knowledge differences. Unless otherwise noted, condition did not interact with time, in line

with our expectations that the effect of condition would persist at the retention test.

Procedural knowledge. Although means were in the expected direction, there was no

significant main effect for condition on the procedural knowledge assessment, F(1, 150) = 2.514,

p = .115, 2 =.016, indicating that students in the sequential condition produced accurate

estimates as frequently as students in the compare condition (see Table 3). The only significant

predictors of accuracy were pretest procedural knowledge, F(1, 150) = 31.170, p < .001, 2

=.172, and school, F(1, 150) = 7.409, p = .007, 2 =.047. Compare and sequential students also

did not differ in the number of problems attempted, F(1, 150) = .794, p = .374, 2 =.005 (see

Table 4). The only significant predictors of how many problems were attempted were pretest

procedural knowledge, F(1, 150) = 6.694, p = .011, 2 =.043, and pretest flexibility knowledge,

F(1, 150) = 4.037, p = .046, 2 =.026.

Flexibility. As expected, students in the compare condition became more flexible

estimators. Evidence for this result comes from several sources. First, compare group students

outperformed sequential students on the flexibility assessment, F(1, 150) = 14.058, p < .001, 2

=.086 (see Table 3). Pretest procedural and flexibility knowledge also predicted flexibility

knowledge, F(1, 150) = 9.895, p = .002, 2 =.062 and F(1, 150) = 41.481, p < .001, 2 =.217,

respectively. The effect was strongest on the subscale assessing knowledge of multiple strategies,

such as problems where students were given a problem and asked to compute an estimate in

three different ways (see Table 2); compare students significantly outperformed sequential

students on this subscale, F(1, 150) = 22.155, p < .001, 2 =.129. For example, 29% of compare

group students were able to produce an estimate in three different ways on both problems in the
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knowledge of multiple strategies subscale at posttest, as compared to only 13% of sequential

students.

Evidence for compare students' greater flexibility was also found in students' estimation

strategies; students in the compare group were more likely to select the easiest strategy for

computing estimates on the familiar procedural knowledge items. Recall that we determined if

participants selected the optimal strategy for each problem in terms of ease (based on the results

of the reaction time study described above) and proximity (based on which strategy led to the

closest estimate). Compare group students were significantly more likely to optimize strategy

choice for ease, F(1, 150) = 7.500, p = .007, 2 =.048, (Estimated Marginal Mean (EMM) = 1.1

out of 6 problems, SE = 0.2 vs. EMM = 0.6, SE = 0.2), although not for proximity, F(1, 150) =

1.324, p = .252, 2 =.009 (EMM = 2.9 out of 6 problems, SE = 0.2 vs. EMM = 3.1, SE = 0.2).

Compare students' ability to optimize for ease was driven by their greater use of the trunc

strategy, which was often the fastest strategy to implement. Although round both was the most

frequently used strategy both before and after the intervention, compare students used trunc more

often than students in the sequential condition, F(1, 150) = 8.928, p = .003, 2 =.056 (see Table

4). To explore the benefits of using the different strategies, we examined the correlation between

frequency of using each strategy on a given assessment and performance on that assessment;

frequency of using round one and round both correlated with procedural, flexibility and

conceptual knowledge at posttest and retention test (r(155)'s ranging from .185 to .663), whereas

frequency of using trunc did not.

Conceptual knowledge. There was no main effect for condition on students' conceptual

knowledge, F(1, 150) = .130, p = .719, 2 =.001. Only pretest conceptual and procedural
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knowledge predicted overall conceptual knowledge, F(1, 150) = 21.674, p < .001, 2 =.126 and

F(1, 150) = 14.069, p < .001, 2 =.089, respectively.

However, comparing solution strategies may be most helpful for students who are already

familiar with at least one solution strategy (Rittle-Johnson & Star, in press). Based on this

hypothesis, we explored whether condition interacted with pretest procedural knowledge, and

there was a tendency for such an interaction, F(1, 149) = 2.908, p = .090, 2 =.019, as well as a

three way interaction between time, condition and pretest procedural knowledge, F(1, 149) =

4.214, p = .042, 2 =.028 . To interpret these interactions, we first categorized students as having

low or moderate procedural knowledge at pretest, using a median split (median score at pretest

was 20% correct). Then, we conducted separate analyses on posttest and retention test scores. At

posttest, there was no main effect of condition or interaction with pretest procedural knowledge

category, p’s > .3. In contrast, at retention test, there was a condition by pretest category

interaction, F(1, 149) = 5.877, p = .017, 2 =.038. As shown in Figure 2, comparison did not

impact conceptual knowledge for students who had low knowledge of estimation strategies at

pretest. In contrast, compare students with modest knowledge of estimation strategies at pretest

(i.e., at least 20% correct) had better maintenance of their conceptual knowledge than sequential

students.

Effects of the Condition Manipulation on Intervention Activities

To better understand how condition impacted knowledge gains, we explored the effects

of the condition manipulation on intervention activities. Before reporting these effects, it is

important to note that the manipulation did not impact the amount of material covered during the

intervention; on average, students in the compare and sequential conditions studied

approximately 25 of the 32 available worked examples (M = 25.4 (SD = 6.41) vs. M = 24.7 (SD
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= 6.15), respectively) and solved 10 of the available 15 practice problems (M = 10.84 (SD =

3.63) vs. M = 9.81 (SD = 3.50), respectively). We expected the compare condition to support

more explicit comparisons between multiple estimation strategies.

Procedural knowledge during intervention activities. On the practice problems, students

in the compare condition were more likely to compute accurate estimates than sequential

students, F(1, 150) = 4.828, p = .030, 2 =.031. Compare students generated accurate estimates

on 93% of practice problems, while sequential students' estimates were accurate on only 88% of

problems. Compare students were also more likely to use trunc (23% vs. 11% of problems) and

round one (11% vs. 3% of problems), and less likely to use round both (32% vs. 48% of

problems), than sequential students, F(1, 150) = 19.064, p < .001, 2 =.113, F(1, 150) =27.178, p

< .001, 2 =.153, and F(1, 150) = 41.776, p < .001, 2 =.218, respectively.

Explanation quality. Student pairs provided written explanations to reflection questions

when studying worked examples. Our explanation coding schemes were designed to indicate

whether our condition manipulation had its intended effects.

The first coding scheme focused on whether students' explanations referenced multiple

estimation strategies, as might be expected in the compare condition. 97% of compare group

students' explanations referenced multiple strategies, while only 10% of sequential students'

explanations did so. A representative explanation from a student pair in the compare group that

illustrates this focus on multiple strategies is, "Annette didn't round up. Claire did, which makes

it bigger.”

Our second coding scheme investigated the characteristics of strategies that students

compared. Of particular interest was the extent to which comparisons of multiple estimation

strategies focused on the proximity of estimates to the exact answer, the ease of computing
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estimates, comparison of specific solution steps, and/or other characteristics of estimation

strategies (see Table 5). Students in the compare group were more likely to make explicit

comparisons than those in the sequential group. Specifically, students in the compare group were

significantly more likely to compare two estimates based on their respective proximity to the

exact answer, the ease with which an estimate could be computed, and the specific steps

involved in computing an estimate.

Overall, the intended effect of the intervention was manifest in students’ explanations.

Compare students, who repeatedly viewed side-by-side worked examples illustrating multiple

estimation strategies, were more likely to reference multiple strategies in their explanations.

Furthermore, these explanations frequently included comparisons of salient features of the

estimates and estimation strategies, including proximity, simplicity, and the particular steps used

in an estimation strategy.

We also explored whether individual differences in the frequency of making explicit

comparisons during the intervention predicted outcomes at posttest and retention. In this model,

frequency of generating comparisons during the intervention, rather than condition, was used as

a predictor. Making more comparisons during the intervention was predictive of gains in

flexibility F(1, 150) = 15.554, p < .001, 2 =.094. However, it did not reliably predict procedural

or conceptual knowledge gain (p’s > .2). Frequency of comparing solution steps in particular was

somewhat predictive of procedural knowledge, F(1, 150) = 3.634, p = .059, 2 =.024.

Partner interaction. The discussions from a pair of high-learning and a pair of low-

learning students in the compare condition were transcribed to better understand how comparison

could support learning. Their discussions on two identical worked examples are presented in

Table 6. It is evident that the high-learning pair consistently outperformed the low-learning pair
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in noticing key differences of estimating (via rounding up or down), and how and when each

strategy should be used. The high-learning pair easily synthesized or reconciled their knowledge

from the past with the current example, compared solution steps, and analyzed accuracy,

efficiency, and constraints of each strategy. In contrast, the low-learning pair had little perception

of when and how to use different estimation strategies (rounding up versus down). The low-

learning pair had difficulty synthesizing knowledge gained from multiple strategies, rarely

compared solution steps, and did not consider efficiency and constraints of strategies.

Discussion

The goal of the present study was to evaluate whether comparing solution strategies is

more effective than sequential study of strategies for learning about computational estimation.

Despite a large literature in cognitive science demonstrating the benefits of comparison and

frequent calls for teachers to compare and contrast multiple strategies during mathematics

instruction, we could find only one study, Rittle-Johnson and Star (2007), that provided

experimental evidence in mathematics classrooms for the benefits of comparison. Are the

benefits of comparing solution strategies found for seventh-graders learning about equation

solving generalizable to other domains, especially one in which there are multiple correct

answers to a single problem?

One finding that appears to generalize across domains is that comparing solution

strategies led to greater flexibility. The present study, taken together with Rittle-Johnson and Star

(2007), gives compelling evidence that providing students with worked examples placed side by

side on the same page with accompanying prompts for self-explanation leads to greater

flexibility, as compared to presentation of the same examples one per page. Across the two

studies, comparing solution strategies led to greater knowledge of multiple strategies and the
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ability to adaptively select the most appropriate strategies for given problems or goals (in this

case, optimization for ease of computation).

The fact that comparing solution strategies led to greater flexibility in the present study is

particularly noteworthy, given our focus on the mathematical domain of computational

estimation. Estimation is different from algebra equation solving in several ways that have

potentially serious implications for the possible benefits of comparison in promoting flexibility.

In particular, unlike linear equations, estimation problems do not have a single correct answer;

rather, the goodness of an estimate depends on two often-competing goals: how easy the estimate

is to compute, and how close the estimate is to the exact value of the problem. In addition, the

relationship between a strategy and either of these goals is quite complex. Whether or not a

strategy such as round both provides the most proximal answer depends on the problem; whether

or not a strategy such as round one provides an easy estimate depends on whether a multiplicand

is near 10 and on the computational resources of the person generating the estimates. We began

the study with reasonable skepticism that comparing solution strategies would be effective in this

new and more complex domain: It was not clear that a side-by-side comparison of two

estimation strategies that yield different estimates would be productive. Thus, the present results,

which indicated that comparison did help students become more flexible in their knowledge of

estimation, are particularly noteworthy.

However, our findings in the domain of estimation diverged from prior work on

comparing solution strategies in equation solving in two ways. First, there were different effects

for comparison on the conceptual knowledge assessments. We found that comparing solution

strategies helped students retain their conceptual knowledge of estimation, at least if they began

the study with modest procedural knowledge. No benefit of comparison for conceptual
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knowledge were detected in Rittle-Johnson and Star (2007), but a retention test was not included

and interactions with prior knowledge were not evaluated. The present study suggests that

students may need familiarity and fluency with a limited range of strategies before comparison of

additional strategies aids knowledge of related concepts and that comparison may be most

important for remembering the concepts after a delay.

Other research supports the idea that familiarity in a domain improves the effects of

comparison. In particular, children often have difficulty learning from the comparison of two

examples if they do not have prior experience within the domain, but providing children with

relevant experience allows them to benefit from the comparisons (Gentner, Loewenstein &

Hung, 2007; Kotovsky & Gentner, 1996). This does not mean that people need to be well versed

in one example before comparing it to a different example (Gentner, 2005); modest amounts of

prior knowledge or exposure seem to be sufficient. The current findings highlight the potential

importance of familiarity for mathematics learning.

A second key difference between the findings of Rittle-Johnson and Star (2007) in

equation solving and the present study concerns procedural knowledge. In Rittle-Johnson and

Star, comparing solution strategies helped students solve more equations correctly, yet in the

present study, the intervention did not lead students to estimate more multiplication problems

reasonably. These divergent findings may have arisen from a key difference in the effectiveness

of different strategies between the domains of estimation and equation solving. In particular,

learning new and more sophisticated strategies for solving equations (e.g., improved flexibility)

was related to gains in procedural knowledge; frequency of adopting new strategies predicted

procedural knowledge scores at posttest and partially mediated the effect of condition on

procedural knowledge in Rittle-Johnson and Star. In other words, in the domain of equation
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solving, comparison was quite instrumental in introducing students to new strategies that made

more complex problems easier to solve.

In contrast, in the present study, learning new strategies for computing estimates was not

necessarily related to gains in procedural knowledge. Rather, mastering a single strategy –

namely round both – was sufficient for solving both familiar and transfer problems. Comparison

did encourage students to adopt the easy trunc strategy, but use of this strategy was not related to

performance on any measure. Mathematics education researchers have advocated teaching trunc

as a quick and easy way to estimate and, more generally, that instruction should focus on

multiple strategies for estimation (Sowder, 1992; Sowder & Wheeler, 1989; Reys, et al., 1980;

Reys & Bestgen, 1981). Similarly, the US National Mathematics Advisory Panel (2008)

recommended that “Teachers should broaden instruction in computational estimation beyond

rounding. They should insure that students understand that the purpose of estimation is to

approximate the exact value and that rounding is only one estimation strategy.” (p. 27). We agree

that learning and comparing multiple estimation strategies is important. However, the present

study also suggests that careful consideration must be given to when new strategies should be

introduced. For example, our results indicate that trunc may not help students on problems where

they are already able to execute round both accurately. However, on harder problems on which

round both is difficult to execute correctly, or for younger students who are not able to

implement round both, introducing alternative and easier strategies such as trunc seems

warranted.

Implications for Research on Computational Estimation

Although the primary focus of the present study was on comparison, our results also

contribute to the literature on computational estimation in at least two ways.
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First, the results of the present study inform research on how students balance multiple

goals in generating estimates. As noted above, one interesting aspect of computational estimation

as a problem solving domain is that it requires consideration and balancing of two, sometimes

competing, goals - simplicity and proximity (Lemaire, Lecacheur, & Farioli, 2000). Compare

group students' adoption of the trunc strategy, which is very easy to implement but does not

guarantee an accurate estimate, suggests that students in the present study tended to prioritize

simplicity over proximity when computing estimates. This emphasis on simplicity may arise for

at least two reasons. First, proximity may be more challenging to determine for a given problem

and strategy, perhaps due to processing limitations, memory capacity, or knowledge of

multiplication facts (Case & Sowder, 1990; Dowker, 2005). However, it may also be the case

that students grasp the principle of simplicity before the principle of proximity. This latter

interpretation would be consistent with the results of LeFevre and colleagues (LeFevre,

Greenham, & Waheed, 1993), who found that knowledge of simplicity preceded proximity in

students' strategy choices for estimates in grades 4 and 8, but that adults were able to use and

balance both simplicity and proximity in their estimates (see also Levine, 1982).

Second and related, this transition to balancing simplicity and proximity when computing

estimates seems to indicate greater adaptive expertise in adults than in children (Hatano, Miyake,

& Binks, 1977; Baroody & Dowker, 2003). Children may develop routine expertise with

estimation strategies, which might entail the adoption of and use of a new strategy such as

truncation on a set of problems. But children with routine expertise in estimating would likely

fail to adaptively use the trunc strategy, such as restricting its use to problems or contexts where

this strategy is particularly appropriate. Over time, older children and adults may develop
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adaptive expertise, where they flexibly coordinate competing goals for estimates with the

characteristics of problems and problem-solving contexts.

Implications for Instruction

The current findings provide much needed evidence in support of reform efforts in

mathematics education that advocate for comparison of solution strategies. Our unique use of

random assignment of students to condition within their regular classroom context, along with

maintenance of a fairly typical classroom environment, provided causal evidence for the benefit

of comparing solution strategies while maintaining fairly good external validity. US teachers

commonly use comparison in their lessons, but frequently not in ways that seem most conducive

to the development of mathematical understanding (Richland et al., 2004; Richland et al., 2007).

Experimental research on comparison, including our own, provides several suggestions for using

comparison effectively in mathematics classrooms.

First, teachers must choose problems and solution strategies carefully. The problems

should highlight important and meaningful concepts for students to learn and to be solvable

using multiple strategies. In addition, students may need some familiarity with one of the

strategies before comparing two different strategies.

Second, comparison requires careful support to be effective. Our materials were carefully

designed to support effective comparison. Past research suggests that five features of our

intervention may have been particularly important. As noted in Rittle-Johnson and Star (2007, in

press), these features are 1) a written record of all to-be-compared solution strategies, with the

solution steps aligned (Fraivillig et al., 1999; Richland et al., 2004; Richland et al., 2007), 2)

explicit opportunities to identify similarities and differences in strategies (Fraivillig et al., 1999;

Gentner et al., 2003; Silver et al., 2005), 3) instructional prompts to encourage students to
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consider the efficiency of the strategies (Fraivillig et al., 1999; Lampert, 1990), 4) using common

labels, such as labeling strategies, to invite comparison and help alignment (Namy & Gentner,

2002) and 5) providing some direct instruction to supplement learners’ comparisons (e.g.,

Schwartz & Bransford, 1998). In the current study, scaffolds for effective comparison were

embedded in the instructional material and seemed to support productive explanation during

partner work in the classroom. We caution that poorly planned or implemented comparison is

unlikely to facilitate learning.

Future Directions

This study is an important initial step in applying established results from cognitive

science about the benefits of comparison toward improvements in pressing educational problems.

However, there are several areas where future work should considering focusing. First, it is

critical that follow-up studies on comparison include longer instructional interventions. The

present study, as well as prior work by Rittle-Johnson and Star (2007, in press) involved very

short one-week-long interventions. In order to convince teachers and schools to implement

pedagogical approaches using comparison, research examining the feasibility and effectiveness

of longer interventions is critical.

Second, future work should continue to investigate how and when comparison facilitates

learning. Are some forms of comparison more effective than others? Rittle-Johnson and Star (in

press) recently explored whether some forms of comparison (e.g., comparing solution strategies,

as was done in the present study) are more conducive to learning than others (e.g., comparing

two different problems, both solved with the same strategy, or comparing two equivalent

problems, both solved with the same strategy). Results suggest that conceptual knowledge and

procedural flexibility were best supported by comparison of solution strategies, but these results
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merit replication in mathematical domains other than algebra equation solving (the focus of

Rittle-Johnson and Star (in press)).

Finally, given the challenges associated with teachers' effective implementation of

comparison (Richland et al., 2004; Richland et al., 2007), an important direction for future

research is to explore other ways that classroom instruction can incorporate comparison of

multiple strategies. In the present study, as well as Rittle-Johnson and Star (2007), students were

able to realize the benefits of comparison using only written instructional materials and without

teacher-led whole class discussions of similarities and differences between multiple strategies. A

natural extension of this work would be to examine students' mathematics textbooks: To what

extent do texts provide students with opportunities to compare multiple strategies? Greater

incorporation of side-by-side comparisons of multiple strategies is a simple, and potentially very

effective, way to improve mathematics textbooks.

Conclusion

This study contributes to a growing body of research demonstrating that comparing

multiple strategies to the same problem facilitates learning. The focus here is on estimation,

which is both a critically important real-world skill and a mathematical domain that is

significantly more complex than equation solving, which has been the target of prior work.

Comparison helped students develop a larger repertoire of estimation strategies, improved

students' ability to select the most appropriate strategies for computing an easy estimate, and

increased retention of conceptual knowledge for some students. When learning how to estimate,

the present results provide experimental evidence that it pays to compare.
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Table 1

Strategies for Estimating 13 x 27

Strategy

name

How to compute Estimate Distance from exact value

(351)

Round both 10 x 30 300 51 (14.5%)

Round one 10 x 27 270 81 (23.0%)

13 x 30 390 39 (11.1%)

Trunc 1 x 2 and append two

zeros

200 151 (43.0%)
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Table 2

Sample Items for Assessing Procedural Knowledge, Flexibility, and Conceptual Knowledge

Problem Type Sample Items Scoring and Scale Alpha at

post-test

I. Procedural Knowledge 

a. Mental (n = 3) 12 x 34; 23 x 49 1 pt for each estimate within

30% of exact value

b. Familiar (n = 6) 12 x 24; 113 x 27 1 pt for each estimate within

30% of exact value

c. Transfer (n = 6) 1.19 x 2.39; 102 ÷ 9 1 pt for each estimate within

30% of exact value

II. Flexibility 

a. Recognize and evaluate

ease of use (n = 2)

Luther computes an estimate

for 27 x 39 by rounding both

numbers and multiplying 30 x

40. Riley arrives at an

estimate by rounding one

number, multiplying 27 x 40.

Which way to estimate is

easier?

1 pt for each correct choice

b. Knowledge of multiple

strategies (n = 2)

Estimate 12 x 36 in 3 different

ways

1 pt for two correct, unique

solutions; 2 pts for three

correct, unique solutions
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c. Recognize and evaluate

closeness of estimate

(n = 5)

Carmine computes an

estimate for 9 x 48 by

rounding both numbers and

multiplying 10 x 50. Radika

arrives at an estimate by

rounding one number,

multiplying 10 x 48. Without

calculating the exact value,

which estimate is closer to the

exact value?

1 pt for each correct choice

III. Conceptual Knowledge 

(n = 10) 1) (Define) What does

“estimate” mean?

2) (Recognize definition) Rate

each definition of estimation

as not so good, kind of good,

or very good: "Estimation is

making math problems easy

and quick," [kind of good]

"Estimation is guessing," [not

so good] "Estimation is using

easier numbers and getting

close to the true value." [very

1) 2 pts if mention both

simplicity and proximity (e.g.,

"It is an easy way to get close

to the exact answer"); 1 pt for

simplicity or proximity

2) 1 pt for each correct choice
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good]

3) (Accept multiple estimates)

Kim and Ahmad were asked

to estimate 81 x 15. Kim

estimated 80 x 10 = 800;

Ahmad estimated 80 x 20 =

1600. Is Kim's answer (800)

an OK estimate? Is Ahmad's

answer (1600) an OK

estimate?

4) (Over vs. underestimate)

To estimate 21 * 39, Steven

multiplies the tens digits, 2█ *

3█ and adds two zeros. Will

Steven’s estimate be bigger or

smaller than the exact value?

3) 1 pt each if identify that an

OK estimate

4) 1 pt for choosing “smaller”
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Table 3

Student Performance By Condition

Pretest Posttest Retention

M SD M SD M SD

Compare

Procedural 31 30 71 21 65 28

Flexibility 35 20 59 24 60 23

Conceptual 36 15 48 16 47 18

Sequential

Procedural 28 31 64 27 60 30

Flexibility 34 24 47 27 52 24

Conceptual 34 15 47 17 45 15
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Table 4

Estimation Strategy By Condition (Proportion of Trials)

Pretest Posttest Retention

Strategy Compare Sequential Compare Sequential Compare Sequential

Round both 28 23 51 55 52 55

Round one 1 2 2 3 3 3

Trunc 3 2 14 5 11 6

Other 15 21 14 14 16 18

Blank 53 52 19 23 18 19
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Table 5

Percent of Intervention Explanations Containing Comparisons, by Condition

Explanation

Characteristic

Sample Explanations Compare Sequential

Compare proximity “Keith's estimate is closer

because Keith was 25 off.

And Jeffrey's 100 off”

31%* 3%

Compare simplicity “Ronny's way is easier because

he rounded two digits rather than

1 digit.”

13%* 4%

Compare steps “Gretchen didn't round her

numbers and Vanessa rounded.”

22%* 2%

Compare other “Both answers have the same

number of 0s.”

4% 1%

No compare “Marquan's way was an

estimate."

37%* 91%

Note: Students could receive more than one code for a single explanation

*Difference between conditions is significant at p < .01.
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Table 6

Sample Dialogue of a High-Learning and a Low-Learning Pair During the Intervention

High-Learners: Alice and Paul Low-Learners: Jane and Don

Paul: [reading question] Why is Annette’s

estimate smaller than the exact value while

Claire’s estimate is bigger than the exact

value?

Alice: Well, I think that Annette’s answer is

smaller because she rounded both of them

down. Claire’s way is bigger because she

rounded both of them up.

Paul: Okay want to read what we said?

Alice: Okay well I said that Annette’s way is

smaller because she rounded down, 29 down to

20 and 48 down to 40, and that Claire’s way is

bigger and more exact because she rounded up.

We talked about it yesterday, rounding not to

the closest one.

Paul: I used to think it was no big deal, but you

really notice.

Jane: [reading question] Why is Annette’s

estimate smaller than the exact value while

Claire’s estimate is bigger than the exact

value?

Don: Because she rounded the ones digit…

Jane: She didn’t round

Don: Yes she did… see she rounded 48 up to

50.

Jane: Because Claire rounded up.

Jane: [reading question] Do you think one way

will always give an estimate closer than

another way on any multiplication problem?

Don: Yeah because if you round down, it’s not

…

Jane: If you round down, then the solution…
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Alice: [reading question] Do you think that one

way will always give a closer estimate than the

other way on any multiplication problem?

Paul: Absolutely! Because Claire’s way, she

estimated the closest, up for both of them, and

she got the closest answer, but so I think that is

a much better answer. So yes I think it does

make a difference.

[each student writes his or her response… ]

Alice: Okay so let me read mine. I think

Claire’s way will give a better answer because

she rounded to the closest number and Annette

rounded to the furthest number, she rounded

them both down and I don’t think she should

have done that.
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Figure Captions

Figure 1. Sample packet page for A) the compare condition and B) the sequential condition.

Figure 2. Conceptual knowledge by condition. (Estimated marginal mean across posttest and

retention test. Error bars are standard errors.)
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Figure 1
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