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Abstract. We revisit the composability of different forms of zero-knowledge
proofs when the honest prover strategy is restricted to be polynomial
time (given an appropriate auxiliary input). Our results are:
1. When restricted to efficient provers, the original Goldwasser–Micali–

Rackoff (GMR) definition of zero knowledge (STOC ‘85), here called
plain zero knowledge, is closed under a constant number of sequen-
tial compositions (on the same input). This contrasts with the case
of unbounded provers, where Goldreich and Krawczyk (ICALP ‘90,
SICOMP ‘96) exhibited a protocol that is zero knowledge under the
GMR definition, but for which the sequential composition of 2 copies
is not zero knowledge.

2. If we relax the GMR definition to only require that the simulation
is indistinguishable from the verifier’s view by uniform polynomial-
time distinguishers, with no auxiliary input beyond the statement
being proven, then again zero knowledge is not closed under sequen-
tial composition of 2 copies.

3. We show that auxiliary-input zero knowledge with efficient provers
is not closed under parallel composition of 2 copies under the as-
sumption that there is a secure key agreement protocol (in which it
is easy to recognize valid transcripts). Feige and Shamir (STOC ‘90)
gave similar results under the seemingly incomparable assumptions
that (a) the discrete logarithm problem is hard, or (b) UP 6⊆ BPP
and one-way functions exist.

1 Introduction

Composition has been one of the most active subjects of research on zero-
knowledge proofs. The goal is to understand whether the zero-knowledge prop-
erty is preserved when a zero-knowledge proof is repeated many times. The an-
swers vary depending on the variant of zero knowledge in consideration and the
? These results first appeared in the first author’s undergraduate thesis [5] and in the
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form of composition (e.g. sequential, parallel, or concurrent). The study of com-
position was first aimed at reducing the soundness error of basic constructions
of zero-knowledge proofs (via sequential or parallel composition), but was later
also motivated by considering networked environments in which an adversary
might be able to open several instances of a protocol (even concurrently).

Soon after Goldwasser, Micali, and Rackoff introduced the concept of zero-
knowledge proofs [20], it was realized that composability is a subtle issue. In
particular, this motivated a strengthening of the GMR definition, known as
auxiliary-input zero knowledge [21, 19, 9], which was shown to be closed under
sequential composition [19]. The need for this stronger definition was subse-
quently justified by a result of Goldreich and Krawczyk [16], who showed that
the original GMR definition is not closed under sequential composition. Specifi-
cally, they exhibited a protocol that is plain zero knowledge when executed once,
but fails to be zero knowledge when executed twice sequentially.

The starting point for our work is the realization that the Goldreich–Krawczyk
protocol is not an entirely satisfactory counterexample, because the prover strat-
egy is inefficient (i.e. super-polynomial time). Most cryptographic applications
of zero-knowledge proofs require a prover strategy that can be implemented effi-
ciently given an appropriate auxiliary input (e.g. NP witness). Prover efficiency
can intuitively have an impact on the composability of zero-knowledge proofs, be-
cause an adversarial verifier may be able to use the extra computational power
of one prover copy to “break” the zero-knowledge property of another copy.
Indeed, known positive results on the parallel and concurrent composability of
witness-indistinguishable proofs (a weaker variant of zero-knowledge proofs) rely
on prover efficiency [9] .

Thus, we revisit the sequential composability of plain zero knowledge, but
restricted to efficient provers. Our first result is positive, and shows that such
proofs are closed under any constant number of sequential compositions (in con-
trast to the Goldreich–Krawczyk result with unbounded provers). The case of
a superconstant or polynomial number of compositions remains an interesting
open question. This positive result refers to the standard formulation of plain
zero knowledge, where the simulation and the verifier’s view are required to be
indistinguishable by nonuniform polynomial-time distinguishers (or distinguish-
ers that are given the prover’s auxiliary input in addition to the statement being
proven).

We then consider the case where the distinguishers are uniform probabilistic
polynomial-time algorithms, whose only additional input is the statement being
proven. In this case, we obtain a negative result analogous to the one of Goldre-
ich and Krawczyk, showing that zero knowledge is not closed under sequential
composition of even 2 copies (assuming that NP 6⊆ BPP). Informally, these
two results say that plain zero knowledge is closed under a constant number of
sequential compositions if and only if the distinguishers are at least a powerful
as the prover.

We also examine the parallel composability of auxiliary-input zero knowledge.
Here, too, Goldreich and Krawczyk [16] gave a negative result that utilizes an



inefficient prover. Feige and Shamir [9], however, gave a negative result with an
efficient prover, under the assumption that the discrete logarithm is hard, or
more generally under the assumptions that UP 6⊆ BPP and one-way functions
exist. We are interested in whether the complexity assumption used by Feige
and Shamir can be weakened. To this end, we provide a negative result under a
seemingly incomparable assumption, namely that there exists a key agreement
protocol (in which it is easy to recognize valid transcripts).

2 Definitions and Preliminaries

2.1 Interactive Proofs

Given two interactive Turing machines – a prover P and a verifier V – we consider
two types of interactive protocols: proofs of language membership (interactive
proofs) and proofs of knowledge. In each case, both parties receive a common
input x, and P is trying to convince V that x ∈ L for some language L. We will
allow P to have an extra “auxiliary input” or “witness” y. We use the notation
(P, V ) to denote an interactive protocol and the notation 〈P (x, y), V (x)〉 to
denote the verifier V ’s view of that protocol with inputs (x, y) and x respectively.
The choices for y will be given by a relation of the following kind:

Definition 2.1 (Poly-balanced Relation). A binary relation R is poly-balanced
if there exists a polynomial p such that for all (x, y) ∈ R, |y| ≤ p(|x|). The lan-
guage generated by such a relation is denoted LR = {x : (x, y) ∈ R}.

Observe that we don’t require R to be polynomial-time verifiable, so every
language L is generated by such a relation, for example the relation R = {(x, y) :
|y| = |x| and x ∈ L}.

Definition 2.2 (Interactive Proof). We say that an interactive protocol (P, V )
is an interactive proof system for a language L if there exists a poly-balanced
relation R such that L = LR and the following properties hold:

– (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input
x.

– (Completeness): If (x, y) ∈ R then the verifier V (x) accepts with probability
1 after interacting with the prover P (x, y) on common input x and prover
auxiliary input y.

– (Soundness): There exists a function s(n) ≤ 1−1/poly(n) (called the sound-
ness error) for which it holds that for all x /∈ L and for all prover strategies
P ∗, the verifier V (x) accepts with probability at most s(|x|) after interacting
with P ∗ on common input x and prover auxiliary input y.

Definition 2.3 (Proof of Knowledge). Let R be a poly-balanced relation.
Given an interactive protocol (P, V ), we let p(x, y, r) be the probability that V
accepts on common input x when y is P ’s auxiliary input and r is the random
input generated by P ’s random coin flips. Let Px,y,r be the function such that



Px,y,r(m) is the message sent by P after receiving messages m. An interactive
protocol (P (x, y), V (x)) is an interactive proof of knowledge for the relation R
if the following three properties hold:

– (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input
x.

– (Completeness): If (x, y) ∈ R, then V accepts after interacting with P on
common input x.

– (Extraction): There exists a function s(n) ≤ 1−1/poly(n) (called the sound-
ness error), a polynomial q, and a probabilistic oracle machine K such that
for every x, y, r ∈ {0, 1}∗, K satisfies the following condition: if p(x, y, r) >
s(|x|) then on input x and with access to oracle Px,y,r machine K out-
puts w such that (x,w) ∈ R within an expected number of steps bounded
by q(|x|)/(p(x, y, r)− s(|x|)).

Observe that extraction implies soundness, so a proof of knowledge for R is
also an interactive proof for LR.

Although the above definitions require a polynomial-time verifier, neither
places any restriction on the computational power of the prover P . In keeping
with the standard model of “realistic” computation, we sometimes prefer to limit
the computational resources of both parties to polynomial time. Specifically, we
add the additional requirement that there exists a polynomial p such that the
prover P (x, y) runs in time p(|x|, |y|) where x is the common input and y is the
prover’s auxiliary input. We refer to such protocols as efficient or efficient-prover
proofs.

2.2 Zero Knowledge

In keeping with the literature, we define zero knowledge in terms of the indis-
tinguishability of the output distributions.

Definition 2.4 (Uniform/Nonuniform Indistinguishability). Two ensem-
bles of probability distributions {Π1(x)}x∈S and {Π2(x)}x∈S are uniformly (resp.
nonuniformly) indistinguishable if for every uniform (resp. nonuniform) prob-
abilistic polynomial-time algorithm D, there exists a negligible function µ such
that for every x ∈ S,∣∣∣Pr[D(1|x|, Π1(x)) = 1]− Pr[D(1|x|, Π2(x)) = 1]

∣∣∣ ≤ µ(|x|),

where the probability is taken over the samples of Π1(x) and Π2(x) and the coin
tosses of D.

Often, definitions of computational indistinguishability give the distinguisher
the index x (not just its length). This makes no difference for nonuniform distin-
guishers – since they can have x hardwired in – but it does matter for uniform
distinguishers. Indeed, we will see that zero-knowledge proofs demonstrate dif-
ferent properties under composition depending on how much information the
distinguisher is given about the inputs.



Also, uniform indistinguishability is usually not defined with a universal
quantifier over x ∈ S, but instead with respect to all polynomial-time samplable
distributions on x ∈ S (e.g. [2][12]). We use the above definition for simplicity,
but our results also extend to the usual definition.

For the purposes of this paper, we consider two different definitions of zero
knowledge. The first, which has primarily been of interest for historical reasons,
is the one originally introduced by Goldwasser, Micali, and Rackoff [20]:

Definition 2.5 (Plain Zero Knowledge). An interactive proof system (P, V )
for a language L = LR is plain zero knowledge (with respect to nonuniform dis-
tinguishers) if for all probabilistic polynomial-time machines V ∗, there exists a
probabilistic polynomial-time algorithm MV ∗ that on input x produces an output
probability distribution {MV ∗(x)} such that {MV ∗(x)}(x,y)∈R and {〈P (x, y), V ∗(x)〉}(x,y)∈R

are nonuniformly indistinguishable.

As is standard, the above definition refers to nonuniform distinguishers
(which can have x, y and any additional information depending on x, y hard-
wired in as nonuniform advice). However, it is also natural to consider uniform
distinguishers. In this setting, it is important to differentiate between the case
where the distinguisher is only given the single verifier input x and the case
where the distinguisher is given both x and the prover’s auxiliary input y.

Definition 2.6. An interactive proof system (P, V ) for a language L = LR is
plain zero knowledge with respect to V -uniform distinguishers if for all prob-
abilistic polynomial-time machines V ∗, there exists a probabilistic polynomial-
time algorithm MV ∗ that on input x produces an output probability distribution
{MV ∗(x)} such that {(x,MV ∗(x))}(x,y)∈R and {(x, 〈P (x, y), V ∗(x)〉)}(x,y)∈R are
uniformly indistinguishable.

Definition 2.7. An interactive proof system (P, V ) for a language L = LR is
plain zero knowledge with respect to P -uniform distinguishers if for all prob-
abilistic polynomial-time machines V ∗, there exists a probabilistic polynomial-
time algorithm MV ∗ that on input x produces an output probability distribution
{MV ∗(x)} such that {(x, y,MV ∗(x))}(x,y)∈R and {(x, y, 〈P (x, y), V ∗(x)〉)}(x,y)∈R

are uniformly indistinguishable.

The next definition of zero knowledge that we will consider is the more stan-
dard definition which incorporates an auxiliary input for the verifier.

Definition 2.8 (Auxiliary-Input Zero Knowledge). An interactive proof
system (P, V ) for a language L is auxiliary-input zero knowledge if for every
probabilistic polynomial-time machine V ∗ and every polynomial p there exists a
probabilistic polynomial-time machine MV ∗ such that the probability ensembles
{〈P (x, y), V ∗(x, z)〉}(x,y)∈R,z∈{0,1}p(|x|) and {MV ∗(x, z)}(x,y)∈R,z∈{0,1}p(|x|) are nonuni-
formly indistinguishable.

Observe that although this last definition is given only in terms of nonuniform
indistinguishability, this is actually equivalent to requiring only uniform indis-
tinguishability; any nonuniform advice used by the distinguisher can instead be
incorporated into the verifier’s auxiliary input z.



2.3 Composition

In this section, we explicitly state the definitions of sequential and parallel com-
position that will be used throughout this paper. These definitions can be applied
to any of the definitions of zero knowledge given in the previous section.

Definition 2.9. Given an interactive proof system (P, V ) and a polynomial
t(n), we consider the t(n)-fold sequential composition of this system to be the
interactive system consisting of t(n) copies of the proof executed in sequence.
The ith copy of the protocol is initialized after the (i− 1)th copy has concluded.
All copies of the protocol are initialized with the same inputs.

We can extend our notion of zero knowledge to this setting in the natural
way.

Definition 2.10. An interactive proof (P, V ) for the language L is sequential
zero knowledge if for all polynomials t(n), the t(n)-fold sequential composition
of (P, V ) is a zero knowledge proof for L.

Note that although the verifiers in the different proof copies may be distinct
entities and may in fact be honest, this definition implicitly assumes the worst
case in which a single adversary controls all verifier copies. That is, it considers
a sequential adversary (verifier) to be an interactive Turing machine V ∗ that is
allowed to interact with t(n) independent copies of P (all on common input x)
in sequence.

Our definition of parallel composition is analogous to the above definition:

Definition 2.11. Given an interactive proof system (P, V ) and a polynomial
t(n), we consider the t(n)-fold parallel composition of this system to be the
interactive system consisting of t(n) copies of the proof executed in parallel. Each
message in the ith round of a copy of the protocol must be sent before any message
from the (i+ 1)th round. All copies of the protocol are initialized with the same
inputs.

We can again extend our notion of zero knowledge to this setting:

Definition 2.12. An interactive proof (P, V ) for the language L is parallel zero
knowledge if for all polynomials t(n) the t(n)-fold parallel composition of (P, V )
is a zero-knowledge proof for L.

Thus a parallel adversary (verifier) is an interactive Turing machine V ∗ that
is allowed to interact with t(n) independent copies of P (all on common input
x) in parallel. That is the ith message in each copy is sent before the (i + 1)th

message of any copy of the protocol.



3 Sequential Zero Knowledge

3.1 Previous Results

In the area of sequential zero knowledge, there are two major results. The first
is a negative result concerning the composition of plain zero-knowledge proofs.

Theorem 3.1 (Goldreich and Krawczyk [16]). There exists a plain zero-
knowledge proof (with respect to nonuniform distinguishers) whose 2-fold sequen-
tial composition is not plain zero-knowledge.

The second significant result to emerge from the area concerns the composi-
tion of auxiliary-input zero-knowledge proofs. In this case it is possible to show
that the zero-knowledge property is retained under sequential composition.

Theorem 3.2 (Goldreich and Oren [19]). If (P, V ) is auxiliary-input zero
knowledge, then (P, V ) is auxiliary-input sequential zero knowledge.

These two results provide a context for our new results on sequential com-
position.

3.2 New Results

While Theorem 3.1 demonstrates that the original definition of zero knowledge
is not closed under sequential composition, it relies on the fact that the prover
can be computationally unbounded. In this section, we address the question:
what happens when you compose efficient-prover plain zero-knowledge proofs?
We obtain two results that partially characterize this behavior.

First we show that the Goldreich and Krawczyk result (Theorem 3.1) cannot
be extended to efficient-prover plain zero-knowledge proofs. Indeed, we show
that such proofs are closed under a constant number of compositions.

Theorem 3.3. If (P, V ) is an efficient-prover plain zero-knowledge proof system
with respect to nonuniform (resp., P -uniform) distinguishers then for every con-
stant k, the k-fold sequential composition of (P, V ) is also plain zero knowledge
w.r.t. nonuniform (resp., P -uniform) distinguishers.

We leave the case of a super-constant number of compositions as an intriguing
open problem.

Next we consider the case of V -uniform distinguishers, and we show that
such protocols are not closed under 2-fold sequential composition with efficient
provers.

Theorem 3.4. If NP * BPP then there exists an efficient-prover plain zero-
knowledge proof with respect to V -uniform distinguishers whose 2-fold composi-
tion is not plain zero knowledge with respect to V -uniform distinguishers.

Informally, Theorems 3.3 and 3.4 say that plain zero knowledge is closed un-
der a constant number of sequential compositions if and only if the distinguishers
are at least as powerful as P .



Proof of Theorem 3.3. We now prove that efficient-prover plain zero-knowledge
is closed under O(1)-fold sequential composition.

Proof. Let (Pk, Vk) denote the sequential composition of k copies of (P, V ). We
prove by induction on k that (Pk, Vk) is plain zero knowledge with respect to
nonuniform (resp., P -uniform) distinguishers.

(P1, V1) is zero knowledge by assumption.
Assume for induction that (Pk−1, Vk−1) is zero knowledge, and consider the

interactive protocol (Pk, Vk). Let V ∗k be some sequential verifier strategy for
interacting with Pk, and let V ∗k−1 denote the sequential verifier that emulates
V ∗k ’s interactions with the first k − 1 copies of the the proof system (P, V ) and
then halts. Since (Pk−1, Vk−1) is zero knowledge, there exists a simulator Mk−1

that successfully simulates V ∗k−1.
Define H∗k to be the “hybrid” verifier strategy (for interaction with P ) that

consists of running the simulator Mk−1 to obtain a simulated view v of the
first k− 1 interactions, and then emulates V ∗k (starting from the simulated view
v) in the kth interaction. Since (P, V ) is plain zero knowledge, there exists a
polynomial-time simulator Mk for this verifier strategy.

We now show that Mk is also a valid simulator for (Pk, V
∗
k ). Since by induc-

tion (Pk−1, Vk−1) is plain zero knowledge versus nonuniform (resp., P -uniform)
distinguishers, the ensemblesΠ1(x, y) = (x, y, 〈Pk−1(x, y), V ∗k−1(x)〉) andΠ2(x, y) =
(x, y,Mk−1(x)) are nonuniformly (resp., uniformly) indistinguishable when (x, y) ∈
R. Consider the function f(x, y, v) = (x, y, v′) that emulates V ∗k starting from
view v in one more interaction with P (y) to obtain view v′. Since f is polynomial-
time computable, we have that f(Π1(x, y)) and f(Π2(x, y)) are also nonuni-
formly (resp., uniformly) indistinguishable. Observe that f(Π1(x, y)) =
(x, y, 〈Pk(x, y), V ∗k (x)〉) and f(Π2(x, y)) = (x, y,Mk(x)) therefore Mk is a valid
simulator for (Pk, V

∗
k ) and hence (Pk, Vk) is plain zero knowledge with respect

to nonuniform (resp., P -uniform) distinguishers. ut

In this proof, we implicitly rely on the fact that the number of copies k is a
constant. It is possible that the running time of the simulation is Θ(ng(k)) for
some growing function g, and hence super-polynomial for nonconstant k.

Note that this result doesn’t conflict with either Theorem 3.1 (in which the
prover was allowed to use exponential time and was therefore able to distinguish
between a simulated interaction and a real interaction) or Theorem 3.4 (in which
the prover is polynomial time but the distributions are only indistinguishable to
a V -uniform distinguisher, so the prover was still able to distinguish between
a simulated interaction and a real interaction). Instead, it demonstrates that
when neither party has more computational resources than the distinguisher, it
is possible to prove a sequential closure result for plain zero knowledge, albeit
restricted to a constant number of compositions.

Proof of Theorem 3.4. We now prove Theorem 3.4, showing that plain
zero knowledge with respect to V -uniform distinguishers is not closed under



sequential composition. Our proof of Theorem 3.4 is a variant of the Goldreich-
Krawczyk [16] proof of Theorem 3.1, so we be begin by reviewing their construc-
tion.

Overview of the Goldreich-Krawczyk Construction [16]. In the proof of Theo-
rem 3.1, the key to constructing a zero-knowledge protocol that breaks under
sequential composition lies in taking advantage of the difference in computa-
tional power between the unbounded prover and the polynomial-time verifier.
The proof requires the notion of an evasive pseudorandom ensemble. This is
simply a collection of sets Si ⊆ {0, 1}p(i) such that each set is pseudorandom
and no polynomial-time algorithm can generate an element of Si with non-
negligible probability. The existence of such ensembles was proven by Goldreich
and Krawczyk in [17]. Using this, Goldreich and Krawczyk [16] construct a proto-
col such that in the first sequential copy, the verifier learns some element s ∈ S|x|.
In the second iteration, the verifier uses this s (whose membership in S|x| can
be confirmed by the prover) to extract information from P . A polynomial-time
prover would be unable to generate or verify s ∈ S|x|, therefore the result inher-
ently relies on the super-polynomial time allotted to the prover.

Overview of our Construction. As in the Goldreich-Krawczyk construction, we
take advantage of the difference in computational power between the two parties.
However, since both are required to be polynomial-time machines, the only ad-
vantage that the prover has over the verifier is in the amount of nonuniform input
each machine receives. The prover is allowed poly(|x|) bits of auxiliary input y
whereas the verifier receives only the |x| bits from the common input x. In order
to take advantage of this difference, we define efficient bounded-nonuniform eva-
sive pseudorandom ensembles. Using the newly defined ensembles, we construct
an analogous protocol; in the first iteration, the verifier learns some element
of an efficient bounded-nonuniform evasive pseudorandom ensemble, and in the
second it uses this information to extract otherwise unobtainable information
from P .

Definition 3.5. Let q be a polynomial and let S = {S1, S2, . . . } be a sequence
of (non-empty) sets such that each Sn ⊆ {0, 1}n. We say that S is a efficient
q(n)-nonuniform evasive pseudorandom ensemble if the following three properties
hold:

(1) For all probabilistic polynomial-time machines A with at most q(n) bits
of nonuniformity, Sn is indistinguishable from the uniform distribution on
strings of length n. That is, there exists a negligible function ε such that for
all sufficiently large n,∣∣∣∣ Pr

x∈Sn

[A(x) = 1]− Pr
x∈Un

[A(x) = 1]
∣∣∣∣ ≤ ε(n).

(2) For all probabilistic polynomial-time machines B with at most q(n) bits of
nonuniformity, it is infeasible for B to generate any element of Sn except



with negligible probability. That is, there exists a negligible function ε such
that for all sufficiently large n,

Pr
r∈{0,1}q(n)

[B(x, r) ∈ Sn] ≤ ε(n).

(3) There exists a polynomial p(n) and a sequence of strings {πn}n∈N of length
|πn| = p(n) such that:
(a) There exists a probabilistic polynomial-time machine D such that for all

n ∈ N and x ∈ {0, 1}n, D(πn, x) = 1 if x ∈ Sn and D(πn, x) = 0 else.
(b) There exists an expected probabilistic polynomial-time machine E such

that for all n E(πn) is a uniformly random element of Sn.
That is there exist efficient algorithms with polynomial-length advice for
checking membership in the ensemble and for choosing an element uniformly
at random.

This definition is similar in spirit to the notion of an evasive pseudorandom
ensemble used by Goldreich and Krawczyk in the proof of Theorem 3.1. How-
ever, we add the additional requirement that a polynomial-time machine with an
appropriate advice string πn can identify and generate elements of the ensemble.
In order for this to be possible, we relax the pseudorandomness and evasiveness
requirements to only hold with respect to distinguishers with bounded nonuni-
formity rather than with respect to nonuniform distinguishers.

The introduction of this definition begs the question of whether or not such
ensembles exist. Fortunately it turns out that they do.

Theorem 3.6. There exists an efficient n/4-nonuniform evasive pseudorandom
ensemble.

The proof of this theorem appears in the full version [6]. It shows that if we
select a hash function hn : {0, 1}n → {0, 1}5n/16 from an appropriate pairwise
independent family then with high probability Sn = h−1

n (05n/16) is an n/4-
nonuniform evasive pseudorandom set. The pseudorandomness and evasiveness
conditions (items (1) and (2)) are obtained by using pairwise independence and
taking a union bound over all algorithms with n/4 bits of nonuniformity. The
efficiency condition (item (3)) is obtained by taking hn to be from a standard
family (e.g., hn(x) = the first 5n/16 bits of a · x + b) and taking πn to be the
descriptor of hn (e.g., (a, b)).

We use this result to demonstrate that efficient-prover plain zero-knowledge
proofs with respect to V -uniform distinguishers are not closed under sequen-
tial composition. The construction is analogous to the one by Goldreich and
Krawczyk, and can be found in the full version of the paper [6].

4 Parallel Zero Knowledge

4.1 Previous Results

There are two classic results that provide context for our new result concerning
the parallel composition of efficient-prover zero-knowledge proof systems. In both



cases, the result applies to auxiliary-input (as well as plain) zero knowledge, and
both results are negative.

The first result establishes the existence of non-parallelizable zero-knowledge
proofs independent of any complexity assumptions.

Theorem 4.1 (Goldreich and Krawczyk [16]). There exists an auxiliary-
input zero knowledge proof whose 2-fold parallel composition is not auxiliary-
input zero knowledge (or even plain zero knowledge with respect to nonuniform
distinguishers).

While this result demonstrates that zero knowledge is not closed under paral-
lel composition in general, the proof (like that of Theorem 3.1) inherently relies
on the unbounded computational power of the provers. Without the additional
computational resources necessary to generate a string and test membership in
an evasive pseudorandom ensemble, the prover would be unable to execute the
defined protocol.

The second such result constructs an efficient-prover non-parallelizable zero-
knowledge proof based on a zero-knowledge proof of knowledge of the discrete-
logarithm relation.

Theorem 4.2 (Feige and Shamir [9]). If the discrete logarithm assumption
holds then there exists an efficient-prover auxiliary-input zero-knowledge proof
whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even
plain zero knowledge with respect to V -uniform distinguishers).

This proof relies on the very specific assumption that the discrete logarithm
problem is intractable. However as Feige and Shamir observed [9], the only prop-
erties of this problem which are actually necessary are the fact that discrete
logarithms are unique and that they have a zero-knowledge proof of knowledge.
It is therefore natural to consider generalizing the result to proofs of language
membership for any language L ∈ NP with exactly one witness for each element
x ∈ L. The class of such languages is known as UP. Moreover, if one-way func-
tions exist, then every problem in NP (and hence in UP) has a zero-knowledge
proof of knowledge [18]. Thus:

Theorem 4.3 (Feige and Shamir [9]). If UP * BPP and one-way functions
exist then there exists an efficient-prover auxiliary-input zero-knowledge proof
whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even
plain zero knowledge with respect to V -uniform distinguishers).

4.2 New Results

In this work, we broaden the complexity assumptions under which we have
efficient-prover non-parallelizable zero-knowledge proofs under more general com-
plexity assumptions. Specifically, we show that such protocols can be constructed
from any key agreement protocol (satisfying an additional technical condition).
Following the standard notion of key agreement, we introduce the following def-
inition.



Definition 4.4. A key agreement protocol is an efficient protocol between two
parties P1, P2 with the following four properties:

– Input: Both parties have common input 1` which is a security parameter
written in unary.

– Output: The outputs of both parties are k-bit strings (for some k = poly(`)).
– Correctness: The parties have the same output with probability 1 (when they

follow the protocol). This common output is called the key.
– Secrecy: No probabilistic polynomial time Turing machine E given 1` and

the transcript of the protocol (messages between P1, P2) can distinguish with
non-negligible advantage the key from a uniformly distributed k-bit string.
That is, {(1`, transcript(P1, P2), output(P1, P2))}1`:`∈N is nonuniformly in-
distinguishable from {(1`, transcript(P1, P2), Uk)}1`:`∈N.

For technical reasons, we impose an additional technical condition.

Definition 4.5. Let (P1, P2) be a key agreement protocol. We say that a pair
(i, r) ∈ {1, 2} × {0, 1}∗ is consistent with a transcript t of messages if the mes-
sages from Pi in t are what Pi would have sent had its coin tosses been r and had
it received the prior messages specified by t. We say that t is valid if there exist
r1, r2 such that t is consistent with both (1, r1) and (2, r2); that is, t occurs with
nonzero probability when the honest parties P1 and P2 interact. We say that
(P1, P2) has verifiable transcripts if there is a polynomial-time algorithm that
can decide whether a transcript t is valid given t and any pair (i, r) consistent
with t.

We note that many existing key agreement protocols have verifiable tran-
scripts, including the Diffie-Hellman key exchange and the protocols constructed
from any public-key encryption scheme with verifiable public keys.

Our main result on non-parallelizable zero knowledge proofs follows:

Theorem 4.6. If key agreement protocols with verifiable transcripts exist then
there exists an efficient-prover auxiliary-input zero-knowledge proof whose 2-fold
parallel composition is not auxiliary-input zero knowledge (or even plain zero
knowledge with respect to V -uniform distinguishers).

The existence of secure key agreement protocols with verifiable transcripts
seems incomparable to the assumption that UP * BPP which was used in
Theorem 4.3.

Proof of Theorem 4.6.

Proof. By assumption, key agreement protocols with verifiable transcripts exist.
We consider an occurrence of a key agreement protocol to consist of the coin
tosses of the two parties (r1, r2 respectively) together with the transcript t of
messages exchanged between the parties during the protocol.

Define a language L = {t : ∃(i, ri) consistent with t}. L = LR for the relation
R = {(t, (i, ri)) : (i, ri) is consistent with t}; we do not claim or require that L /∈



BPP. Observe that L ∈ NP, so there exists an efficient-prover zero-knowledge
proof of knowledge (ZKPOK) of a pair (i, ri) that is consistent with t with
error s(n) ≤ 2−m where m is the maximum length of a witness (i, ri)[18]. If
necessary, the required error can be achieved by sequential composition of any
initial ZKPOK.

We can use this proof as a subprotocol for constructing the following inter-
active proof for the language L. V begins by sending the message c = 0 to P . If
c = 0, then P uses the ZKPOK to demonstrate that he knows (i, ri) consistent
with the transcript t. If c 6= 0, V demonstrates knowledge of (j, rj) using the
same ZKPOK. If the proof is successful and the transcript is valid (which can
be checked by P by our assumption of verifiable transcripts), then P shows in
zero knowledge that he too knows a witness (i, ri) and then sends the common
key k to V .

The protocol is summarized below.

Step P (t, (i, ri)) V (t)
1 c = 0

← c
2 if c = 0: ZKPOK of (i, ri) →

consistent with t
← if c 6= 0 : ZKPOK of (j, rj) consistent with t

3 if c 6= 0: ZKPOK of (i, ri) →
consistent with t

4 if c 6= 0, V ’s ZKPOK
is successful, and t is valid:

send k →

Fig. 1. A efficient-prover non-parallelizable zero-knowledge proof for L.

The described protocol is a zero-knowledge proof for the language L.
Efficient-Prover Interactive Proof: The fact that this protocol is an inter-

active proof follows directly from the fact that the subprotocol is (by assumption)
a proof of knowledge. Completeness and soundness follow from completeness and
extraction properties of the ZKPOK that P conducts in Step 2 or Step 3 respec-
tively. Prover and verifier efficiency likewise follow from the respective properties
of the ZKPOK subprotocol.

Zero Knowledge: Given any verifier strategy V ∗ we can construct a simu-
lator MV ∗ . MV ∗ begins by randomly choosing and fixing the coin tosses of the
verifier V ∗, and then runs the verifier V ∗ in order to obtain its first message c. If
c = 0, MV ∗ then emulates the simulator for the ZKPOK to simulate Step 2. It
then does nothing for Step 3. If c 6= 0, then MV ∗ simulates the ZKPOK in Step 2
by following the correct “verifier” protocol and running V ∗ in order to simulate
the “prover” half of the protocol. MV ∗ then simulates Step 3 using the simulator



for the subprotocol. The expected time of all of these steps is polynomial; this
follows directly from the running time of the simulators provided by the various
subprotocols.

Finally, the simulator proceeds to Step 4. If c = 0 then there is no message
sent in Step 4. If c 6= 0 and the ZKPOK in Step 2 was unsuccessful, then
there is again no message sent in Step 4. If c 6= 0 and the proof in Step 2 was
successful, then MV ∗ runs the following two extraction techniques in parallel,
halting when one succeeds: First, it attempts to extract some (j, rj) consistent
with t by employing the extractor K using V ∗’s strategy from Step 2 as an
“oracle.” Second it attempts to learn some witness (j, rj) by trying each of the
2m possible witnesses in sequence. If MV ∗ has successfully found a witness, it
uses (j, rj) together with the transcript t to determine whether t is valid and
then to determine the common key k by emulating the actions of one party and
responding to the “messages” from the other party as described in the transcript
t. This key k is then used to simulate Step 4.

The indistinguishability and expected polynomial running time of the sim-
ulation follow from those of the ZKPOK simulator, except for the simulation
of Step 4 in the case c 6= 0. To analyze this, let p be the probability that V ∗

succeeds in the ZKPOK in Step 2. If p > 2 · 2−m, then there exists such an
extractor K that extracts a witness (j, rj) in expected time q(|x|)/(p − s(|x|).
Since this occurs with probability p, the expected time for this case is bounded
by (p · q(|x|))/(p− s(|x|)) ≤ (p · q(|x|))/(p−2−m) ≤ (p · q(|x|))/(p/2) ≤ 2q(|x|) =
poly(|x|). If p ≤ 2 · 2m then the brute force technique will find a witness in
expected time p · 2m ≤ 2 = poly(|x|). Checking t’s validity takes polynomial
time by assumption, and determining k takes time Θ(|x|), therefore the entire
simulation runs in expected polynomial time.

The indistinguishability of the final step of this simulation relies on the fact
that the transcript t is valid. Therefore, by the correctness of the key agreement
protocol, the same key will be computed using the extracted witness (j, rj) as
with the prover’s witness (i, ri) even if they are not the same, so the simulation
is polynomially indistinguishable from V ∗’s view of the interactive protocol.

Parallel Execution: Consider now two executions, (P̃1, Ṽ ) and (P̃2, Ṽ ) in
parallel. A cheating verifier V ∗ can always extract some witness w ∈ {(1, r1), (2, r2)}
from P̃1 and P̃2 using the following strategy: in Step 1, V ∗ sends c = 0 to P̃1 and
c = 1 to P̃2. Now V ∗ has to execute the protocol (P, V ) twice: once as a verifier
talking to the prover P̃1, and once as a prover talking to the verifier P̃2. This he
does by serving as an intermediary between P̃1 and P̃2, sending P̃1’s messages
to P̃2, and P̃2’s messages to P̃1. Now P̃2 willfully sends k to Ṽ (which, by the
secrecy property of the key agreement protocol, Ṽ is incapable of computing on
his own). ut

5 Conclusions and Open Problems

We view our results as pointing out the significance of prover efficiency, as well as
the power of the distinguishers, in the composability of zero-knowledge proofs.



Indeed, we have shown that with prover efficiency, the original GMR definition
enjoys a greater level of composability than without. Nevertheless, the now-
standard notion of auxiliary input zero knowledge still seems to be the appropri-
ate one for most purposes. In particular, we still do not know whether plain zero
knowledge is closed under a super-constant number of compositions. We also
have not considered the case that different statements are being proven in each
of the copies, much less (sequential) composition with arbitrary protocols. For
these, it seems likely that auxiliary input zero knowledge, or something similar,
is necessary.

One way in which our negative result on sequential composition (of plain
zero knowledge with respect to V -uniform distinguishers, Theorem 3.4) can be
improved is to provide an example where the prover’s auxiliary inputs are de-
fined by a relation that can be decided in polynomial time (in contrast to our
construction, where the prover’s auxiliary input contains the advice string π4n,
which may be hard to recognize).

For the parallel composition of auxiliary-input zero knowledge with efficient
provers, it remains open to determine whether a negative result can be proven
under a more general assumption such as the existence of one-way functions. The
methods of Feige and Shamir [9] (Theorem 4.3) can be generalized to replace the
assumption UP 6⊆ BPP with the assumption that there is a a problem in NP
for which the witnesses have a “uniquely determined feature” [22] that is hard to
compute. That is, there is a poly-balanced, poly-time relation R, an efficiently
computable f , and a function g such that (a) if (x,w) ∈ R, then f(x,w) = g(x),
and (b) there is no probabilistic polynomial-time algorithm that computes g(x)
correctly for all x ∈ LR. (The assumption that UP 6⊆ BPP corresponds to the
case that f(x,w) = w. In general, we allow the witnesses for x to have a “unique
part,” namely g(x), which is still hard to compute.) Our result (Theorem 4.6)
can be viewed as constructing such an R, f , and g from a key agreement protocol.

Our construction complements that of Haitner, Rosen, and Shaltiel [22] —
they consider the parallel repetition of natural zero-knowledge proofs (such as 3-
Coloring [18] or Hamiltonicity [7]), and argue that “certain black-box techniques”
cannot prove that a feature g(x) will remain hard to compute by the verifier (on
average). In contrast, we consider the parallel repetition of a contrived zero-
knowledge proof and show that a cheating verifier can always learn a certain
hard-to-compute feature g(x).
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