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Abstract 

Test scores are commonly reported in a small number of ordered categories.  Examples of such 

reporting include state accountability testing, Advanced Placement tests, and English proficiency 

tests.  This paper introduces and evaluates methods for estimating achievement gaps on a 

familiar standard-deviation-unit metric using data from these ordered categories alone.  These 

methods hold two practical advantages over alternative achievement gap metrics.  First, they 

require only categorical proficiency data, which are often available where means and standard 

deviations are not.  Second, they result in gap estimates that are invariant to score scale 

transformations, providing a stronger basis for achievement gap comparisons over time and 

across jurisdictions.  We find three candidate estimation methods that recover full-distribution 

gap estimates well when only censored data are available. 

Keywords: achievement gaps, proficiency, nonparametric statistics, ordinal statistics 
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Estimating Achievement Gaps from Test Scores Reported in Ordinal "Proficiency" 

Categories 

 

Achievement gaps are among the most visible large-scale educational statistics.  Closing 

achievement gaps among traditionally advantaged and disadvantaged groups is an explicit goal 

of state and federal education policies, including current and proposed authorizations of the 

Elementary and Secondary Education Act (U.S. Department of Education, 2010).  Gaps and gap 

trends are a commonplace topic of national and state report cards, newspaper articles, scholarly 

articles, and major research reports (e.g., Education Week, 2010; Jencks & Phillips, 1998; 

Magnuson & Waldfogel, 2008; Vanneman, Hamilton, Baldwin Anderson, & Rahman, 2009).   

Researchers selecting an achievement gap metric face three issues.  First, average-based 

gaps—effect sizes or simple differences in averages—are variable under plausible 

transformations of the test score scale (Ho, 2007; Reardon, 2008a; Seltzer, Frank, & Bryk, 1994; 

Spencer, 1983).  Second, gaps based on percentages above a cut score, such as differences in 

“proficiency” or passing rates, vary substantially under alternative cut scores (Ho, 2008; 

Holland, 2002).  Third, researchers often face a practical challenge: Although they may wish to 

use an average-based gap metric, the necessary data may be unavailable. 

This last situation has become common even as the reporting requirements of the No 

Child Left Behind Act (NCLB) have led to large amounts of easily accessible test score data.  

The emphasis of NCLB on measuring proficiency rates over average achievement has led states 

and districts to report “censored data”: test score results in terms of categorical achievement 

levels, typically given labels like “below basic,” “basic,” “proficient,” and “advanced.”  These 

censored data are often reported in lieu of traditional distributional statistics like means and 

standard deviations.  A recent Center on Education Policy (2007) report noted that state-level 
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black and white means and standard deviations required for estimating black-white achievement 

gaps were available in only 24 states for reading and 25 states for mathematics.  Moreover, many 

of these states only made these statistics available upon formal request.  Without access to basic 

distributional statistics, much less full distributional information, research linking changes in 

policies and practices to changes in achievement gaps becomes substantially compromised in the 

absence of alternative methodological approaches. 

This paper develops and evaluates a set of methods for estimating achievement gaps 

when standard distributional statistics are unavailable.  The first half of this paper reviews 

traditional gap measures and their shortcomings and then presents alternative gap measures in an 

ordinal, or nonparametric framework.  Links to a large literature in nonparametric statistics and 

signal detection theory are emphasized.  This nonparametric approach generally assumes full 

information about the test score distributions of both groups.  The second half of the paper 

introduces and evaluates methods for estimating achievement gaps using censored data.  This 

describes most readily available state testing data under NCLB, where only a small number of 

categories are defined, and the cut scores delineating categories are either unknown or not 

locatable on an interval scale.  The contribution of the paper is a toolbox of transformation-

invariant gap estimation methods that overcome and circumvent the aforementioned theoretical 

and practical challenges: transformation-dependence, cut-score-dependence, and the scarcity of 

standard distributional statistics. 

Traditional Achievement Gap Measures and Their Shortcomings 

A test score gap is a statistic describing the difference between two distributions.  

Typically, the target of inference is the difference between central tendencies.  Three 

“traditional” gap metrics dominate this practice of gap reporting.  The first is the test score scale, 



ESTIMATING ACHIEVEMENT GAPS   4 

 

where gaps are most often expressed as a difference in group averages.  For a student test score, 

�, a typically higher scoring reference group, �, and a typically lower scoring focal group, �, the 

difference in averages, ����,  follows: 

 ���� = �	�−�	�.  (1) 

The second traditional metric expresses the gap in terms of standard deviation units.  This 

metric allows for standardized interpretations when the test score scale is unfamiliar and affords 

aggregation and comparison across tests with differing score scales (Hedges & Olkin, 1985).  

Sometimes described as Cohen’s �, this effect size expresses ���� in terms of a quadratic 

average of both groups’ standard deviations, �� and ��.  Although a weighted average of 

variances or a single standard deviation could also be used in the denominator, we choose an 

expression that does not depend on relative sample size and incorporates both variances:  

 ��� = �	���	�
���� �����

.  (2) 

The third traditional metric, the percentage-above-cut (PAC) metric, has become 

particularly widespread under NCLB, which mandates state selection of cut scores delineating 

“proficiency.”  Schools with insufficient percentages of proficient students face the threat of 

sanctions.  The relevance of the cut score and the mandated reporting of disaggregated 

proficiency percentages lead to a readily available gap statistic: the difference in percentages of 

proficient students.  If ���� and ���� are the percentages of groups � and � above a given cut 

score, the PAC-based gap is  

 ��� = ���� − ����. (3) 

The PAC-based gap in Equation 3 is known to be dependent upon the location of the cut 

score (Ho, 2008; Holland, 2002).  If the two distributions are normal and share a common 
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variance, however, this cut-score dependence can be eliminated by a transformation of PACs 

onto the standard-deviation-unit metric using an inverse normal transformation.  The resulting 

gap estimate, denoted ����, for the difference in “transformed percentages-above-cut” follows:  

 ���� = Φ
��(����) −  Φ��(����). (4) 

This method implicitly assumes that the test scores in groups � and � are both normally 

distributed with equal variance, or that a common transformation exists that can render them 

normal with equal variance.  The resulting gap can be interpreted in terms of standard deviation 

units.  If the distributions meet this normal, equal-variance assumption, Equation 4 returns the 

same effect size regardless of cut-score location.  Moreover, this common effect size will be 

equal to Cohen’s �.  Formal demonstrations of the logic of this transformation are widespread 

(e.g., Hedges and Olkin, 1985; Ho, 2009). 

Each of these four metrics— ����, ���, ��� , and ����—has shortcomings.  The first 

two average-based metrics depend on the assumption that the test score scale has equal-interval 

properties (Reardon, 2008b).  If equal-interval differences do not share the same meaning 

throughout all levels of the test score distribution, nonlinear transformations become permissible, 

and distortions of averages and Cohen-type effect sizes will result.  In educational measurement, 

arguments for strict equal interval properties are difficult to support (Kolen & Brennan, 2004; 

Lord, 1980; Spencer, 1983).  Without them, the magnitude of differences under plausible scale 

transformations can be of practical significance.  Ho (2007) has shown that ��� can vary by 

more than 0.10 from baseline values under plausible monotone transformations.  Further, 

estimates of ��� based on different reported test score metrics of the Early Childhood 

Longitudinal Study—Kindergarten Cohort (ECLS-K) reveal cross-metric gap trend differences 
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as large as 0.10 (author calculations from Pollack, Narajian, Rock, Atkins-Burnett, & Hausken, 

2005).  This range is sufficient to call many gap comparisons and gap trends into question. 

Gap inferences based on PAC-based metrics are subject to a different kind of distortion.  

Holland (2002) demonstrates that PAC-based gaps are maximized when the cut score is at the 

midpoint between the modes of the two normal distributions and diminishes towards zero for 

extreme cut scores.  This cut-score dependence would be acceptable if it supported defensible 

contrasts between gap sizes at different cut scores.  However, a maximized gap at a central cut 

score is more appropriately interpreted as an interaction—between a gap and the non-uniform 

density of the distributions—that happens to contrast the two groups best when the modes are on 

either side.  A less confounded approach to comparing gaps at different levels of the distribution 

would be to compare gaps in higher or lower percentiles.  When distributions are normal with 

equal variance, PAC-based gaps will vary whereas percentile-based gaps will not (Holland, 

2002). 

The ���� approach helps to address the confounding of PAC-based gaps and the 

locations of cut scores, but it rests on the assumption that the score distributions are normal with 

equal variance (or share a transformation that renders them so, Ho, 2008, 2009).  As Ho (2009) 

shows, NAEP gap trends calculated on the ���� metric vary wildly from the Basic to the 

Proficient cut score, and neither aligns with ��� with any regularity.  We replicated this analysis 

with 2009 NAEP data, and the degree of cut-score dependence remains substantial. 

Taken together, these shortcomings raise serious concerns about the four traditional gap 

and gap trend metrics above.  The first two, ���� and ���, assume not only equal-interval scale 

properties but also, for gap trends, the maintenance of equal-interval properties over time.  The 

second two, ��� and ����, confound the comparison of score distributions with the density of 



ESTIMATING ACHIEVEMENT GAPS   7 

 

students adjacent to the cut score.  These shortcomings motivate an alternative approach to 

achievement gap reporting. 

An Ordinal Framework for Gap Trend Reporting 

The literature on ordinal distributional comparisons contains attractive alternatives to 

traditional gap metrics.  When the scale-dependence of gap statistics is a concern, gaps can be 

derived from transformation-invariant representations like the probability-probability (PP) plot 

(Ho, 2009; Livingston, 2006; Wilk & Gnanadesikan, 1968).  The PP plot is best described by 

considering the two Cumulative Distribution Functions (CDFs), "�(#) and "�(#), that return the 

proportions of students ($� and $�) at or below a given score # in groups � and �, respectively.  

The left panel of Figure 1 shows two normal CDFs representing White and Black test score 

distributions on the NAEP Reading test as an example.  These are labeled generically as a 

higher-scoring reference distribution, "� (solid line), and a lower-scoring focal distribution, "� 

(dashed line).  The vertical axis expresses the proportion of students at or below a given NAEP 

scale score #.  The left panel of Figure 1 shows that, for the Basic cut score of 208, 33% of the 

reference group is at or below Basic, whereas 69% of the focal group is at or below Basic. 

The right panel of Figure 1 is the corresponding PP plot that shows the proportion of 

Group � below given percentiles of Group �: 

%($�) = "�&"���($�)'. (5) 

The paired cumulative proportions, (0.33, 0.69), are derived from the NAEP Basic cut 

score and shown in the right-hand panel.  The PP plot is generated by obtaining all paired 

cumulative proportions across the score scale underlying the CDFs.  Due to this construction, 

which uses only paired cumulative proportions and no scale information, all statistics generated 

from a PP plot are transformation-invariant.   
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One useful statistic is the area under the PP curve.  This is equal to Pr(�� > ��) and 

denoted ��,� for short.  That is, ��,� is the probability that a randomly drawn student from 

group a has a greater score than a randomly drawn student from group b.  This statistic has a 

substantial background in the nonparametric and ordinal statistics literature (e.g., Cliff, 1993; 

McGraw & Wong, 1992; Vargha & Delaney, 2000).  In signal detection theory and medical 

testing, a mathematically equivalent expression is known as the Area Under the Curve (AUC) of 

the Receiver Operating Characteristic (ROC) Curve, where the ROC curve is a PP plot with a 

particular interpretation.  In this literature, the two distributions are usually those of healthy and 

sick populations along some test criterion, and the interpretation of AUC is as a summary 

measure of the diagnostic capability of the criterion (Green & Swets, 1966; Swets & Pickett, 

1982).  The use of these approaches for expressing achievement gaps in education is fairly 

limited (exceptions include Livingston, 2006; Neal, 2006; Reardon, 2008b). 

Although the interpretation of ��,� may be appealing, a Cohen-like effect size is an 

alternative that avoids the proportion metric, allows for interpretation in terms of standard 

deviation units, and has better properties for averaging over multiple gaps.  For this purpose, Ho 

and Haertel (2006) and Ho (2009) propose the - statistic, a nonlinear monotonic transformation 

of ��,�: 

 - = √2Φ��(��,�). (6) 

The - statistic has several useful properties.  The - statistic is equal to the Cohen effect 

size when the two test score distributions are normal, even if they have unequal variances.
1
  

                                                           

1
 The - statistic arises from this relationship between the parameters of two normal distributions and ��,�: the area 

under the PP curve for the two normal distributions.  When both distributions are normal with mean and variance 

parameters 0�, 0� ,  1�2, and 1�2,  the relationship follows (Downton, 1973): 

��,� = Φ 7���
√2 8. 
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However, even in these circumstances, Cohen’s � will vary under scale transformations whereas 

- will not.  The implicit condition under which - = ��� is respective normality (Ho, 2009).  

That is, the two distributions need not be normal in the metric in which they are observed, but 

there must be a common transformation of that metric that would render both distributions 

normal.  This is a more flexible assumption than that of distributions that are normal on their 

extant common scale.   

It is, in fact, departures from respective equal-variance normality, not just equal-variance 

normality, that lead to disagreements between ���� gaps estimated from different cut scores.  In 

general, distributional assumptions in an ordinal framework are best described as respective or 

transformation-inducible. In the ROC literature, where the concern is sensitivity and specificity 

of diagnostic tests, the transformation-inducible normality assumption has been described as 

“binormal” (Swets & Pickett, 1982).  In the context of gaps between test score distributions, we 

retain the descriptor “respective” normal to allow for respective distributions that are not normal 

and that may be more than two in number. 

The - statistic can be understood as the difference in mean test scores between two 

groups, both with standard normal test score distributions, that would correspond to a PP plot 

with an area under the curve of ��,�. As shown in Equation 6, - can be computed directly from 

the area under the PP curve.  It is thus broadly interpretable as a transformation-invariant 

analogue of Cohen’s � even when distributions are not respectively normal.     

When the full CDFs are known for both groups, the calculation of nonparametric gap 

statistics like - and ��,� follows in straightforward fashion from the PP plot.  When only 

censored, PAC-type data are available, however, these statistics cannot be calculated exactly.  

                                                                                                                                                                                           

Solving for ��� yields -. Equivalent expressions to - have proposed in the ROC literature (e.g., Simpson and 

Fitter, 1973), where it is commonly known as ��.  However, in the context of medical tests, AUC-type measures are 

most commonly used (Pepe, 2003). 
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The single-cut-score statistics ��� and ���� are estimable, but, as discussed previously, they 

can vary widely across alternative cut scores.  The next section describes the use of PAC data as 

observed points to estimate a PP curve.  Estimated curves allow for nonparametric gap estimates 

from ordered categorical data alone. 

Estimating Ordinal Gaps from Censored Data 

To estimate the gap measure - using censored data, we apply the PP framework 

described in Figure 1.  Extending previous notation, assume 9 cut scores, #� < #2 < ⋯ <  #<, 

that divide students into 9 + 1 ordinal achievement categories.  The CDF "� returns the 

cumulative proportion of students in group ? at or below cut score @, denoted $�A = "�(#A).  

Note that these proportions are simply the complements of the 9 PAC statistics described above: 

����A = 1 − $�A = 1 − "�(#A).   

If we had the full data from the test score distributions (that is, if we knew "� and "�), we 

would be able to compute any gap measure we like, including using Equation 5 to plot the full 

PP curve in Figure 1.  A problem arises when we do not know "� or "� but instead have access 

only to the proportions of each group above cut scores.  That is, we know only ����A and ����A 

(and, of course, the associated $�A, because $�A = 1 − ����A) for some small number of cut scores 

9.  Usefully, the representation of the PP plot, %, allows for the possibility of an estimate of the 

PP plot, %B, from the PAC data.  In fact, the 9 points, ($��, $��), ($�2, $�2), … , ($�<, $�<), fall on the 

curve described by %, by definition.  The points (0,0) and (1,1) can be added given the logic 

that some score exists below all observed score points, and some score exists above all observed 

score points.  The right-hand panel of Figure 1 shows these 9 + 2 points for the previously used 

example where 9 = 3.  The point defined by the NAEP Basic cut score is highlighted, where 

33% of reference group is below Basic and 69% of the focal group is below Basic.  The other 
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two empirical points are defined by cumulative proportions for the Proficient and Advanced cut 

scores respectively, and the theoretical points at the origin and the point (1,1) are also shown.   

Our strategy will be to use these 9 + 2 points to estimate the function % within the unit 

square.  If these points provide enough information to estimate % reliably, then we can obtain 

reliable estimates of ��,�, as the area under %B, and reliable estimates of - from  �B�,�.  We 

denote this version of -, estimated from censored data alone, as -BFG = √2Φ��&�B�,�'.  The 

contrasting target statistic, computed from the full distributions, is -HIJJ = √2Φ��(��,�).  In the 

next section, we describe six candidate methods that attempt to minimize the distance between 

-BFG and -HIJJ to obtain a usable gap statistic from censored data alone.   

The criteria for evaluation of these methods have both theoretical and statistical 

motivations.  First, symmetry is a desirable property.  Logically, the distance between groups � 

and � should be the same, whether the expression is “group � over group �” or “group � under 

group �.”  Under symmetry, the following expression will hold: ��,� = 1 − ��,�.  As a 

corollary, following Equation 6, a - statistic calculated using ��,� will have the opposite sign 

but the same absolute value as a - statistic calculated using ��,�.  Second, the function %B should 

be monotonically nondecreasing on the unit interval, following the theoretical restrictions on PP 

curves.  Third, the estimate of -HIJJ should be unbiased, that is, the average difference -BFG −
-HIJJ should be zero.  Finally, the magnitude of the average squared distance between the 

estimate and the target should be as small as possible over a range of realistic situations.  This 

will be evaluated using the root mean square deviation (RMSD) between -BFG and -HIJJ.  The six 

candidate methods are ordered loosely from those that make fewer parametric assumptions to 

those that make more parametric assumptions. 

Piecewise Linear Interpolation (PLI)   
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A graphically simple approach is to fit a linear spline function to the 9 + 2 points, 

essentially “connecting the dots” to estimate %.  Computing �B�,�, the integral of %B over the unit 

interval, is then a straightforward sum of areas of rectangles and triangles: 

 �B�,�KLM = N OP$�A�� ∙ &$�A − $�A��'R + 12 ($�A − $�A��)&$�A − $�A��'S<T�
AU�

, (7) 

 where $�V = 0 and $�<T� = 1.  The PLI approach is also notable because of its equivalence to the 

so-called midrank convention (Conover, 1973), a conventional nonparametric approach to 

adjusting ��,� when a pair of full distributions has tied values, or �(� = �) > 0.  Ties result in 

unconnected PP points on a PP plot: the same problem addressed by this paper.  The midrank 

convention adjusts ��,� as follows: ��,�WXYZ�GA = �(� > �) +  �(� = �)/2.  This is equivalent to 

Equation 7 if the censored distributions are treated as the full distributions of interest. 

Although this method has the advantage of being relatively simple, the linear spline 

function is unlikely to describe the underlying distributional shape accurately.  The integral will 

be biased toward 0.5 if the true function % has an entirely positive or negative second derivative, 

because the linear spline will truncate portions of the area between % and the 45-degree line.  

These situations are common and include all cases where distributions are respectively normal 

with equal variance, and the result in these situations would be an underreporting of the gap. 

Monotone Cubic Interpolation (MCI)  

A natural extension of the PLI approach would be to fit a polynomial curve to the PP 

points.  However, polynomial fits on the unit interval may not be monotonic and may extend 

outside the unit square.  To avoid this, a piecewise cubic spline can be fit through the data using 

the Fritsch-Carlson (1980) method.  The Fritsch-Carlson method guarantees a function that is 

monotonic, differentiable everywhere, and passes through each data point.  For the purpose of 
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fitting PP curves, this affords three primary advantages.  First, the estimated curve, %B, passes 

through each of the K+2 points.  Second, the function is monotonic, resolving the problem of 

negative slopes and unbounded PP curves that can arise under the polynomial approaches.  

Third, the curve is smooth everywhere on the unit interval, potentially resolving the bias that 

may arise with PLI.  Given our unit interval on the horizontal axis, #, and the 9 + 1 sets of cubic 

polynomial coefficients (the ]̂A�’s, where ]̂A� is the estimated coefficient on the $��-order term 

of the fitted cubic function in the @��  interval) returned by the Fritsch-Carlson algorithm, we can 

compute: 

 �B�,�_`M = N ab (]̂AV + ]̂A�# + ]̂A2#2 + ]̂Ac#c)�#��d
��def g .<T�

AU�
 (8) 

A drawback of the MCI approach is asymmetry: MCI will return asymmetrical gaps 

when groups � and � are switched on the axes.  We resolve undesirable asymmetry through a 

straightforward averaging approach on the - scale.  Following Equation 6, 

 -BFG_`M = Φ��&�B�,�_`M' − Φ��(�B�,�_`M)√2 . (9) 

Probit Transform-Fit-Inverse Transform (PTFIT). 

An alternative to fitting the PP points directly is to transform the two axes and fit the 

transformed data points.  We can then transform the fitted line back into the original metric and 

integrate in order to compute �B�,�.  If the transformation results in a more familiar or easily 

estimable functional relationship between the variables, such as a line, then we can obtain more 

accurate estimates of ��,� and -HIJJ.  We investigate the probit function for this purpose and 

designate the approach PTFIT, for Probit-Transform-Fit-Inverse-Transform.  The probit function 

is a monotonic mapping of the domain (0,1) to the range (−∞, +∞).  Due to the infinite 
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mappings of (0,0) and (1,1), we exclude these two theoretical points and fit a hth-order 

polynomial to the 9 transformed data points:  

 Φ��($�) = N ijkΦ��($�)lj m
jUV

, (10) 

where h < 9.  Moreover, h should be odd such that the fitted curve goes toward (−∞, −∞) and 

(∞, ∞).  Such a curve will approach (0,0) and (1,1) when inverse-transformed back to PP space. 

When 9 = 3, as is standard in NAEP and common in many state accountability systems, the 

linear fit is the only option.  This estimated line can be transformed back into PP space and 

evaluated numerically as the following integral:  

�B�,�KnoMn = b Φ&ipV + ip�kΦ��(#)l'�#�
V . 

 Symmetry may be obtained by fitting a principal axis regression line and obtaining ipV 

and ip�.  However, preliminary results showed marked improvement with a weighted least 

squares approach.  Each PP point may be weighted by the inverse of the variance in the 

transformed space.  When plotting group � on group �, as in a typical PP plot, an estimate of the 

standard error of each point in the transformed space is given by the delta method: 

 1̂($̂�) = r$̂�(1 − $̂�)/s�t&Φ��($̂�)' . (11) 

Here, t is the normal density function, Φ�� is the probit function, and 1/t&Φ��($̂�)' is 

the slope of the probit function at $̂�.  Fitting Equation 10 while weighting each point by the 

inverse of the square of Equation 11, we obtain a weighted least squares estimate of the slope 

and intercept.  Due to the asymmetry of the approach, we can achieve an average by repeating 
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the process and plotting group � on group �.  A geometric average of the slopes provides the 

appropriate estimate of ip�, and ipV can be calculated from point-slope equations.   

Although this can be transformed back into PP space and integrated, the linear case 

allows for a convenient estimate of -HIJJ.  It is straightforward to show that, if two distributions � 

and � are respectively normal and can be transformed to have normal parameters 0�, 0� ,  1�, and 

1�, the probit-transformed PP plot will be a line with slope u = v�v� and intercept w = x��x�v�  (e.g., 

Pepe, 2003).  Thus, we can express - as a function of u and w in a quasi-Cohen expression:  

 
-FGKnoMn = 0� − 0�

y1̂�2 + 1�22
= w

yu2 + 12
. 

(12) 

Fitting a line through the probit-transformed PP points therefore implicitly assumes that 

the two distributions are respectively normal.  With enough cut scores (at least 4), one could fit a 

higher-order odd polynomial through the PP points.  Such a procedure would not imply 

respective normality, and numerical integration procedures would be required.  

Average +ormal Shift (A+S) 

The Normal Shift (NS) approach was introduced by Furgol, Ho, and Zimmerman (2010) 

as a method of estimating - from censored data.  The authors adapt a maximum-likelihood-

based algorithm from Wolynetz (1979) that estimates a mean and variance from censored data 

with known cut scores assuming an underlying normal distribution.  With cut scores for state 

tests, cut scores are either unavailable or lack strong equal-interval properties.  Therefore, the 

authors established cut scores by assuming the reference distribution, "�, was standard normal, 

leading to 9 cut scores defined by Φ��($�A) for @ = 1 … 9.  These cut scores anchor the 

cumulative proportions for the focal group, $�A, and are used to estimate the mean and variance, 
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0� and 1�2, via the Wolynetz algorithm.  Given the assumed standard normal parameters of the 

reference distribution, the appropriate effect size estimate is simply 

 -BFGz{| = −0̂�r(1 + 1̂�2)/2. (13) 

A weakness of the NS model is that, like the MCI approach, gap estimates are not 

symmetric under the choice of reference group.  We resolve this by averaging -BFGz{| with the 

negative of its value when the groups are reversed, and we contrast this approach with the 

Furgol, Ho, and Zimmerman (2010) approach by describing this as the Average Normal Shift 

(ANS) approach.  Both approaches assume respective normality but allow for variances to differ 

across the groups.  It is similar to the linear PTFIT approach in its assumptions but uses a 

maximum likelihood approach on the CDFs instead of a weighted regression on transformed 

cumulative percentages. 

Receiver Operating Characteristic Fit (ROCFIT) 

 We previously described the interpretation of a PP plot as a ROC curve in signal 

detection theory.  Within this literature, maximum likelihood estimates of the parameters for the 

ROC curve have been developed by Dorfman and Alf (1969) under the binormal or respectively 

normal assumption.
2
 

The ROCFIT approach can be considered a more formal version of the linearly 

constrained PTFIT.  It fits the 9 probit-transformed PP points in normal-normal space using a 

maximum likelihood approach.  It enjoys the property of symmetry.  A similar maximum 

likelihood approach uses the logit transformation instead of the probit (Ogilvie & Creelman, 

1968).  The distributional assumption here is respectively logistic or bilogistic.  We evaluated 

                                                           
2
 We use the algorithm as implemented in the Stata command -rocfit-; it is also available in the R package 

“pROC.” 
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this approach and found poor performance due to a mismatch between the functional form and 

both simulated and real data.  We exclude the results due to space limitations. 

Average Difference in Transformed Percents-Above-Cut (ADTPAC)   

A previous section described ����, a gap measure that expresses the difference between 

groups � and � by taking the difference of probit-transformed PACs.  When the two test score 

distributions are respectively normal with equal standard deviations, this measure will be the 

same across cut scores.  Assuming that the variation in the �A���
 over @ is sampling variation, a 

simple method for obtaining a gap estimate is to average across the 9 �A���
 estimates. 

We use an improved approach that takes advantage of the same weighting principles as 

the PTFIT approach.  Using the variance of the transformed PACs from Equation 11, we can 

obtain an approximation of the variance of the difference in transformed PACs; that is, 

1̂2&�A���' = 1̂2&$̂�A ' + 1̂2&$̂�A '.  The inverse of this variance can be used as a weight, }A, to 

obtain a weighted average difference of 9 transformed PACs as follows:   

 -BFGz~nKz` = N }A� �A���<
AU�

. (14) 

Here, }A = 1 12&�pA���'⁄  and � = ∑ }A<AU� .  The average is thus an estimate of - obtained 

without directly estimating the PP curve, %.   

Table 1 summarizes the six proposed methods of estimating -HIJJ from the observed 

censored data.  Note that the methods guarantee monotonicity, and half of them are inherently 

symmetric.  For the asymmetric methods, we find some approach to taking an average of gaps 

estimated both ways in order to avoid the arbitrariness of the choice.  Due to the ordinal 

framework, the implied distributional assumptions are not traditional but respective.  The 

respective normal assumption implies that some shared transformation can render both 
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distributions normal.  The respective normal assumption for the PTFIT approach applies only for 

linear models in the transformed space; that is, when h = 1.  The PTFIT approach is thus a much 

larger family of approaches when greater numbers of cut scores allow for higher-order 

polynomial fits. 

Evaluating Approaches to Ordinal Gap Estimation 

This section uses simulated and real data to compare approaches as they attempt to 

recover full-distribution gap estimates, -HIJJ, using censored data alone.  As Table 1 describes, 

there are strong a priori reasons to discount seemingly straightforward approaches, such as the 

anticipated bias of the PLI.  The first subsection compares the performance of different 

approaches across simulated scenarios.  The second subsection compares recovery of -HIJJ in the 

real data context of NAEP White-Black achievement gaps in 2003, 2005, and 2007. 

Recovery of ����� in Controlled Scenarios 

This section presents three simulation scenarios: an equal-variance normal scenario, an 

unequal-variance normal scenario, and a skewed scenario using lognormal distributions.  For 

each of these, we (1) draw two samples from generating distributions with known parameters, (2) 

record -HIJJ using these two full samples, (3) define a set of centered, plausible cut scores, (4) 

apply these cut scores to the two samples to obtain cumulative proportions and PACs, (5) apply 

each approach in Table 1 to these cumulative proportions to obtain -BFG values, and (6) repeat 

this 5000 times to evaluate bias and variance under sampling.  We add the gap between the 

generating distributions as an additional factor to understand how the magnitudes of bias and 

variance vary for gaps between 0 and 1.5 standard deviation units in size. 

For these scenarios, we draw 2000 students for the reference group � and 500 students 

for the focal group �, approximating the median sample sizes used for state NAEP.  Following 
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the NAEP design and the designs of many state testing programs, we censor the data using three 

cut scores.  Larger numbers of cut scores will increase the similarity between the censored and 

full distributions and dampen the differences between estimation approaches.  To establish 

generic cut score locations, we use a symmetric approach with respect to both distributions: The 

three cut scores result in unweighted cross-group averages of PACs as follows: 80% above 

Basic, 50% above Proficient, and 20% Advanced (cumulative proportions of 0.2, 0.5, and 0.8). 

 The cut scores are obtained through an approach akin to mixture modeling that results in 

centered PACs (or cumulative proportions) for the mixture of both distributions.  For example, 

when two normal distributions with unit variance are centered on 0 and 1 respectively, the cut 

scores -0.45, 0.50, and 1.45 result in 20%, 50%, and 80% PACs for the unweighted mixture of 

the two CDFs.  The mixture is unweighted in spite of the sample size differences to keep the cut 

scores centered with respect to the two distributions.  This results in a more realistic set of cut 

scores and a simpler presentation of results.  It also keeps the amount of cut-score information 

somewhat constant—in the sense that the combined cumulative proportions are always the 

same—even as the gap between distributions shifts from 0 to 1.5.  Figure 2 shows selected 

generating distributions (curved solid, gray, and dashed lines) mapped into PP space along with 

the PP points (hollow squares) that would be generated in the population. 

These three cut scores generate three pairs of cumulative proportions.  Following the 

example in the previous paragraph, for a “Basic” cut score of -0.45, 32.6% of a low-scoring, 

s(0,1) distribution scores below Basic, and 7.4% of a high-scoring, s(1,1) distribution scores 

below Basic.  Note that these proportions average to 0.20, as expected.  Clearly, these 

percentages may change in any given sample due to sampling variability.  The sampled PP point 
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will vary around the point (.074, .326) on a PP plot.  This point can be found in the top left 

panel of Figure 2.   

The other two cut scores define two more PP points, and these are the data that are fit to 

obtain -FG.  The second, unequal-variance scenario increases the variance of the generating 

distribution for the low-scoring group by 50%, and the third, skewed scenario uses the lognormal 

distribution to impart respective positive skew.  These are also shown in Figure 2 (as gray lines 

and dashed lines in the top right and lower left panel respectively) and are described in greater 

detail in the next subsections. 

The criteria for the recovery of -HIJJ are bias, the average of -BFG − -HIJJ over all 

replications, and the root mean squared deviation (RMSD), the square root of the average of 

&-BFG − -HIJJ'2
 over all replications.  We use 5000 replications for each distance between 

generating distributions, drawing 2000 for the reference group and 500 for the focal group for 

every replication.  The distance between the generating distributions is varied between 0 and 1.5 

at intervals of .02.  This allows comparison of approaches across a range of plausible gap 

magnitudes and across distributional scenarios likely to arise in practice.  Note that -HIJJ is a 

more appropriate criterion than ���, because ��� is a transformation-dependent statistic that 

cannot be fully specified within an ordinal framework.  Although ��� happens to be equal to 

-HIJJ in the two normal scenarios that follow, this does not change the fact that a transformation 

can distort ��� but not -HIJJ. 
The normal, equal-variance scenario. 

 The most straightforward model for test scores is the normal model, and the equal-

variance assumption is an appropriate baseline assumption in the absence of other information.  

The upper left panel of Figure 2 displays the population PP curves that result from the normal, 
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equal-variance model when the mean difference is 0, 0.5, 1.0, and 1.5 standard deviation units.  

The figure displays these normal, equal-variance PP curves as black, solid lines above the 

diagonal, and the hollow squares are the “observed” points that would be generated by the cut 

score algorithm in the population.  As expected, the curves bulge from the diagonal as the mean 

difference increases.  The observed points, however, stay on a line with slope -1, as expected 

from the cut score algorithm that keeps the cumulative proportion of the mixture of distributions 

constant over mean differences.  The goal of each of the six proposed approaches is to 

approximate the full curve using the five observed points alone. 

The top half of Figure 3 shows the bias—the average of -BFG − -HIJJ over 5000 

replications—over the range of mean differences and for each approach.  When the mean 

difference is zero, the PP curve is the line � = #, and all six approaches estimate this easily.  As 

the mean difference increases, the PLI approach is the most biased, underestimating the full gap 

by almost 10%.  This is not surprising given that the linear approach truncates area under any 

convex curve, and we narrow the range of the figures to focus on the contrasts between the better 

performing methods.  The MCI approach shows slight negative bias when gaps are very large, 

and PTFIT, ANS, ROCFIT, and ADTPAC perform very well in a scenario that matches their 

assumptions perfectly.  The bottom half of Figure 3 shows the RMSD, where there is a clear 

distinction between the PLI approach and the others.  The more parametric methods, ANS and 

ROCFIT, appear to overfit the data slightly when the gap is zero.  That is, they seem to attribute 

sampling error around a simple diagonal line to respectively normal distributions more often than 

their less parametric counterparts.  However, they perform better when the gap is large.  These 

differences are very small with respect to the size of gaps in practice, and the range of the figures 

is set to discourage overinterpretation of substantively trivial differences. 
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The normal, unequal-variance scenario. 

 In Figure 2, the unequal-variance scenario is mapped into PP space and shown in the top 

right panel.  The generating distribution for the low-scoring focal group has a variance of 1.5, 

whereas the reference group variance is 1.  This difference in variance, equivalent to a increasing 

the standard deviation by 22.5%, is a fairly high variance difference in practice, but differences 

in observed variances are not uncommon.  For example, the absolute White-Black variance ratio, 

max(1�2, 1�2) /min (1�2, 1�2), for 2009 NAEP was 1.15 across 172 state-subject-grade 

combinations, and 4 combinations exceeded an absolute ratio of 1.5.  As expected of the cut-

score-selection algorithm, comparing the “observed” PP points across the population PP curves 

reveals alignment on a line with slope of -1. 

 The top half of Figure 4 shows the bias plotted on the standardized mean difference as 

defined by -HIJJ in the population.  The results are very similar to Figure 3 in spite of the notable 

variance differences.  The PLI approach remains negatively biased.  The ROCFIT, PTFIT, and 

ANS approaches account for variance differences explicitly and perform without bias.  A notable 

difference from Figure 3 is that ADTPAC begins to show negative bias when gaps are large.  

This is a reminder that ADTPAC assumes respective normality with equal variances, and its 

performance worsens when this assumption is not met.  The bottom half of Figure 4 shows the 

RMSD for the normal, unequal-variance scenario.  It is worth noting that the RMSD for  -HIJJ 
recovery by the five best approaches stays below .025, a fairly small amount of variability for the 

estimation of gaps when the only three paired cumulative proportions are available.   

The lognormal, skewed scenario. 

 To challenge the assumptions of respective normal approaches like ANS, ROCFIT, and 

PTFIT that account for respective normality and unequal variances, we use respectively skewed 
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lognormal distributions.  We define a random variable whose log is distributed s(0,0.3).  Such a 

distribution has mean 1.05, a standard deviation of 0.32, and positive skew of 0.95.  To generate 

a gap, we shift one distribution above another such that -HIJJ varies from 0 to 1.5 standard 

deviation units.  Unlike the previous two scenarios, this is not equivalent to shifting ��� from 0 

to 1.5, as ��� = - only when distributions are normal.  Cut scores are generated as before.  

These PP curves are also plotted as dashed lines in the lower left panel of Figure 2.   

A useful conceptual point is that two respectively lognormal distributions are not 

equivalent to two shifted normal distributions on the same scale that are transformed by the 

exponential function.  This latter construction is ordinally equivalent to the respective normal 

distributions presented in the first scenario.  Respectively lognormal distributions cannot be 

transformed to normal with a single transformation unless their CDFs completely overlap.     

The top half of Figure 5 shows the bias plotted on the -HIJJ metric as before.  The 

performance of the ADTPAC approach is notably worse.  It is clear at this point that the PLI 

approach is flawed under even the most typical scenarios; it will not be considered further.  

Taking Figures 4 and 5 together, the poor performance of ADTPAC under variance differences 

and skewness indicates its inability to adequately estimate the full distribution through weighted 

averaging of transformed PACs.  In contrast, ANS, ROCFIT, and PTFIT show very small 

positive bias in their recovery of -HIJJ with biases around .004 for the largest gaps.  In this 

scenario, the ANS approach outperforms ROCFIT and PTFIT by negligible amounts.  The MCI 

approach has a larger amount of negative bias approaching -.015.  This is still less than 1% of the 

largest gaps.   

The bottom half of Figure 5 shows the RMSD, where the decline in ADTPAC 

performance is quite apparent.  The efficiency of recovery of the 4 best approaches continues to 
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hover at around .015 and increases to just over .025 when population gaps are very large.  These 

approaches outperform seemingly attractive alternatives like PLI by a considerable margin and 

suggest that gap recovery is possible even when respective normal assumptions are not met.   

Recovery of ����� in Real Data Scenarios 

This subsection assesses the performance of these approaches in real data scenarios.  We 

use the full distributions of plausible values from NAEP state distributions, averaging over the 

five sets of plausible values as described by Mislevy, Johnson, and Muraki (1992) to obtain -FG 

and -HIJJ.  The state distributions correspond to White and Black students in 2003, 2005, and 

2007, for Reading and Mathematics in Grades 4 and 8.  Out of 600 possible state-subject-grade-

year combinations (50 states by 2 subjects by 2 grades by 3 years), 490 have sufficient sampling 

of Black students to allow for achievement gap reporting.  We calculate the nonparametric gap 

measure, -HIJJ, for these 490 White-Black gaps; these are the targets for recovery under censored 

data scenarios.  The criteria are bias and RMSD averaging over these 490 trials.  

The full distributions clearly cannot have their standardized mean differences, variances, 

or skew manipulated as in Figures 3-5, as these distributions are real.  Their properties remain 

the same as those actually reported.  However, the factor of cut score location can be usefully 

introduced into this analysis, as recovery of gaps is expected to depend on the location of cut 

scores in the distributions.  We vary cut score location along two dimensions, the breadth of the 

cut scores and the stringency of the cut scores.  The cut scores are indexed by the average 

cumulative percentages as before, except instead of fixing the average cumulative percentages at 

20%, 50%, and 80%, they are varied systematically.  The breadth dimension has average 

cumulative percentages varying from 5%, 50%, and 95% (broadly spaced cut scores) to 45%, 

50%, and 55% (narrowly spaced cut scores).  We refer to these sets of cut scores as simply broad 
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and narrow for short.  The stringency dimension has average cumulative percentages varying 

from 5%, 30%, and 55% (low cut scores leading to low cumulative percentages and high PACs) 

to 45%, 70%, and 95% (high cut scores leading to high cumulative percentages and low PACs). 

Unlike NAEP reporting, where there are common cut scores for each subject-grade 

combination, this approach allows each pair of distributions to have its own trio of cut scores.  

This is done to ensure that the interpretation of “broad” or “stringent” is consistent across pairs 

of distributions.  If a common set of cut scores were used, broad or stringent cut scores for one 

pair of distributions would be less broad or stringent for another.  Note also that some 

approximation of the results from the actual NAEP cut scores is located high along the 

stringency dimension, where the unweighted average cumulative proportions between White and 

Black students approach 45%, 70%, and 95% (55% basic and above, 30% proficient and above, 

5% advanced) across state-subject-grade combinations. 

Recovery of gaps depending on cut score breadth. 

 The top half of Figure 6 shows the bias of the five best-performing metrics in their 

recovery of real-data gaps across broad and narrow cut scores.  As noted previously, the PLI 

approach performs poorly in common scenarios and is not considered further.  The top half of 

Figure 6 shows that the overall bias of these five candidate methods can be very low.  The MCI 

approach does not perform well when cut scores are narrow.  However, the four best metrics, 

ADTPAC, PTFIT, ANS, and ROCFIT have bias less than .02.  Focusing on these four 

approaches, the ADTPAC approach performs relatively poorly, and PTFIT does not perform as 

well as ANS or ROCFIT particularly when cut scores are broadly spaced.  The lowest bias across 

all methods occurs close to cumulative proportions of 20%, 50%, and 80%.  This suggests that 

the bias scenarios in Figures 3-5 are optimistic.  However, for ANS and ROCFIT in particular, 
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the bias ranges from -.007 to +.013, a very small bias given that the median White-Black NAEP 

gaps are generally about .75 standard deviations in size. 

The bottom half of Figure 6 shows the RMSD across cut score breadth.  As before, the 

MCI approach performs poorly when cut scores are more narrowly spaced.  Within the top four 

approaches, the ADTPAC and PTFIT approaches perform relatively poorly when cut scores are 

extreme.  The poor ADTPAC performance is consistent with the findings in Figures 4 and 5.  

The performances of ANS and ROCFIT are indistinguishable along the RMSD criterion.  The 

overall efficiency when cut scores are neither broad nor narrow is quite good, with RMSDs 

bottoming out at around .009, a small percentage of White-Black gaps in practice. 

Recovery of gaps depending on cut score stringency. 

The top half of Figure 7 shows the bias in recovery across cut score stringency.  The 

symmetry of these curves suggests that methods perform best when cut scores are central with 

respect to the unweighted mixture of both distributions.  The MCI approach continues to perform 

worse than its counterparts, with negative bias.  The absolute bias of the PTFIT, ANS, and 

ROCFIT approaches are similar, and ADTPAC bias is negative when cut scores are low.   

The bottom half of Figure 7 shows the RMSD of the approaches and results in similar 

conclusions.  The MCI approach performs relatively poorly.  The ANS and ROCFIT approaches 

perform the best, with slightly better efficiency than PTFIT.  ADTPAC does not perform as well 

outside of the region where it happens to show no bias.  Focusing on the right-hand portion of 

the graph, where cut scores are closer to their real-world NAEP counterparts, the RMSDs are 

between .025 and .029.  This may still be considered surprisingly low given how little 

information exists about the lower half of the respective distributions.   When the basic cut score 

is lower, as it often is in practice, Figure 6 suggests that performance will improve.  Further, 
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because state cut scores are usually lower or much lower than NAEP cut scores, the RMSDs are 

likely to be closer to those seen towards the center of Figure 7. 

Discussion 

 These results suggest three promising candidates for the estimation of gaps under 

censored data scenarios.  The two best approaches are ROCFIT, implemented by Stata in a 

command motivated by signal detection theory, and ANS, a simple adaptation of a maximum 

likelihood estimation procedure developed by Furgol, Ho, and Zimmerman (2010).  Both result 

in very small amounts of bias and RMSD across a range of simulated and real-data scenarios. 

The ROCFIT approach is symmetrical and estimates a PP curve directly, a comparative 

theoretical advantage over ANS, which is asymmetrical and estimates normal CDFs.  In addition, 

the ANS implementation in R does not have documentation and is not widely available.  Both 

packages also allow for the estimation of standard errors; the ROC approaches to standard error 

estimation are reviewed by Pepe (2003). 

For those who do not have access to ROCFIT approaches in Stata, the PTFIT approach is 

intuitive, easy to implement with standard routines in statistical packages, and shows little loss in 

performance across scenarios.  There may be greater possibilities for PTFIT when more cut 

scores are available, and higher-order polynomials can be fit to data on the probit-transformed 

axes.  The magnitudes of the bias and RMSD for all three of these methods are rarely over .02 

and are usually much less, an impressive result under the real-data and lognormal scenarios, 

where the respective normal assumption is threatened or violated outright.  These results suggest 

that the estimation approach is robust to deviations from respective normality across a range of 

cut score locations.  The basis for this robustness may be partially explained by Figure 2.  
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Although the curve itself may be fitted poorly to respectively non-normal data, the areas beneath 

estimated and true curves may not differ substantially. 

 The applicability of these approaches extends beyond gap estimation for censored state 

testing data.  Tests reported on score scales with few ordinal categories, such as Advanced 

Placement exams, which report scores on a 1-5 integer scale, and some exams for English 

Learners are also natural applications for these gap estimation approaches.  In these cases, the 

data are treated as censored even if the grain-size of the data is the finest available.  The 

argument in favor of the use of this framework is that some continuous scale underlies the 

observed scale.  Similarly, when ceiling or floor effects compress a theoretically distinguishable 

score range into a single undifferentiated score point, the problem is one of censored data.  These 

are cases where an ANS-, PTFIT-, or ROCFIT-estimated - statistic may be preferred over effect 

sizes calculated from means and standard deviations on the established score scale. 

 A small number of technical issues remain.  The effects of sample size, sample size ratio 

across groups, and the overall number of cut scores are of interest.  We do not spend time on 

them here because the findings will be straightforward: more is better.  Increasing cut scores and 

sample size beyond the levels here will also mute the differences between methods that were our 

primary interest.  The adequate recovery of -HIJJ when there are only three cut scores suggests 

that a higher benchmark for the minimum number of cut scores is not necessary.   

When sample sizes are smaller, cut scores are extreme, group differences are large, or 

some combination of these instances, there is an increased likelihood that the highest or lowest 

score category will have no student representation from one group or another.  In these 

situations, a number of the methods proposed here will fail, including PTFIT and ANS, which 
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would both attempt to take an inverse-normal transformation of 0 or 1.  A simple correction 

involves adding a student or a fraction of a student to the highest or lowest score bin.   

Measurement error is known to attenuate Cohen-type effect sizes by inflating standard 

deviations.  The same issues arise in PP plots, as measurement error will attenuate PP curves 

toward the main diagonal.  The NAEP examples are adjusted for measurement error through the 

plausible values methodology (Mislevy, Johnson, & Muraki, 1992), however, gap comparison 

across tests, times, or groups with different degrees of measurement error must acknowledge or 

adjust for attenuation.  An ad hoc disattenuation approach treats - statistics like their ��� 

counterparts and divides by a square root of the reliability estimate; this is discussed briefly by 

Ho (2009). 

Finally, it may seem straightforward to extend these analyses from gaps to trends.  If two 

distributions on the same scale can be expressed as a PP plot, it may not seem to matter whether 

they are Groups � and � or Times 1 and 2.  However, we recommend caution in using these 

methods for descriptive trend analyses for two reasons.  First, if cross-sectional, within-grade 

trends are the target of inference, these are much smaller in magnitude, and the degree of bias 

and variance reported here will have a greater impact on substantive interpretations.  Second, 

trends rely on the year-to-year linking of score scales, a source of error that this ordinal 

framework does not currently address.  This is less of an issue for within-year gap measures, 

where linkings are generally not necessary. 

Interestingly, this latter problem with trends does not necessarily generalize to a problem 

with gap trends.  As Ho (2009) has noted, one can express a gap trend as a “change in gap” or a 

“difference in changes.”  These are equivalent in an average-based framework but not in an 

ordinal framework.  A “difference in changes” formulation subjects a gap trend to linking error 
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as noted in the previous paragraph.  However, a change-in-gap formulation, where gaps are 

estimated within each year and then subtracted from each other, manages to avoid the problems 

of year-to-year linking.  This is the recommended approach to tracking gaps over time. 

With widespread reporting of test scores in ordinal achievement levels, researchers 

interested in achievement gaps are increasingly faced with censored data scenarios.  This paper 

evaluates ordinal approaches for estimating achievement gaps using censored data alone and 

introduces tools from multiple statistical literatures to address the problem.  We find three 

approaches—ROCFIT, ANS, and PTFIT—whose performance justifies recommendation.  These 

estimates are dramatic improvements over gap estimates derived from a single cut score.  The 

approaches recover gaps well over a range of scenarios, in both an absolute sense and relative to 

alternative ordinal approaches.  The resulting estimates are interpretable on a familiar Cohen-

type metric and are transformation-invariant.  These are particularly useful properties for gap 

comparisons across different tests, times, grades, and jurisdictions. 
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Figure 1. Construction of a Probability-Probability Plot  

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustrating the construction of a Probability-Probability (PP) plot from the paired 

cumulative proportions of distributions.  The left-hand panel shows test score distributions for 

Groups � and � on a common score scale from the National Assessment of Educational Progress 

(NAEP).  The NAEP Basic cut score is also shown, and the percentages at or below that cut 

score are labeled.  The right-hand panel shows the PP plot that represents the paired cumulative 

proportions from the two distributions at left.  The corresponding PP point from the NAEP Basic 

cut score is identified along with the PP points for the Proficient and Advanced cut scores. 
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Table 1  

Characteristics of Proposed Methods of Estimating - from Censored Data 

 Properties Respective 

Distributional 

Assumptions 

 

Method Monotonicity Symmetry Notes 

PLI � �  Probable bias toward zero gap. 

MCI �   
Implemented by Matlab’s “pchip” 

spline option. 

PTFIT �  
Normal when h = 1 

9 < 4 requires linear constraint. 

ANS �  Normal 
Maximum Likelihood.  Not readily 

available. 

ROCFIT � � Normal 
Maximum Likelihood. Implemented 

by Stata’s -rocfit- command. 

ADTPAC � � 
Normal, Equal 

Variance 
Simple to implement. 

 

,ote. PLI = piecewise linear interpolation; MCI = monotone cubic interpolation; PTFIT = probit 

transform, fit, then inverse-transform; ANS = adjusted normal shift; ROCFIT = receiver 

operating characteristic curve fit; ADTPAC = average difference in transformed percentages 

above a cut score. 
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Figure 2. Generating distributions and the paired cumulative proportions in the population 

   

  

 

Figure 2. Generating distributions and "observed" proportion-proportion points in the 

population.  The top left panel shows a range of normal, equal-variance distributions with 

standardized mean differences from 0 to 1.5, abbreviated N(0)-N(1.5).  The top right panel 

shows a range of normal, unequal-variance distributions with standardized mean differences 

from 0 to 1.5, abbreviated Uneq(0)-Uneq(1.5).  The lower left panel shows a range of lognormal 

distributions with standardized mean differences from 0 to 1.5, abbreviated LogN(0)-LogN(1.5).  

The observed points in the population are shown in these three panels as hollow squares.  The 

lower right panel overlays these generating distributions to highlight their contrasts. 
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Figure 3. Recovery of the simulated gap in a normal, equal-variance scenario 

  

 

 

Figure 3. Bias and Root Mean Squared Deviation (RMSD) of six candidate gap estimation 

approaches using only three paired cumulative proportions from simulated data.  Bias and 

RMSD recovery is plotted on the size of the true, simulated gap in a normal, equal-variance 

scenario. Curves are smoothed by averaging with nearest neighbors (±.02).  PLI = piecewise 

linear interpolation; MCI = monotone cubic interpolation; PTFIT = probit transform, fit, then 

inverse-transform; ANS = adjusted normal shift; ROCFIT = receiver operating characteristic 

curve fit; ADTPAC = average difference in transformed percentages above a cut score.  
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Figure 4. Recovery of the simulated gap in a normal, unequal-variance scenario 

  

 

 

Figure 4. Bias and Root Mean Squared Deviation (RMSD) of six candidate gap estimation 

approaches using only three paired cumulative proportions from simulated data.  Bias and 

RMSD recovery is plotted on the size of the true, simulated gap in a normal, unequal-variance 

scenario. Curves are smoothed by averaging with nearest neighbors (±.02).  PLI = piecewise 

linear interpolation; MCI = monotone cubic interpolation; PTFIT = probit transform, fit, then 

inverse-transform; ANS = adjusted normal shift; ROCFIT = receiver operating characteristic 

curve fit; ADTPAC = average difference in transformed percentages above a cut score.  

  

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.00 0.25 0.50 0.75 1.00 1.25 1.50

B
ia

s

PLI, declines to -.144

MCI

ANS
PTFIT

ADTPAC

ROCFIT

0.00

0.01

0.02

0.03

0.00 0.25 0.50 0.75 1.00 1.25 1.50

R
M

S
D

PLI, increases to .145

MCI

ANS
PTFIT

ADTPAC

ROCFIT

Gap Between Generating Distributions (-) 



ESTIMATING ACHIEVEMENT GAPS   41 

 

Figure 5. Recovery of the simulated gap in a lognormal scenario 

  

 

 

Figure 5. Bias and Root Mean Squared Deviation (RMSD) of six candidate gap estimation 

approaches using only three paired cumulative proportions from simulated data.  Bias and 

RMSD recovery is plotted on the size of the true, simulated gap in a lognormal scenario. Curves 

are smoothed by averaging with nearest neighbors (±.02).  PLI = piecewise linear interpolation; 

MCI = monotone cubic interpolation; PTFIT = probit transform, fit, then inverse-transform; 

ANS = adjusted normal shift; ROCFIT = receiver operating characteristic curve fit; ADTPAC = 

average difference in transformed percentages above a cut score.  
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Figure 6. Recovery of the real gap under broadly and narrowly spaced cut-score scenarios. 

 

 

 

Figure 6. Bias and Root Mean Squared Deviation (RMSD) of four candidate gap estimation 

approaches using only three paired cumulative proportions from real data from the National 

Assessment of Educational Progress.  Bias and RMSD recovery of the real gap is plotted over 

broadly-spaced and narrowly-spaced cut score scenarios.  MCI = monotone cubic interpolation; 

PTFIT = probit transform, fit, then inverse-transform; ANS = adjusted normal shift; ROCFIT = 

receiver operating characteristic curve fit. 
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Figure 7. Recovery of the real gap under less and more stringent cut-score scenarios. 

 

 

 

 

Figure 7. Bias and Root Mean Squared Deviation (RMSD) of four candidate gap estimation 

approaches using only three paired cumulative proportions from real data from the National 

Assessment of Educational Progress.  Bias and RMSD recovery of the real gap is plotted over 

less and more stringent cut score scenarios. MCI = monotone cubic interpolation; PTFIT = probit 

transform, fit, then inverse-transform; ANS = adjusted normal shift; ROCFIT = receiver 

operating characteristic curve fit.  
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