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Abstract

Cells in the wing blade of Drosophila melanogaster exhibit an in-plane polarization causing distal orientation of hairs.
Establishment of the Planar Cell Polarity (PCP) involves intercellular interactions as well as a global orienting signal. Many of
the genetic and molecular components underlying this process have been experimentally identified and a recently
advanced system-level model has suggested that the observed mutant phenotypes can be understood in terms of
intercellular interactions involving asymmetric localization of membrane bound proteins. Among key open questions in
understanding the emergence of ordered polarization is the effect of stochasticity and the role of the global orienting
signal. These issues relate closely to our understanding of ferromagnetism in physical systems. Here we pursue this analogy
to understand the emergence of PCP order. To this end we develop a semi-phenomenological representation of the
underlying molecular processes and define a ‘‘phase diagram’’ of the model which provides a global view of the
dependence of the phenotype on parameters. We show that the dynamics of PCP has two regimes: rapid growth in the
amplitude of local polarization followed by a slower process of alignment which progresses from small to large scales. We
discuss the response of the tissue to various types of orienting signals and show that global PCP order can be achieved with
a weak orienting signal provided that it acts during the early phase of the process. Finally we define and discuss some of the
experimental predictions of the model.
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Introduction

Epithelia in diverse tissues, in addition to their apico-basal

polarization, acquire a polarization within the two-dimensional

layer of cells – a phenomenon called planar cell polarity (PCP)

[1–5]. In the developing wing of Drosophila, PCP determines the

growth direction of small hairs that extend radially from cell

boundaries. In a wild-type wing, where cells are approximately

hexagonal and form a regular honeycomb lattice, all of these hairs

point to the distal direction.

A series of recent experiments show that several key proteins

[6], including the transmembrane proteins Frizzled (Fz) and Van-

Gogh (Vang) and the cytosolic proteins Dishevelled (Dsh) and

Prickled (Pk), localize asymmetrically on cell boundaries [7–12] -

defining a direction in the plane within each cell and forming a

characteristic zig-zag pattern of protein localization on the lattice

(Fig. 1A).

Other experiments show that local PCP orientation depends on

inter-cellular signaling. First, mutant clones in which fz or Vang

activity is suppressed or amplified, cause characteristic and

reproducible inversion of polarity in large patches of cells that

are proximal or distal to the clone [13]. These observations are

summarized in Figs. 1 C,D. Second, in fat mutant clones [14,15]

hairs do not all point correctly in the distal direction, yet, their

orientation is strongly correlated between nearby cells and varies

gradually across the tissue creating a characteristic swirling

pattern.

Thus the experimental evidence suggests that an interaction

between neighboring cells tends to locally align their polarity

[1,3,14]. This local polarity need not point distally unless, in

addition, there is a global orienting signal that picks out the distal

direction throughout the wing (most likely originating with the

Dpp morphogen gradient which defines the Anterior-Posterior

axis of the wing in the larval stage of development [16]). Yet, aside

from a clear involvement of protocadherin fat [17,18] the

molecular details of this pathway remains for now unknown.

The swirling patterns in fat mutants [14] and recent evidence

[15,19], suggest that the orienting field is related to the presence of

a ‘‘gradient’’ in the fat, four-jointed, and dachs pathway.

These observations evoke an analogy between PCP and the

behavior of ferromagnets, extensively studied in physics and well

understood in terms of statistical mechanics of relatively simple

models [20]. In these models each atomic site is assigned a

magnetic dipole – spin – which can assume a different orientation

(analogous to the direction of polarization in an epithelial cell).

The salient properties of ferromagnets arise from the opposing

influence of an interaction between neighboring spins, which tends

to co-align their orientation, and the influence of thermal

fluctuations, which tend to randomize the spin direction.

Ferromagnets typically exhibit two phases of behavior: a high
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temperature phase, where spins are disordered and a low

temperature ferromagnetic phase, where the interactions domi-

nate over thermal fluctuations – leading to a spontaneous

polarization in an arbitrary direction. In this state even a small

external magnetic field has a big effect on magnetic polarization as

the spontaneous polarization aligns itself with the external field,

yet the dynamics leading to global alignment can be quite slow.

An essential lesson from statistical mechanics is that the ordered

and disordered states exist in a broad class of models and can be

discussed in a general context, focusing on a classification of the

different regimes as a function of a few parameters. We follow this

lesson by focusing the study on the competition between the

intercellular interaction and the disordering influence of the

fluctuations introduced by the noisy molecular interactions. As in

statistical mechanics we define a phase diagram which identifies

different regimes of behavior in the space of the most relevant

parameters. We then address the role of the global directional

signal in the dynamics of global alignment.

A molecular model for PCP formation was recently proposed in

Ref. [21], and was shown to reproduce a number of experimental

findings. This model involves 38 parameters that were adjusted to

successfully reproduce a set of wild-type and mutant phenotypes.

Here we pursue an alternative approach and instead of moving on

to more and more complex models develop a model with a smaller

number of degrees of freedom and a smaller number of parameters.

Instead of fixing a particular set of parameters by fitting the data we

explore the generic behavior of the model as a function of

parameters defining quantitative features characteristic of the

different phases. In formulating the model we identify several

essential ingredients, required to obtain the characteristic zig-zag

pattern and the non-autonomy of fz and Vang mutant clones. We

expect our simplified model to capture important properties of PCP,

although it does not incorporate all the molecular details.

After discussing the essential ingredients of the model, we obtain

a phase diagram describing its steady state properties. We then

consider the dynamics of local polarization strength and

orientation in the absence and in the presence of a global

orienting signal. We show that global alignment can be achieved

with a weak global orienting signal provided it is present

throughout the tissue at the earliest stage of PCP dynamics.

Finally we discuss the experimental predictions coming out of the

model and the tools required to test these predictions.

Results

Model ingredients
Three essential ingredients are included in the model, to

account for the characteristic zig-zag patterns of protein

localization and for the non-autonomy of fz and Vang mutant

clones.

Two membrane proteins form complexes across the

inter-cellular interface. As in Ref. [21] we assume that two

membrane-bound proteins, a and b – standing for Fz and Vang -

form complexes across inter-cellular interfaces. This is the source

of intercellular interaction in the model.

Complex formation across cell interfaces accounts in a simple

way for the non-autonomous effect of clones in which either a or b
are mutated. However to account for the observed localization of

Fz and Vang proteins on the opposite sides of the cell interface there

must be a mechanism which prevents a, b (or Fz and Vang) from

mingling with each other on the same side of the interface. Thus

the next two assumptions introduce molecular interactions acting

inside each cell, leading to spontaneous segregation of the

complexes and driving the protein distribution towards a non-

uniform state.

Complex formation on a single inter-cellular interface is

bistable. We assume that complexes of one polarization (a=b)

Figure 1. Summary of experimental observations. (A) Protein
localization pattern in wild-type wing: Fz (green) localizes on the distal
membrane, together with Dsh, while Vang (red) localizes on the
proximal membrane, together with Pk. (B) Key PCP proteins localize
apically in the adherens junction area, within a strip of about 1m from
the top [7,11,12,39]. (C,D) Mutant fz (C) and Vang (D) clones influence
the polarity of wild-type cells bordering the clone such that it points
towards the clone (fz, C) or away from it (Vang, D). This effect is
propagated to a large patch of wild-type cells that are distal to the
clone (fz) or proximal to it (Vang) [40]. Over-expression of fz causes an
effect similar to that of Vang mutant clones, and over-expression of
Vang causes an effect similar to fz mutants.
doi:10.1371/journal.pcbi.1000628.g001

Author Summary

Epithelial tissues are often polarized in a preferred
direction which determines, for example, the direction of
hair growth on mammalian skin, the orientation of scales
in fish, the alignment of ommatidia in the fly eye and of
sensory hair cells in the vertebrate cochlea. This in-plane
polarization, known as planar cell polarity, is one of the
morphogenetic fields that play a role in tissue patterning
during development. Here we focus on planar cell polarity
in the fly wing, where protein localization and inter-cellular
ligand-receptor interactions combine with an unknown
orienting signal to establish planar cell polarity of the wing
epithelium. We demonstrate an analogy between this
process and models of ferromagnetism in physical systems
that have been studied extensively using the tools of
statistical mechanics. The analogy helps in understanding
how local interactions between cells can lead to global
polarization order and elucidate the role of global
orienting signals and the dependence of the dynamics of
the process on parameters. We demonstrate that in the
absence of an external orienting signal swirling patterns
should emerge due to random noise. We propose ways to
test this prediction and ways to quantify the magnitude
and spatial variation of the unknown external orienting
signal.

Order and Stochastic Dynamics in Drosophila PCP
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inhibit formation of complexes of the opposite polarization (b=a),

and that this inhibition leads to bistability at the level of a single

interface between two cells (Fig. 2A). As a simple example,

consider the following dynamics of complex binding and

unbinding on a single, planar interface (Fig. 2B),

d

dt
u1~K(u2; u1)a1b2{K ’u1 ð1Þ

d

dt
u2~K(u1; u2)a2b1{K ’u2 ð2Þ

where u1 and u2 represent concentrations of interfacial complexes

with two possible polarizations (respectively a1b2 and a2b1) and

a1,2, b1,2 are concentrations of free (unbound) proteins on the two

sides of the interface.

The positive and negative feedback on complex formation is

represented through the dependence of the rate coefficients K on

u1,2 (see Methods). E.g., enhancement of K(u2; u1) in Eq. (1) with

increasing u1 or suppression with increasing u2. If this dependence

is sufficiently non-linear, the dynamics lead to two stable steady

states: one with u1wu2, the other with u1vu2, as illustrated in

Fig. 2C. Feedback effects could be equally well modeled by an

opposite modulation of K ’ and in reality quite likely involve

modulation of both K and K ’. As an example, consider the case

where there is only negative feedback through the dependence of

K or K ’ on u2. If the free a and b diffuse sufficiently rapidly,

a1,2~at{u1,2 and b1,2~bt{u2,1, where at and bt are the total

available concentrations of a and b proteins. It is then easy to see

that for bistability K ’ or 1=K must be a convex increasing function

of u2.

Inhibition acts non-locally within each cell. While

bistability of the complex formation would suffice to explain

localization of Fz and Vang on the opposite sides of each interface

between cells, in order to explain segregation of Fz and Vang to

the opposite sides of each cell we assume that the mutual inhibition

of u1 and u2 complexes acts non-locally within a cell. Hence

instead of making K in Eqs. (1–2) be a local function of u1 and u2

we assume that K is a function of c�, the concentration of a

messenger molecule which is itself a non-local function of the u1

and u2 distribution over the surface of a given cell. The messenger

molecule thus mediates an interaction between u1 and u2

complexes, i.e., c� diffuses within each cell creating an effective

repulsion between u1 and u2 complexes on adjacent interfaces.

The non-local repulsion will for a broad range of parameters result

in a dipole-like distribution of a and b (and hence of the u1 and u2

complexes) over the surface of each cell.

A plausible and quite general mechanism for generating such a

non-local inhibitory signal involves the modification of a diffusible

protein, as illustrated in Figs. 2 D,E where we denote the

unmodified and modified protein by c and c�, respectively. The

rate of modification c?c� at a given point on the membrane

depends on the local density of u2 complexes and information is

transmitted within the cell by diffusion of the modified protein.

Many variations on this general theme are possible and are

discussed in detail in the supporting analysis (Text S1, Part I).

Below we follow the scheme shown in Fig. 2E, where the

membrane-bound protein a serves the role of the messenger

protein c. Modification of a corresponds to the binding of a

cytoplasmic protein, and this process is inhibited by u2 complexes.

The fraction x of unmodified proteins then obeys the equation

{+2zk2
� �

x(r)~k2au2(r) 1{x(r)½ � ð3Þ

where r is the location on the membrane. The parameters k2 and

a, related to the rate constants for modification of a are discussed

in the supporting analysis (Text S1, part I). Note that increase of u2

increases x and that the influence of u2 is non-local, with a

characteristic range set by k{1. Finally, we assume that only

modified a proteins can form complexes, hence the rate coefficient

K is proportional to 1{x (Eq. 7). Other details of the non-local

inhibition mechanism are described in Methods. Interestingly, we

find that to maintain a non-local signal in a steady state an energy

flux is necessary (Text S1, part I).

Stochastic dynamics
There are several reasons why the dynamic equations are not

deterministic. Even in the steady state, interfacial complexes not

only bind and unbind due to thermal fluctuations, but like nearly

everything else inside the cell are being constantly recycled and

reassembled. Stochastic fluctuations arise from the molecular noise

of reactions and the variability in the state of the cell defining the

‘‘intrinsic’’ and ‘‘extrinsic’’ noise [22]. It will suffice however to

describe stochasticity of complex binding and unbinding as if it

were a Poisson process. Equation (1) is thus replaced by a

stochastic equation,

d

dt
u1~Ka1b2{K ’u1zj ð4Þ

Figure 2. Key model ingredients. (A) Bistability on an interface. (B)
Notation used for a2b complex binding and unbinding, Eqs. (1)–(2). (C)
Nullclines for u1 and u2 (red and black lines), exhibiting an unstable
fixed point with u1~u2 and two symmetry-breaking stable fixed points.
(D)–(E) Possible mechanisms for the generation of a non-local field,
based on the modification of a diffusible protein: (D) A cytoplasmic
messenger protein is modified when it meets the b side of an a2b
complex. It then continues to diffuse and, when it meets the a side of a
complex it promotes its unbinding. (E) Instead of modifying a separate
messenger protein, the a protein is directly modified by binding a
cytoplasmic protein; u2 complexes locally affect the fraction of modified
a proteins and this, in turn, affects their affinity for forming complexes
with b-s on the opposite side of the interface.
doi:10.1371/journal.pcbi.1000628.g002

Order and Stochastic Dynamics in Drosophila PCP
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[and a similar modification applies to Eq. (2)] where the noise j
can be approximated as white Gaussian noise if the number of

molecules per cell is not too small. Assuming that the dominant

contribution comes from the finite number of molecules

participating in the binding/unbinding dynamics, the variance

of j is inversely proportional to N0 (see Methods), where N0 is

defined as the number of a molecules per interface: N0~atA

where at is the total concentration of a molecules (bound and

unbound) and A is the area of an interface (about 5m|1m – see

Fig. 1B). Since the variance of j decreases with increase of N0,

1=N0 plays a role similar to temperature in a ferromagnet. If there

are *103 Fz molecules per cell [23], N0 is of order *103 resulting

in the root-mean-square fluctuations of the order of 3% (i.e.

1=
ffiffiffiffiffiffi
N0

p
) of the mean.

Other sources of intrinsic noise, in addition to the stochasticity

of binding and unbinding events, may increase the noise variance

beyond the above estimate. These additional noise sources include,

for example, stochasticity in the signaling pathway that generates

the non-local inhibition within each cell, or fluctuations in at and

bt. Such sources of intrinsic noise, acting upstream of u1 and u2,

are propagated to the PCP signaling dynamics through the

dynamics of complex formation, and can thus be described

qualitatively by the noise term in Eq. (4), with an effective value of

N0 that is possibly smaller than predicted from the number of a
and b molecules alone.

Phase diagram
What are the consequences of the model defined above when

cells are arranged on a hexagonal lattice? Let us first consider the

steady state in the deterministic limit. Fig. 3A shows a typical

phase diagram on a two-dimensional plane dissecting our five

dimensional parameter space (see Methods): the y axis is the range

of the non-local interaction in units of the cell lattice spacing, and

the x axis the coefficient a which controls inhibition (see Methods).

In the region labeled U there is a unique steady state in which

there is no polarization of the protein distribution. In contrast, in

region S the stable steady state has the symmetry shown in Fig. 3B:

Both a and b distributions carry a vector dipole moment that

points towards the center of a side, and due to the lattice symmetry

there are six equivalent states of this type. A uniform steady state

exists as well, but it is unstable. Region V differs from S in the

direction of the dipole, which points towards a vertex instead of

pointing towards and edge (Fig. 3C).

The transition from the uniform state, U , to the edge state, S in

the phase diagram is continuous: the dipole moment tends to zero

when approaching the phase boundary from the S side. A similar

transition from a U state to a V state can exist as well, and is

present on another two dimensional ‘‘slice’’ through the parameter

space of our model. This transition is also continuous.

We next consider the effects of stochasticity, which were ignored

in the discussion above by setting N0??. When N0 is finite

(similar to a non-vanishing temperature in a spin model), we ask

whether the steady state maintains long-range order: i.e. whether a

particular orientation is singled out throughout the lattice and the

dipole moment has a non-zero average. In the language of the

analogy with magnetic systems this would be a ferromagnetic state.

The latter disappears as the temperature increases above a certain

critical value, giving way to a paramagnetic state where dipole

moments point in random directions and the average polarization

vanishes (an intermediate state with quasi-long range order may

exist as well, in similarity to 2-dimensional clock models [24–27]).

Hence, we expect an ordered state to be stable only when N0 is

sufficiently large, and this is indeed observed in our simulations

(Fig. 4). Yet with a realistic number of molecules per cell, in the

order of several thousands, the vertex and side states in our model

are typically ferromagnetic.

It may thus appear that when N0 takes realistic values the system

is in an ordered state and stochasticity is altogether unimportant.

However, as we discuss next, the steady state is not necessarily

reached within the time scales of wing development, and

stochasticity plays an important role in the dynamics of ordering.

Dynamics of ordering in the absence of a global
orienting signal

Let us consider the dynamics of PCP formation, first in the

absence of a global orienting signal. Fig. 5 shows results from a

stochastic simulation, starting from a state where a and b are

uniformly distributed in all cells.

We can identify two stages of the process. The first stage

corresponds to a gradual build up of a dipolar polarization on the

cellular level. The dipole initially points in a random direction, but

as its amplitude increases with time (Fig. 5B) local polarization

begins to re-orient. At the end of this stage, when amplitude

saturates, there is no global choice of PCP direction, but the

orientation of nearby cells is strongly correlated: as an example,

Fig. 5A shows the configuration of dipoles shortly after saturation.

The second stage, which follows amplitude saturation, exhibits

slow coarsening dynamics [27]: polarity direction is approximately

aligned within discrete domains, the size of which gradually

expands by movement of their boundaries. Note also the existence

of vortex-like defects [28] (Fig. 5A and Fig. S1). Coarsening

ultimately leads to a spatially uniform steady state, but this process

occurs over a long time scale compared to that of amplitude

growth.

A quantitative theory of the early dynamics is obtained from the

linear instability of the uniform steady state (described in detail in

Text S1, part II). The variance of the local dipole amplitude

increases exponentially in time with a characteristic time scale l,

vP2(t)w*
j2

0

lLt
|e2lt ð5Þ

where for simplicity numeric prefactors of order unity are omitted

Figure 3. Phase diagram in the deterministic limit. (A) Phase
diagram in the deterministic limit, dissected in the a-k{1 plane. The
other parameters are s~0:6, at~bt~1, and K0~10. Crosses designate
the two loci, A and B, used in the numerical simulations shown in
Figs. 4,5, and 6. (B) Steady state in region S: polarity points towards a
side. (C) Steady state in region V: polarity points towards a vertex. In
region U protein distribution is unpolarized.
doi:10.1371/journal.pcbi.1000628.g003

Order and Stochastic Dynamics in Drosophila PCP
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(see Text S1, part II). In this equation j0 is the amplitude of noise

in the unstable uniform steady state, and both l and L are found

from the instability analysis (Text S1, part II). This prediction is

shown in Fig. 5B (dashed line) for comparison with the simulation.

Two additional insights come from the analysis of early dynamics

(Text S1, part II). First, PCP is initially isotropic, despite the discrete

6-fold symmetry of the hexagonal cell lattice. Consequently, the

dipole moment initially has equal probability to point in any

direction in the interval ½0,2p). Second, the spatial correlation

established during the early dynamics typically has a longer range in

the direction parallel to the dipole, compared to the perpendicular

direction. These two properties of the dynamics lead to a

characteristic swirling pattern before non-linearities set in. The

range of correlation at this stage depends on the location in the

phase diagram and increases logarithmically as a function of N0.

Effect of global orienting signals
We next consider how various types of symmetry-breaking

orienting signals influence PCP dynamics.

Boundary orienting signal. For example, a row of cells that

do not express b (or, alternatively, a) can serve as a boundary

orienting signal. Can such a signal orient a tissue as large as the

wing? In a deterministic model without any stochasticity, the

boundary is the only cause for symmetry breaking, and will

necessarily set polarity orientation throughout the tissue. In the

presence of noise a local choice of polarity is established in the bulk

of the wing, and competes with the boundary signal.

During amplitude growth a moving front separates two regions

of the tissue: between the boundary and the front all cells point in

the orientation set by the boundary, whereas beyond the front cells

point in all possible directions. The position x of the front increases

sub-linearly with time, x!t1=2, with a prefactor that depends on

the position in the phase diagram and increases logarithmically

with increase of N0 (Fig. 6 and Text S1, part II). After amplitude

saturation, when an independent choice of polarity is established

in the bulk, front propagation is arrested (more precisely the front

continues to diffuse, but this occurs over a much longer time scale

than the initial propagation). Our simulations of this process for

different parameters (see Fig. 6) suggest that a boundary induced

polarization would not reliably spread across hundreds of cells on

a plausible time scale.

Bulk orienting signal. Any perturbation that breaks the

symmetry of forming a2b versus b2a pairs can potentially act as a

bulk signal. Symmetry breaking can occur, for example, through a

graded expression of a or b proteins in the tissue, or alternatively,

another protein with a graded distribution might sequester or

hyper-activate either a or b. Such graded distributions may be

expected to arise from morphogen gradients. Yet, the asymmetry

on the level of a single cell, due to such an effect is expected to be

weak because the concentration gradient of the protein is small on

the scale of a single cell. On the other hand, a bulk magnetic field

of any magnitude will eventually orient an ordered ferromagnet.

In the PCP context, with the developmental time scale of *10
hours corresponding to the PCP amplitude growth stage, an

important question to ask is whether a weak bulk field can orient

the whole wing within this limited time frame.

To address this question we focus on a particular type of a bulk

orienting signal that can be easily quantified. A graded expression

of a (or b) within the wing acts as a signal that orients polarity in

parallel to the gradient direction. The effect of such a field can be

analyzed analytically and is described in the supporting analysis

(Text S1, part II).

In our model, a gradient in a expression corresponding to a

*10% change across the wing (assuming that the wing is *250
cells across and a 0:05% change between adjacent cells) yields full

orientation in the distal direction before amplitude saturates in

state B of the phase diagram (Fig. 3A) with N0~5000. A signal ten

times larger, which corresponds to a two-fold change in

Figure 4. Stochasticity: ordered and disordered states. Ordered and disordered states under stochastic dynamics. A lattice containing 1840
cells (as in Fig. 5) is initiated with all dipoles pointing in the downwards direction. Stochastic dynamics are then followed to assess whether long
range order in the cell array is maintained, and this is done for several different values of N0 , the average number of molecules per interface. While
long range order is maintained for N0~5000 and 500 (left and center panels), long range order is destroyed by the stochastic fluctuations for N0~50
(right panels), as quantified by the center panels which track the dynamics of the polarization averaged over all cells (Center panels, amplitude:
½vpxw

2zvpyw
2�1=2 ; Bottom panels, orientation). The top panels show a snapshot of a subset of cells at the end of the simulation.

doi:10.1371/journal.pcbi.1000628.g004

Order and Stochastic Dynamics in Drosophila PCP
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concentration across the wing, is sufficient to achieve full

orientation in state A, which is far from the phase transition.

These results suggest that a weak orienting signal (e.g. a 0.1% per

cell variation in protein level) can effectively orient the wing within

the time scale of about 10 hours.

It is possible that the orienting signal is not derived directly from

a protein gradient: An early polarization may exist in each cell

before the asymmetric localization of the key PCP proteins

develops. For example, an early polarization exists in the

distribution of Widerborst [29,30]. In addition, recent evidence

[19,31] suggests that proteins in the dachs-fat-daschous pathway are

asymmetrically distributed as well. Such an early polarization, of a

protein other than Fz and Vang, may be a rough readout of a

morphogen gradient, and may couple to the dynamics of PCP

proteins to establish an orienting signal. In this case the cell-cell

interaction in PCP may serve to smooth such a signal, creating a

readout that is more spatially-uniform and accurate than the input

present in each cell alone. This is demonstrated in Fig. 7, where a

noisy orienting signal (yellow arrows) is compared to polarity

response (white arrows).

Discussion

Under-expression of fz and Vang. The effect of changing

particular parameters of the model may depend on the position

within the phase diagram. An example can be seen in the lower-

left part of the diagram in Fig. 3, where increasing the parameter

k{1 could either switch from a vertex state to a side state, or vice

versa. However, we find quite generally that decreasing at or bt

causes a transition to the uniform state. Reducing protein numbers

in the cell corresponds in our model to a simultaneous decrease in

at or bt, and in N0 which tends to destabilize the ordered state.

Hence within our model a decrease in Fz and Vang concentrations

increases deviations of hair polarity from the correct distal

direction and eventually destroys the ordered state altogether.

While our model is in agreement with the broad effect of fz

mutation or under-expression, it also generates new and

quantitative predictions, as discussed below.

PCP dynamics. The observed asymmetry in distribution of

Fz and Vang builds up gradually over a time scale of about ten

hours, between 18 and 32 hours after puparium formation [7–12].

The simplest interpretation of this observation is that PCP

formation takes place during the first stage of the dynamics,

before amplitude saturation. The characteristic time scale l should

then be of order *10 hours. An alternative scenario is that a local

dipole moment builds up in each cell on a much shorter time scale,

and that PCP dynamics occurs mostly within the second stage of

domain growth. In this latter scenario we expect to observe

domains in which polarity points to directions other than the distal

one. Since existence of such domains in not reported

experimentally, the evidence appears to support the first

scenario. Experimental observations were made mostly from

static images in which proteins on the two sides of each interface

could not be resolved. It will thus be extremely useful to quantify

the dynamics of PCP amplitude and orientation, in order to

distinguish unambiguously between the two scenarios. Such

quantification would make it possible to test the detailed

predictions on dynamics.

Swirling patterns in the absence of an orienting

signal. The model predicts that swirling patterns should

emerge in the absence of an orienting signal. These patterns are

consistent with those observed in large fat mutant clones, at least

qualitatively. The prediction thus supports the hypotheses that fat

mutants lack a coupling with the orienting signal [14]. However,

fat mutants differ from wild type tissues in an important way,

namely, that their cell arrangement is less ordered than in wild

type tissues [15]. There are thus two possible mechanisms leading

to disorder in fat mutants: one arising from the role of stochasticity

in the absence of an orienting signal, and the other arising from

lattice disorder. These two mechanisms are not necessarily

mutually exclusive.

Regardless of the mechanism at work in fat mutants, our model

predicts that even in an ordered lattice without excess defects,

swirling patterns will appear in the absence of an orienting signal,

followed by slow coarsening dynamics. We envision three potential

ways to test this hypotheses. First, if fat is necessary for the coupling

with an orienting signal, but also plays a separate role in lattice

repacking, disabling fat activity at a sufficiently late stage of the

dynamics, after lattice repacking [32], may inhibit coupling with

the orienting signal without influencing lattice order. Second, it

may be possible to find other mutations in which lattice order is

not disrupted, but the coupling with the orienting signal is absent.

Figure 5. Stochastic dynamics in the absence of an orienting
signal. Results from a stochastic simulation in locus A of Fig. 3A with
N0~5000 and with no orienting signal, starting from the uniform
steady state. The lattice contains 1840 hexagonal cells tiling a square
region with periodic boundary conditions. (A) Pattern of polarity
orientation shortly after amplitude saturation, at lt~10. Arrows point in
the direction of the dipole moment. Inset: Close-up. Green and red
represent a and b concentration, respectively. (B) Average square
amplitude of polarity as a function of time. Arrow marks the time shown
in panel A. Dashed line: Eq. (5). (C) Measure of the correlation length as
a function of time, rc:

Ð
rdr s(r)=

Ð
dr s(r) where s(r) is the radial

correlation function vcos(h{h’)w.
doi:10.1371/journal.pcbi.1000628.g005
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Third, it may be possible to negate the effect of the endogenous

distally orienting signal by inducing an orienting signal in the

proximal direction.
An artificial bulk orienting signal. We predict that graded

expression of a or b will act as an orienting signal. This prediction

is consistent with experiments in which a gradient in expression of

fz was induced using heat-shock promoters, causing inversion of

hair-growth direction [33]. A similar effect is expected with a

graded expression of Vang.

Inducing a gradient of Fz or Vang protein concentration may

provide a way to cancel the endogenous signal in order to test the

predictions discussed above. Further, inducing such a gradient in a

tunable, quantifiable manner could be a realistic experimental

objective, e.g., using light-switchable promoter systems that allow

precise spatio-temporal control of gene expression [34]. In

addition to testing the prediction that a and b gradients can act

as an orienting signal, measuring the magnitude of gradients that

induce a significant perturbation in the PCP pattern can provide a

way to quantify the magnitude of the endogenous orienting signal

and its spatial variation within the wing. Another prediction that

could potentially be tested along these lines is that applying an

orienting signal only at a late stage of the ordering dynamics will

have only weak influence on polarity (see Fig. S2). Finally,

inducing an orienting signal in fat mutants could help distinguish

between the role of lattice disorder and the role of uncoupling

from the orienting signal.

While gradients in fz or Vang expression could be used as a tool

to perturb PCP in a controlled manner, experimental evidence

suggests that the endogenous orienting signal is not due to a

gradient in fz expression [23,33,35,36]: First, a graded expression

has not been observed experimentally (although our model

suggests that very weak gradients may be sufficient to select the

distal orientation). Second, uniform expression of a fz transgene

with a heat-shock promoter is sufficient to rescue a null fz

genotype.

Bulk vs. boundary signals. Our results demonstrate that a

weak concentration gradient within the tissue can produce a

reliable response, although the concentration change on the scale

of individual cells is very small. The reliable response is achieved

by the collective dynamics of the network, which effectively

integrates the orienting signal over a region of the tissue larger

than the size of an individual cell. Hence our results suggest that in

the PCP pathway inter-cellular interactions within the network of

cells serve to increase the fidelity of response to a morphogenetic

field.

In contrast to the precise readout of a weak bulk signal, a

boundary signal cannot effectively propagate in our model over a

large number of cells. This result is expected to hold in any model

that shares a fundamental aspect with our model, namely, that the

uniform state is unstable and gives rise spontaneously to a

patterned state driven by noise even in the absence of a global

Figure 6. Response to an orienting signal at a boundary. Position of the front x(t) during a stochastic simulation. The front location is defined
as the most distal position such that all cells proximal to this position have their PCP dipole pointing distally (i.e., the dipole has a positive projection
in the proximal-distal direction) and is shown in units of L, the distance between neighboring cells. Simulations were run on a honeycomb lattice
with rectangular boundaries, extending 200 cells sizes (200L) in the direction of front propagation (the proximal-distal axis), and 100L in the
perpendicular direction. (A) Locus A in the phase diagram of Fig. 3A, far from the phase transition. The red trace corresponds to a realistic number of
molecules per cell, N0~5000, and to stochastic noise j0*N

{1=2
0 ~1:4|10{2 . The other two traces correspond to higher, non-realistic values of

N0~5|106 (gray) and N0~5|109 (black). Dashed lines show the prediction of Eqs. (S49)–(S50), where A~2:5 in all traces was estimated from the
polarity amplitude near the boundary in the beginning of the simulation, and the numbers next to each trace represent N

{1=2
0 *j0 . The arrows

designate the time of amplitude saturation in the bulk, estimated from Eq. (S44) of the supporting analysis (Text S1). Note that after saturation front
propagation is slowed down considerably. (B) Similar plots obtained from locus B in the phase diagram. Proximity to the phase transition increases
the range of front propagation [as seen from comparison with (A)], but even here an unrealistically small amount of noise is required to reach a
propagation range comparable to the wing size. This is due to the weak, logarithmic dependence on N0 (through the value of j0) in Eq. (S50).
doi:10.1371/journal.pcbi.1000628.g006

Figure 7. Smoothing of a noisy orienting signal. Response of PCP
orientation to a noisy orienting signal present in each cell. The direction
of the signal (yellow arrows in panel A) is uncorrelated in different cells
and is biased towards the direction designated by the red vertical line in
panel (B) (roughly the distal direction), but is widely distributed in the
range ½0,2p) (A) The PCP response (white arrows) is shown from a
stochastic simulation in locus A of the phase diagram (Fig. 3A) with
N0~5000, at lt~10. (B) Distribution of PCP orientation at lt~10 (gray
bars) compared to the distribution of orientation of the orienting signal
(yellow bars).
doi:10.1371/journal.pcbi.1000628.g007
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ordering field. In contrast, in an excitable system where the

uniform state is stable, it may be possible to achieve patterning by

a propagating front – as observed, for example, in the

morphogenetic furrow during drosophila eye development [37].
Phenomenological models in Biology. Modeling in

Biology tends to emphasize molecular detail. Yet in biological

networks that involve more than a few components the typical

situation is that many details are unknown, and it is imperative to

devise an approach that can be insightful and predictive even in

the absence of complete knowledge. Our strategy was based on

building a semi-phenomenological model which attempts to

identify the key microscopic aspects (e.g. formation of trans-

cellular heterodimer complexes), build a simple model which

parameterizes the many unknowns and systematically identify

different regimes of behavior as a function of parameters (e.g. via a

phase diagram). We then focus on identifying the observable

effects that can help to discriminate between different regimes of

the model. For example, the dynamics of intracellular polarization

and the ‘‘coarsening’’ dynamics that extends local correlations into

a global order, are identified as informative quantitative

phenotypes deserving careful experimental study. The study is

obviously incomplete, as it does not explicitly identify all relevant

genes and molecules, but it provides a useful framework allowing

to classify phenotypes and accordingly group observed genetic

perturbations, and eventually refine the model at an increased

level of molecular precision.

Methods

Model. We considered two mechanisms for establishing a

non-local inhibitor field in each cell, and results were similar in the

two. The examples used in the manuscript use one realization of

the model which is summarized below, while a full description of

both mechanisms is provided in the supporting analysis (Text S1,

part I).
Fast diffusion. We assume that protein diffusion is fast. The

relevant time-scale in this context is the typical time for diffusion of

a membrane protein from one side of a cell to the opposite side,

which (assuming a diffusion coefficient D^0:5m2=sec) is of the

order of 10 minutes. In comparison, the asymmetric pattern

of protein localization arises on a time scale of several hours,

so that separation of time scales appears to be a reasonable

approximation. Assuming fast diffusion, free a and b con-

centrations are uniform in each cell. Similarly, diffusion of

bound a/b complexes equilibrates their concentration on any

given interface. Complexes, however, cannot diffuse from one

interface to another without unbinding first, and reforming with

new constituents – processes that we assume are slow. Hence

complex concentrations can vary between interfaces belonging to

the same cell and the dynamics do not necessarily lead to a

uniform steady state. For a regular hexagonal array of cells one

then needs to keep track of six variables per cell representing the

total numbers of interfacial complexes ua
i (with i labeling the sides

of cell a).
Dynamic equations. The dynamics of complex

concentration u1 at the interface between two cells (Fig. 2B) are

described by Eq. (4). The concentrations of unbound a and b are

a1~at{
X5

i~0

u1,i=6 , b2~bt{
X5

i~0

u’2,i=6 ð6Þ

where u1,i are concentrations of complexes on the six sides of cell

1, having an a within that cell and u’2,i are concentration of

complexes in cell 2 with a b in that cell, and where u1,0~u’2,0~u1

(Fig. S3). The rate K9 is a constant that we set to unity by rescaling

time, and K is given by

K~K0(1{vxw)(1zsu1) ð7Þ

where the term su1 describes self-excitation, and vxw is the

average on the interface of the non-local field x, which represents

the fraction of unmodified a proteins. This field obeys Eq. (3), in

which rs is a one-dimensional coordinate ranging from 0 to 6S,

S~L=
ffiffiffi
3
p

is the length of a cell side, and u2(rs) is a step-wise

uniform function equal to u2,i on each of the sides of cell 1.

All the parameters in this equation are dimensionless: we re-

scale all concentrations by the total concentration of a proteins, so

that at~1. Lengths are rescaled by setting L~1. The independent

parameters in the model are thus K0, bt, s, a, k, and N0. The

parameters of states A and B, as well as the value of l in these

states are summarized in Table 1.

The noise term in Eq. (4) is Gaussian with covariance

vj(t)j(t’)w~
d(t{t’)

N0
Ka1b2zK ’u1ð Þ ð8Þ

To derive this relation, recall that all concentrations were rescaled

so that at~1. The total concentration at~1 of a proteins

corresponds to having N0 molecules per interface, by definition of

N0. Hence the number of u complexes on the interface is given by

N0u1 (u1 is thus the fraction of a proteins that participate in a

complex). Assuming Poisson statistics, the variance in the number

of reactions per unit time is given by N0(Ka1b2zK ’u1) which,

after division by N2
0 yields Eq. (8).

Stochastic simulations. We used a forward explicit Euler

method for simulating the stochastic equations on a lattice of cells.

In each step a set of 12 linear equations are solved in each cell to

obtain the field x on the membrane and its average vxw on each

of the six sides. Eq. (4) is then used to update the two complex

concentrations on each interface. The time step was 10{3. A

typical simulation such as the one in Fig. 5 requires *10 hours on

an Intel Core 2 processor.

Global field. When analyzing the effect of graded a

expression we use an equivalent constant field, projected onto

the dipole carrying modes, as described in Text S1, part II (Eqs.

Table 1. Model parameters and properties of the uniform
steady state.

Locus A Locus B

K0 10 10

s 0:6 0:6

bt 1 1

a 80 25

k{1 0:45 0:77

u0
* 2:7|10{1 4:0|10{1

l 5:3|10{2 2:5|10{3

LE
{ 9:4|10{2 1:7|10{1

L\ 5:6|10{3 1:4|10{2

*u0 is the concentration of complexes in the unstable uniform steady state.
{LE and L\ are defined in the supporting analysis.
doi:10.1371/journal.pcbi.1000628.t001
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S54–S55), rather than include explicitly a graded expression of a,

in order to avoid boundary effects. However, we also ran

simulations on large lattices with direct gradients of a to verify

the applicability of Eq. (S55). In Fig. 7 a local field was associated

with each cell. The dynamic equations at each interface involved a

local field taken as the average of the fields on the two cells

separated by the interface.
Dipole moment. We define the magnitude of the PCP dipole

in each cell as P~(Ma=at{Mb=bt)=2L where Ma,b is the dipole

moment of a/b protein distribution, Ma~
P

i ai(ri{rcm) and the

sum is over all sides of the cell, ai is the a concentration on side i, ri

is side i’s center, and rcm is the cell’s center. A similar equation

holds for Mb. The only contribution to M comes from the

complexed proteins because the free proteins are uniformly

distributed in the cell.
Fig 2A. For illustration purposes we set here

du1=dt~Ka1b2{K ’u1 where K~105, a1~b2~1{u1,

K ’~ au2=(1zau2)½ �2 and a~0:025.
Phase diagram. The phase diagram (Fig. 3) was obtained as

follows. In the deterministic limit the steady states of the system are

spatially uniform. Hence the problem reduces to that of finding the

steady states of a six-dimensional dynamical system. The phase

space was first sampled at 50|50 discrete loci to obtain a low-

resolution representation of the phase diagram. At each point all

steady states (stable and unstable) were found using a

multidimensional secant root-finding algorithm as described in

[38], initialized with 500 different random states. For each stable

state found in this way, the stability and symmetry properties were

then determined. In all cases there was a unique stable steady state

up to the symmetry: Either a single stable uniform state, or six

equivalent stable vertex states, or six equivalent stable side states.

After obtaining the low-resolution representation of the phase

diagram, we used the continuity of the phase transitions in order to

obtain precise phase boundary curves, by solving numerically for

loci where an eigenvalue of the Jacobian matrix vanishes.

Supporting Information

Figure S1 Coarsening dynamics. Coarsening dynamics in a

stochastic simulation without an orienting signal, at several time

points: lt = 2.5 (A) - before amplitude saturation, lt = 10 (B), 50

(C), and 100 (D). Parameters are the same as in Fig.,5.

Found at: doi:10.1371/journal.pcbi.1000628.s001 (8.34 MB TIF)

Figure S2 Effect of delayed application of the orienting field.

Dashed lines show the average polarization in the distal direction

when a bulk orienting signal is applied only from lt = 5, compared

to the dynamics when the field is applied from the simulation onset

(full lines). Black, red, and gray traces correspond to three different

magnitudes of the applied field. These correspond, respectively, to

gradients in a concentration that amount to an increase of 0.5%,

0.2%, and 0.1% from each cell to its proximal neighbor.

Found at: doi:10.1371/journal.pcbi.1000628.s002 (0.32 MB EPS)

Figure S3 Notation used in the dynamic equation for u1. Note

that u1,0 = u92,0;u1 and u2,0 = u91,0;u2.

Found at: doi:10.1371/journal.pcbi.1000628.s003 (0.44 MB EPS)

Text S1 Supporting text.

Found at: doi:10.1371/journal.pcbi.1000628.s004 (0.25 MB PDF)
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