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DEFORMATIONS OF GQp
AND GL2(Qp) REPRESENTATIONS.

Mark Kisin

Department of Mathematics, Harvard University
(email: kisin@ math.harvard.edu)

Introduction

The purpose of this appendix is to prove that Colmez’s functor V from GL2(Qp)-
representations to GQp-representations produces essentially all two dimensional rep-
resentations of GQp . Here GQp denotes the absolute Galois group of Qp. More pre-
cisely, let E/Qp be a finite extension with ring of integers O and uniformiser πO.
For a continuous representation of GQp on a 2-dimensional E-vector space V, and
L ⊂ V a GQp-stable O-lattice, we denote by V̄ the semi-simplification of L/πOL.
This does not depend on L.

We denote by χcyc : GQp → Z×p the cyclotomic character and by ω : GQp → F×p
its mod p reduction. Finally we denote by ω2 a fundamental character of level 2 of
IQp .

Then our main result is the following

Theorem (0.1). Suppose that p > 2 and if p = 3 assume that V̄ is not of the form(
ω 0

0 1

)
⊗ χ and V̄ |IQp

is not of the form
(
ω2

2 0

0 ω6
2

)
⊗ χ.

(1) If V is irreducible, then there exists an admissible O-lattice Π with central
character detV · χ−1

cyc such that

V(Π)⊗Zp Qp
∼−→ V.

(2) If V̄ �
(

1 0

0 ω

)
⊗ χ then for any GQp

-stable O-lattice L ⊂ V, then there

exists an admissible O-lattice Π with central character detV ·χ−1
cyc such that

V(Π) ∼−→ L.

Here by an admissible O-lattice we mean a representation of GL2(Qp) on a p-
torsion free, p-adically complete and separated O-module Π such that for n ≥ 1
the quotient Π/pnΠ is a smooth, finite length representation of GL2(Qp). These
are exactly the representations to which Colmez’s functor applies, and we can then
extend it to admissible O-lattices, so that V(Π) is a GQp-stable O-lattice in V.

To explain the idea of the argument, let F be the residue field of O and VF a two
dimensional representation of GQp . Suppose that VF �

(
1 ∗
0 ω

)
⊗ χ. Then Colmez
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2 MARK KISIN

shows that there is a smooth, finite length representation of GL2(Qp) on an F-vector
space π̄, having central character ψ̄ = detVFχ

−1
cyc and such that V(π̄) ∼−→ VF.

Now fix a continuous character ψ : GQp → O× lifting ψ̄. For simplicity of notation
we will assume that VF, and hence π̄ has only scalar endomorphisms.1 Then one
can define three deformation problems over the category of finite, local, Artinian
O-algebras: The first one, Dπ̄,ψ, parameterizes deformations of π̄ with central
character ψ. The other two DVF , (resp. Dψχcyc

VF
) parameterize deformations of VF

(resp. deformations of VF with determinant ψχcyc). Each of these deformation
problems is pro-representable by a complete local O-algebra which we denote by
Rπ̄,ψ, RVF and Rψχcyc

VF
respectively. Colmez’s functor produces a map

(0.2) SpecRπ̄,ψ → SpecRVF

and one of the main results of [Co 2, §VII] is that (0.2) induces an injection on
tangent spaces. Hence it is a closed embedding.

One can sometimes show that this embedding factors through SpecRψχcyc
VF

, but
this does not always hold.2 On the other hand, results of Colmez and Berger-Breuil
allow one to show that any crystalline point with distinct Hodge-Tate weights and
determinant ψχcyc is in the image of (0.2). By imitating the “infinite fern” argument
of Gouvêa-Mazur [GM], we are able to show that the set of crystalline points is dense
in SpecRψχcyc

VF
[1/p] :

Theorem (0.3). Suppose that p > 2, and that VF �
(

1 ∗
0 ω

)
and VF|IQp

�
(
ω2 0

0 ω6
2

)
.

Then the set of closed points x ∈ SpecRψχcyc
VF

[1/p] such that the corresponding
GQp-representation is crystalline is Zariski dense.

In fact it is technically simpler to work with crystalline points satisfying some
mild non-degeneracy conditions, so the results in the text refer to “benign” or
“twisted benign” points. Such points are, in particular, crystalline.

As an immediate consequence of (0.3), one sees that the image of (0.2) contains
SpecRψχcyc

VF
and this leads to Theorem (0.1). The restrictions on VF in (0.3) arise

because in these cases Rψχcyc
VF

is not formally smooth over O, and we know of no

way to check that every component of Rψχcyc
VF

[1/p] contains a crystalline point.
The result (0.3) is a local analogue of a theorem of Gouvêa-Mazur [GM], ex-

tended by Böckle [Bö] which says that for a two dimensional F-representation of
the absolute Galois group of Q, the generic fibre of the universal deformation space
has a Zariski dense set of points corresponding to cusp forms on Γ1(N) (of various
weights) where N is a suitable integer not divisible by p. The original argument
of Gouvêa-Mazur uses the eigencurve [CM], which is a kind of p-adic interpolation
of these cusp forms. In particular, one can interpolate the global Galois repre-
sentations attached to cusp forms into a family of Galois representations over the
eigencurve.

In [Ki 1], we showed that the Galois representation attached to a point of the
eigencurve admits at least one crystalline period. This local property (up to twist)
was later dubbed trianguline by Colmez [Co 1]. One of the results of [Ki 1] shows

1Below this condition will be avoided by using framings.
2However see the remark at the end of this introduction.
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that 2-dimensional representations of GQp
with a crystalline period can be inter-

polated into a p-adic analytic space Xfs, which is a kind of local analogue of the
eigencurve. Using it, one can imitate the arguments of Gouvêa-Mazur for local
Galois representations, and show a statement about density of crystalline repre-
sentations. This has also been carried out by Colmez, using his theory of Vector
Spaces [Co 1].

Finally let us mention that Paskunas [Pa] has shown that, when π̄ is supersin-
gular (that is, VF is absolutely irreducible), then the surjection Rπ̄,ψ → R

ψχcyc
VF

is
an isomorphism. To prove this he shows directly that the dimension of the tangent
space of the left hand side is at most 3, which is the dimension of the tangent space
of the right hand side.3 As a consequence one sees that, in this case, if πA is a
deformation of π̄ with central character ψ, then detV(πA) = ψχcyc. Paskunas has
also pointed out that this formula does not hold if VF is unipotent.

Acknowledgment: It is a pleasure to thank P. Colmez, M. Emerton and
V. Paskunas for useful conversations regarding the ideas in this note. I would
especially like to thank Paskunas who pointed out that the deformation theoretic
argument could not work in general unless one worked with deformations of fixed
central character. Finally I would like to thank the referee for a careful reading of
the paper.

§1 Density of crystalline representations

(1.1) Let Q̄p be an algebraic closure of Qp. We will write GQp = Gal(Q̄p/Qp),
and we denote by χcyc : GQp → Z×p the p-adic cyclotomic character. As in the
introduction, we denote by ω the mod p cyclotomic character, by IQp ⊂ GQp the
inertia subgroup, and by ω2 a fundamental character of level 2 of IQp

.
Let E/Qp be a finite extension. We will consider pairs (V, λ) consisting of a

continuous representation of GQp a two dimensional E-vector space V and λ ∈ E×
such that

(1) HomGQp
(V, V ) = E.

(2) V is crystalline and the action of ϕ on

Dcris(V ∗) = HomE[GQp ](V,B+
cris ⊗Qp E)

has eigenvalues λ, λ′ with λ′ 6= λ, p±1λ.
(3) V has Hodge-Tate weights 0, k with k a positive integer.
A pair (V, λ) satisfying the above condition will be called a benign pair. If V

is a continuous representation of GQp on a 2-dimensional E-vector space, then we
say that V is benign if there exists a finite extension E′/E and λ ∈ E′ such that
(V ⊗E E′, λ) is benign. In particular, the condition (1) implies that V admits a
universal deformation ring RV .

Fix an E-basis of V. We denote by R�
V the universal framed deformation ring of

V. That is, if ARE denotes the category of Artinian local E-algebras with residue
field E, then R�

V represents the functor which to B in ARE assigns the set of
isomorphism classes of pairs (VB , β), where VB is a deformation of VE to B and β
is a B-basis of VB lifting the chosen basis of VE . Recall that there is a natural map
RV → R�

V which is easily seen to be formally smooth of relative dimension 3.

3Of course when p = 3 we continue to exclude the case

„
ω2
2 0

0 ω6
2

«
⊗ χ.
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Let (V, λ) be a benign pair. We denote by Dh,ϕ
V the functor on ARE which

assigns to B the set of isomorphism classes of deformations VB of VE to B such
that, if

h : V → (B+
cris ⊗Qp E)ϕ=λ

is any non-zero E-linear, GQp
-equivariant map, then h lifts to a map

h̃ : VB → (B+
cris ⊗Qp B)ϕ=λ̃

where λ̃ ∈ B× lifts λ. Note that (2) above implies that the set of maps h forms a
torsor under E×. If VB is in Dh,ϕ

V (B), then the map h̃ is determined up to a unit
in B× and λ̃ is uniquely determined by λ [Ki 1, 8.12].

Let IQp ⊂ GQp denote the inertia subgroup. We have the following

Proposition (1.1.1). The functor Dh,ϕ
V is pro-represented by a quotient Rh,ϕV of

RV , which is formally smooth over E of dimension 3. The composite

IQp → GQp → Rh,ϕ×V

given by the determinant of the universal deformation, does not factor through E×.

Proof. This is [Ki 1, 10.2]. �

Proposition (1.1.2). Let h ∈ Dcris(V ∗)ϕ=λ and h′ ∈ Dcris(V ∗)ϕ=λ′ be non-zero.
Then the closed subschemes SpecRh,ϕV and SpecRh

′,ϕ
V of SpecRV are distinct. More

precisely, SpecRh,ϕV ⊗RV
Rh

′,ϕ
V is a smooth subscheme of SpecRV of dimension 2.

Proof. Let B be in ARE and VB in DV (B). It is not hard to check that VB is in
Dh,ϕ
V (B) and Dh′,ϕ

V (B) if and only if VB is crystalline. For example, use [Ki 1, 8.9].
The proposition now follows from [Ki 3, Thm. 3.3.8], which shows that the preimage
of SpecRh,ϕV ⊗RV

Rh
′,ϕ
V in SpecR�

V is formally smooth and 5-dimensional. �

(1.2) Let F be a finite field of characteristic p and VF a two dimensional F-vector
space equipped with a continuous action of GQp . We fix an F-basis of VF.

Let ARW (F) denote the category of local Artinian W (F)-algebras with residue
field F. We denote by R�

VF
the universal framed deformation ring of VF. That is,

R�
VF

is the complete local W (F)-algebra which prorepresents the functor assigning
to A in ARW (F) the set of isomorphism classes of pairs (VA, β), where VA is a
deformation of the GQp-representation VF to A, and β is an A-basis of VA lifting
the chosen F-basis of VF. We set Z = SpecR�

VF
[1/p].

If E/W (F)[1/p] is a finite extension and x : R�
VF
→ E an E-valued point, then x

gives rise to a two dimensional E-representation of GQp , equipped with an E-basis.
Let R̂�

VF,x
denote the completion of R�

VF
[1/p] at the maximal ideal generated by

the kernel of x. Then R̂�
VF,x
⊗κ(x) E is canonically isomorphic to R�

Vx
, the framed

deformation ring of Vx [Ki 2, 2.3.5]. Here κ(x) denotes the residue field of x.
We call x benign if Vx is benign. We say that (x, λ) ∈ (Z ×Gm)(E) is benign if

(Vx, λ) is a benign pair.
Let S denote the universal deformation ring of detVF, thought of as a repre-

sentation of the inertia subgroup of the maximal abelian quotient of GQp . Then S
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is formally smooth over W (F) of relative dimension 1 if p > 2 and isomorphic to
W (F)[[Y, Z]]/((1 + Z)2 − 1) if p = 2. We have an obvious map

SpecR�
VF

VA 7→detVA|IQp−→ SpecS.

.
In the following we will use the construction of the p-adic analytic space attached

to SpecR[1/p] where R is a complete local W (F)-algebra with finite residue field
[deJ, §7]. In particular, we write W = SpecS[1/p] and we denote by Wan the
associated p-adic analytic space.4

Proposition (1.2.1). There exists a reduced, Zariski closed, analytic subspace
Xfs ⊂ (Z ×Gm)an with the following properties.

(1) If E/W (F)[1/p] is a finite extension and (x, λ) ∈ Xfs(E), then there exists
a non-zero, E-linear, GQp-equivariant map

Vx → (B+
cris ⊗Qp E)ϕ=λ.

(2) If (x, λ) ∈ (Z ×Gm)(E) is benign then (x, λ) ∈ Xfs(E).
(3) If (x, λ) is benign and its image in Xfs has residue field E, then the complete

local ring ÔXfs,(x,λ) at (the image of) (x, λ) satisfies

ÔXfs,(x,λ)
∼−→ R�

Vx
⊗RVx

Rh,ϕVx
.

In particular ÔXfs,(x,λ) is formally smooth and the composite

Xfs → Zan →Wan

is flat at (x, λ).
(4) If (x, λ) ∈ Xfs then Vx has (at least) one Hodge-Tate weight equal to 0.

Proof. The space Xfs is constructed in [Ki 1, 10.3]. It satisfies (1) (2) and (4) by
[Ki 1, 10.4] and (3) by [Ki 1, 10.6]. The final claim in (3) follows from (1.1.1). More
precisely the results of [Ki 1] apply with the versal deformation ring Rver

VF
in place

of R�
VF
, however the construction goes over verbatim. Alternatively, one can deduce

the results for R�
VF

from the analogue for Rver
VF

by choosing a morphism Rver
VF
→ R�

VF

which induces the universal deformation over R�
VF
. �

(1.2.2) In fact using the results of Colmez [Co 1] one can determine the local
structure of Xfs at essentially all points, and not just at potentially semi-stable
points as was done in [Ki 1]. This has been carried out by Bellaiche-Chenevier [BC,
§2.3].

Corollary (1.2.3). If E/Qp is finite, (x, λ) ∈ Xfs(E) and Vx has Hodge-Tate
weights 0, k with k a positive integer satisfying vp(λ) < k, then Vx is potentially
semi-stable.

Proof. We first remark that since vp(λ) < k, Filk(B+
cris⊗Qp E)ϕ=λ = 0. To see this,

suppose that s ∈ Filk(B+
cris ⊗Qp

E)ϕ=λ and let r be a positive integer such that

4W and Wan are what is usually referred to as “weight space”.
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m = rvp(λ) is an integer. Then ϕ(sr) = λrsr = pmwsr for w ∈ O×E . Choosing
u ∈ (W (F̄p)⊗E)× (here F̄p is the residue field of Q̄p) such that ϕ(u) = wu we see
that ϕ(sru−1) = pmsru−1 so

sru−1 ∈ Filrk(B+
cris ⊗Qp E)ϕ=pm

= FilrkB+,ϕ=pm

cris ⊗Qp E = 0

since m = rvp(λ) < rk.
It follows that the non-zero GQp-equivariant map

Vx → (B+
cris ⊗Qp E)ϕ=λ

given by (1.2.1)(1) cannot factor through FilkB+
cris ⊗Qp E. Since Vx has a Hodge-

Tate weight equal to k there exists a non-zero E-linear GQp-equivariant map Vx →
Cp(k)⊗E. As the other Hodge-Tate weight of Vx is 0 < k, and H1(GQp ,Cp(i)) = 0
for i > 0 by a result of Tate, this map necessarily lifts to FilkBdR ⊗ E (cf. [Ki
1, 2.5]). Hence Vx is de Rham, and therefore potentially semi-stable by Berger’s
theorem [Be 1, Thm. 5.19]. �

Proposition (1.2.4). Let (x, λ) ∈ Xfs(E) be a benign point. Then there exists
a quasi-compact admissible open subset U ⊂ Xfs containing (x, λ), such that if
(x′, λ′) ∈ U is a closed point whose image in Wan is χkcyc with k a positive integer,
then (x′, λ′) is benign.

Proof. Choose U = SpR an affinoid neighbourhood of (x, λ) such that if (x′, λ′) ∈
U, then Vx′ satisfies (1.1)(1), and if (x′, λ′) 6= (x, λ) and has image χkcyc in Wan

with k a positive integer, then k > 2vp(λ′) + 1.
Then Vx′ is potentially semistable by (1.2.3). The condition (1.2.1)(1) implies

that the associated Weil group representation is reducible and of the form χ1 ⊕ χ2

with χ1 an unramified character. Since detVx′ |IQp
= χkcyc, detVx′ is crystalline so

χ1χ2 is unramified, and χ2 is unramified. It follows that Vx′ is semi-stable. The
inequality k > 2vp(λ′) + 1 implies that Vx′ is crystalline and that (Vx′ , λ′) satisfies
(1.1)(2). Hence (x′, λ′) is benign. �

Corollary (1.2.5). Let Y ⊂ Xfs be the smallest Zariski closed analytic subspace
which contains all benign points (x, λ) ∈ Xfs. Then Y is a union of irreducible
components of Xfs.

Proof. Let (x, λ) ∈ Xfs(E) be a benign point. We have to show that the irreducible
component ofXfs passing through (x, λ) is contained in Y. Note that this irreducible
component is unique by (1.2.1)(3).

Let U be an open admissible subspace of Xfs containing (x, λ) and satisfying the
conclusion of (1.2.4). We may assume that U is connected and smooth. It follows
by (1.2.6) below, applied with T = Y ∩ U and I ⊂ Wan the set of points of the
form χkcyc with k a positive integer, that U ⊂ Y. Hence Y contains the irreducible
component of Xfs passing through (x, λ). �

Lemma (1.2.6). Let U be a quasi-compact, irreducible, reduced rigid space over
Qp, and π : U →Wan a flat morphism. Let T ⊂ U be a Zariski closed subspace and
I ⊂ π(U) an infinite set of points such that for x ∈ I, π−1(x) ⊂ T. Then T = U.

Proof. Since T is quasi-compact the set of points of Wan at which π|T is not flat is
finite. Hence there exists x ∈ I such that T is flat over Wan at x, and

dimT ≥ dimπ−1(x) + 1 = dimU.
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It follows that dimT = dimU, and hence T = U as U is reduced and irreducible. �

(1.3) Let Γ denote the maximal pro-p quotient of Gal(Qp(µp∞)/Qp). Then Γ is
canonically a subgroup of Gal(Qp(µp∞)/Qp) and we may, for example, regard χcyc

as a character of Γ.
We denote by S0 the universal deformation ring of the trivial representation

F of Γ, and we write W0 = SpecS0[1/p]. We will denote by η0 ∈ W0 the point
corresponding to the trivial character of Γ, and by ÔW0,η0 the complete local ring
at this point.

We call a closed point x ∈ R�
VF

[1/p] twisted benign if Vx
∼−→ V ⊗ η where V is

benign and η = χkcyc with k an integer.

Lemma (1.3.1). If (V, λ) is a benign pair, and h ∈ Dcris(V ∗)ϕ=λ and h′ ∈
Dcris(V ∗)ϕ=λ′ are non-zero, then

(1) The map

(1.3.2) RV → Rh,ϕV ⊗̂W (F)[1/p]ÔW0,η0

which for B ∈ ARE induces the map (VB , η) 7→ VB ⊗ η on B-points, is
surjective.

(2) If R̃h,ϕV denotes the image of (1.3.2), then R̃h,ϕV is formally smooth over E of
dimension 4. The subspaces of SpecRV corresponding to R̃h,ϕV and R̃h

′,ϕ
V are

distinct. More precisely their intersection is formally smooth of dimension
3.

Proof. To prove (1) is enough to show that for any B in ARE (1.3.2) induces
an injection on B-points. To do this we use the theory of the Sen polynomial
[Ki 1, §2.2], which attaches a monic polynomial Pφ(T ) ∈ B[T ] to any continuous
representation of GQp on a finite free B-module M. Let (VB , η) and (V ′B , η

′) be two
B-points of the right hand side of (1.3.2) with VB ⊗ η

∼−→ V ′B ⊗ η′. We may assume
that η = η0. The Sen polynomials of VB and V ′B have the form T (T − k + b) and
T (T−k+b′) respectively where b, b′ are in the maximal ideal of B. Fix a topological
generator γ ∈ Γ (or a topological generator of a pro-cyclic open subgroup of Γ if
p = 2), and let a = logη′(γ)/logχcyc(γ). Then the Sen polynomial of V ′B ⊗ η′ is
(T + a)(T − k + b′ + a). Since k 6= 0, and a, b, b′ ∈ rad(B) we must have a = 0. It
follows that η is trivial and VB

∼−→ V ′B .
The first claim of (2) now follows from (1.1.1). Moreover the argument in the

previous paragraph shows that

R̃h,ϕV ⊗RV
R̃h

′,ϕ
V

∼−→ Rh,ϕV ⊗RV
Rh

′,ϕ
V ⊗W (F)[1/p] ÔW0,η0

so (2) follows from (1.1.2). �

Proposition (1.3.3). Let Y ⊂ SpecR�
VF

[1/p] denote the Zariski closure of the
twisted benign points of R�

VF
. If Y 6= ∅, then dimY ≥ 8 at every point of Y.

Proof. After replacing VF by a twist, we may assume that Y contains a benign
point. Let Ỹ be the preimage of Y under

Xfs ×Wan
0 → Zan; (x, λ, η) 7→ Vx ⊗ η.
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Then Ỹ contains all the irreducible components of Xfs×Wan
0 which contain a point

of the form (x, λ, η) with (x, λ) a benign pair, by (1.2.5). Combining (1.3.1) and
(1.2.1)(3) one sees that for any benign point x ∈ Z, Spf ÔY,x contains two distinct,
7-dimensional, formally smooth subspaces of Spf ÔZ,x, namely the preimages in
SpfR�

Vx

∼−→ Spf ÔZ,x of the subspace Spf R̃h,ϕVx
, Spf R̃h

′,ϕ
Vx

of SpfRVx introduced in
(1.3.1).

Hence any irreducible component of Y has dimension at least 7, and any point
at which Y has dimension 7 is a singular point. Let Y ′ ⊂ Y be the union of the
irreducible components of dimension 7. Then any benign point in Y ′ is a singular
point of Y. Hence, any twisted benign point of Y ′ is also a singular point, since
if VF ⊗ ωk ∼ VF then twisting by χkcyc induces an automorphism of Y ′. It follows
that the singular locus of Y ′ is equal to Y ′, which is impossible if Y ′ is non-empty.
Hence Y has dimension ≥ 8 at every point. �

Corollary (1.3.4). The closure of the twisted benign points in SpecR�
VF

[1/p] is
non-empty and a union of irreducible components. In particular, if R�

VF
[1/p] is

irreducible then the set of twisted benign points in SpecR�
VF

[1/p] is dense.

Proof. A standard obstruction argument (cf. [Maz, Prop 2, §1.6]) shows that R�
VF

is
a quotient of a power series ring over W (F) in g generators by at most r relations,
where g − r = 8. It follows that all the irreducible components of R�

VF
[1/p] are

at least 8-dimensional [Ma, Thm. 13.5]. On the other hand, one easily sees that
the reducible locus in SpecR�

VF
[1/p] is at most 7-dimensional. This shows that the

irreducible locus in SpecR�
VF

[1/p] is a dense subspace. The deformation theoretic
description of a complete local ring at a closed point x of SpecR�

VF
[1/p] such that

Vx is irreducible shows that this scheme is formally smooth and 8-dimensional at
such a point. It follows that all components of R�

VF
[1/p] are 8-dimensional. In

particular, it follows from (1.3.3) that the closure in SpecR�
VF

[1/p] of the twisted
benign points is a union of irreducible components. It remains to show that this
closure is non-empty.

The explicit description of reductions of crystalline representations of small
weight shows that, after replacing VF by VF ⊗ ωs, for some integer s, there ex-
ists a closed point x on SpecR�

VF
[1/p] such that Vx is crystalline and satisfies (1)

and (3) of (1.1).5

By [Ki 3, 2.5.5], the set of closed points x′ ∈ SpecR�
VF

[1/p] such that Vx′ is
crystalline with the same Hodge-Tate weights as Vx, is parameterized by a Zariski
closed subspace Zcr ⊂ Z. Moreover, Zcr is equipped with a vector bundle DZcr ,
together with an automorphism ϕ of DZcr , which realizes the weakly admissible
module attached to Vx′ at every closed point x′ ∈ Zcr. It follows easily from [Ki 3,
3.3.1] that there is a non-empty open subset U ⊂ Zcr such that Vx′ satisfies (1)-(3)
for x′ ∈ U . �

(1.3.5) We will write χ : GQp → F× for an arbitrary character.

Corollary (1.3.6). Let p > 2. Suppose that VF is not of the form
(

1 ∗
0 ω

)
⊗ χ, and

if p = 3 assume also that VF|IQp
is not of the form

(
ω2

2 0

0 ω6
2

)
⊗ χ. Then the set of

twisted benign points is dense in SpecR�
VF

[1/p].

5In fact one can show that such an x exists without twisting, but the argument is more difficult.
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Proof. Under the conditions of the corollary H2(GQp
, adFVF) = 0, so R�

VF
is smooth,

and SpecR�
VF

[1/p] is irreducible. The corollary follows from (1.3.4). �

(1.3.7) The irreducibility in (1.3.4) should always hold. The author knows how
to prove this when VF ∼

(
1 ∗
0 ω

)
, and the extension class corresponding to ∗ is non-

trivial. The proof requires some auxiliary constructions and would take us too far
afield here.

Now let O be the ring of integers in a finite extension of W (F)[1/p] and fix
a continuous character ψ : GQp → O× which lifts detVF, and such that ψ|IQp

is an integral power of the cyclotomic character. We set R�
VF,O = R�

VF
⊗W (F) O

and we denote by Rψ,�VF,O the quotient of R�
VF,O corresponding to deformations with

determinant ψ.

Corollary (1.3.8). The closure of the twisted benign points in SpecRψ,�VF,O[1/p] is
a union of irreducible components. .

Proof. Let T0 denote the universal deformation of the trivial F-representation of
GQp . Then T0 is a power series ring over W (F) in two variables unless p = 2 in
which case T0

∼−→W (F)[[X,Y, Z]]/((1 + Z)2 − 1). We have a natural map

(1.3.9) R�
VF,O → Rψ,�VF,O⊗̂W (F)T0

which for an Artinian O-algebra A with residue field F induces the map (V, η) 7→
V ⊗ η on A-valued points. One checks easily that (1.3.9) is a finite map and a
surjection if p > 2. The induced map

(1.3.10) SpecRψ,�VF,O × SpecT0[1/p]→ SpecR�
VF,O

[1/p]; (Vx, η) 7→ Vx ⊗ η.

is finite étale, an immersion if p > 2, and a covering of its image with group
Hom(GQp ,Z/2Z) if p = 2.

Let Yψ ⊂ SpecRψ,�VF,O[1/p] denote the closure of the twisted benign points. If

x ∈ SpecR�
VF,O is a twisted benign point, such that detVx · ψ−1|IQp

∼ χj(p−1)
cyc with

j an even integer, then x is in the image of

(1.3.11) Yψ × SpecT0[1/p]→ SpecR�
VF,O

[1/p]; (Vx, η) 7→ Vx ⊗ η.

If p > 2, then by (1.2.1)(3) any twisted benign point can be approximated (even
in the naive p-adic topology on the Q̄p-points of SpecR�

VF,O[1/p]) by twisted be-
nign points with this property. Hence the image of (1.3.11) is a union of irre-
ducible components of SpecR�

VF,O[1/p] by (1.3.4), so Yψ is a union of components
of SpecRψ,�VF,O[1/p].

If p = 2, then the image of IQ2 → Gab
Q2

is isomorphic to Z×2 , and the character
detVx · ψ−1|±1 is locally constant on SpecR�

VF,O. In particular if a twisted benign
point x satisfies detVx · ψ−1|IQ2

∼ χjcyc with j an even integer, then every twisted
benign point in the same component of x has this property. This shows that the
image of (1.3.11) is a union of irreducible components in this case also, which implies
the corollary, as before. �
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Corollary (1.3.12). Let p > 2. Suppose VF �
(

1 ∗
0 ω

)
⊗χ and VF|IQp

�
(
ω2

2 0

0 ω6
2

)
⊗χ

if p = 3. Then the set of twisted benign points in SpecRψ,�VF,O[1/p] is dense.

Proof. Under the conditions of the corollary, both sides of (1.3.9) are formally
smooth of the same dimension. Hence this map is an isomorphism and the corollary
follows from (1.3.8) �

§2 Deformation theory

(2.1) Let E/Qp be a finite extension, as in the previous section, O the ring of
integers of E, and F its residue field. As above, we denote by χcyc : GQp → O× the
p-adic cyclotomic character. We will regard characters of GQp as character of Q×

p

via class field theory, normalized to take uniformisers to geometric Frobenii.
We set G = GL2(Qp) and we denote6 by RepOG the category of representations

ofG on torsionO-modules, which are smooth, admissible, finite length and admit an
O×-valued central character. Recall that admissibility means that the invariants
under any compact open subgroup of GL2(Qp) are a finite O-module. An O-
representation which admits a central character satisfies these conditions if and
only if it is a successive extension of a finite number of smooth, irreducible F-
representations of G. This may be seen using the classification of smooth irreducible
F-representations, admitting a central character, due to Bartel-Livné and Breuil,
from which one easily deduces that any such representation is admissible.

We denote by RepOGQp
the category of representations of GQp

on finite length
O-modules. The following summarizes some of the main results of [Co 2].

Theorem (2.1.1). (Colmez) There is an exact functor

V : RepOG→ RepOGQp

with the following properties:
If π ∈ RepOG then V(π) = 0 if and only if π is a finite O-module.
If ψ : GQp → O× is a continuous character then

V(Π⊗ ψ ◦ det) ∼−→ V(Π)⊗ ψ.

If VF is a two dimensional F-representation in RepOGQp
with VF �

(
1 ∗
0 ω

)
⊗ χ

then there exists π̄ in RepOG, with the following properties.
(1) V(π̄) ∼−→ VF and π̄ has central character (detVF)χ−1

cyc.
(2) The natural map

Ext1G(π̄, π̄)→ Ext1GQp
(VF, VF)

is an injection. Here the left hand side means extensions in the category of
F-representations having a (F×-valued) central character.

(3) π̄SL2(Qp) = 0.

Proof. The first claim is [Co 2, Thm. IV.2.14], while the second can be seen directly
from the definition of V. The properties in (1) follow from [Co 2, §VII.4], while (2)
is [Co 2, Thm. VII.5.2]. �

6In the final version of [Co 2] this category is denoted ReptorsG, while RepOG denotes the
category of admissible O-lattices - see (2.3) below. Here we retain the notation of earlier versions
of [Co 2].
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Lemma (2.1.2). Let VF and π̄ be as above. The canonical map

(2.1.3) HomG(π̄, π̄) ∼−→ HomGQp
(VF, VF)

is an isomorphism.

Proof. To see that the map is injective suppose that f : π̄ → π̄ satisfies V(f) =
0. Then V(Im(f)) = 0, which implies that Im (f) is finite dimensional. Hence
Im (f) ⊂ π̄SL2(Qp) = 0, so f = 0.

For the surjectivity there is nothing to show if HomGQp
(VF, VF) = F. If VF is

a sum of two distinct (resp. equal) characters then π̄ is a sum of two distinct
(resp. equal) representations [Co 2, §VII.4], so in this case both sides of (2.1.3) are
two dimensional. Similarly if VF is a self extension of a character, then π̄ is a self
extension of an G-representation, and π̄ is a split extension if and only if VF is a
split extension. �

(2.2) Now fix VF and π̄ as in (2.1.1). We will denote by ARO the category of
finite local Artinian O-algebras. Let A be in ARO. A deformation of π̄ to A is a
representation of G on a flat A-module πA having an O-valued central character,
together with an F-linear isomorphism of G-modules πA ⊗A F ∼−→ π̄.

Lemma (2.2.1). Let πA be a deformation of π̄ to A. Then

(1) πA is a free A-module.
(2) As an O-representation of G, πA is in RepOG.

Proof. For (1), pick a (countable) basis for π̄ indexed by a set I, and lift it to πA.
Let K be the kernel of AI → πA, and C the cokernel. If mA denotes the radical
of A, then we have C/mAC = 0, and since πA is A-flat, K/mAK = 0. Since mA is
nilpotent this implies K = C = 0.

In particular, (1) shows that πA is a successive extension of copies of π̄ which
shows (2). �

Lemma (2.2.2). Let A→ A′ be a morphism in ARO and πA a deformation of π̄
to A. Then V(πA) is a flat A-module and there is a canonical isomorphism

V(πA)⊗A A′
∼−→ V(πA ⊗A A′).

In particular, V(πA)⊗AF ∼−→ V(π̄) ∼−→ VF, and V(πA) is a finite free A-module
of rank 2.

Proof. This is a formal consequence of the exactness of the functor V (cf. [Ki 2,
1.2.7]). �

(2.2.3) Fix a character ψ : GQp
→ O×, such that (the reduction of) ψ is equal

to the central character of π̄.
We define two groupoids over ARO. (See the appendix in [Ki 2] for basic notions

involving groupoids). Denote by DVF the groupoid such that DVF(A) is the category
of deformations of VF to a representation of GQp on a finite free A-module. Let
Dπ̄,ψ be the groupoid such that Dπ̄,ψ(A) is the category of deformations of π̄ to A
with central character ψ.
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Lemma (2.2.4). The functor V induces a morphism of groupoids

D(V) : Dπ̄,ψ → DVF ; πA 7→ V(πA)

which is fully faithful.

Proof. That V induces a morphism of groupoids follows from (2.2.2).
To show that D(V) is fully faithful, let A be in ARO with radical mA. Let

πA and π′A be in Dπ̄,ψ(A). First we remark that πA and π′A are isomorphic if
V(πA) and V(π′A) are isomorphic. To see this, we proceed by induction on the
length of A. When A = F, there is nothing to prove. Let I ⊂ A be a non-zero
ideal with mA · I = 0. By induction, we may assume that πA/I = πA ⊗A A/I
and π′A/I = π′A⊗AA/I are isomorphic. A standard argument shows that the set of
isomorphism classes of objects of Dπ̄(A) (resp. DVF(A)) lifting πA/I (resp. V(πA/I))
is a torsor under Ext1G(π̄, π̄)⊗I (resp. Ext1GQp

(V(π̄),V(π̄))⊗I). Hence the induction
step follows from (2.1.1)(2).

It follows that to prove full faithfulness it suffices to show that the map

HomG(πA, πA)→ HomGQp
(V(πA),V(πA))

is an isomorphism. Again, we prove this by induction on the length of A. When
A = F this is (2.1.2). In general let I be as above. Then the set of endomorphisms
in HomG(πA, πA) (resp. HomGQp

(V(πA),V(πA))) lifting a fixed endomorphism of
πA/I (resp. V(πA/I)) is a torsor under HomG(π̄, π̄)⊗ I (resp. HomGQp

(VF, VF)⊗ I).
Hence the induction step follows from (2.1.2). �

(2.2.5) Let A be in ARO and VA in DVF(A). We will denote by ξ the groupoid
on ARO corresponding to VA. An object of ξ consists of an A-algebra A′ in ARO
and an object VA′ of DVF(A

′) together with an isomorphism VA′
∼−→ VA ⊗A A′ in

DVF(A
′).

Set
Dπ̄,ξ = Dπ̄,ψ ×DVF

ξ.

An object ofDπ̄,ξ consists of an A-algebra A′ in ARO together with a pair (πA′ , ιA′),
where πA′ is in Dπ̄,ψ(A′) and ιA′ is an isomorphism ιA′ : V(πA′)

∼−→ VA ⊗A A′ in
DVF(A

′).
For any groupoid D over ARO we denote by |D|(A) the set of isomorphism

classes of D(A).

Lemma (2.2.6). The morphism D(V) : Dπ̄,ψ → DVF is relatively representable.
That is for any ξ as above, the functor |Dπ̄,ξ| is representable.

Proof. Let B,B′, B′′ be in ARO equipped with maps B → B′ and B → B′′. By
Schlessinger’s criterion |Dπ̄,ξ| is representable if and only if for any such B,B′, B′′

with B → B′′ surjective7 , the natural map

(2.2.7) |Dπ̄,ξ|(B ×B′′ B′)→ |Dπ̄,ξ|(B)×|Dπ̄,ξ|(B′′) |Dπ̄,ξ|(B′)

is a bijection. Set C = B ×B′′ B′.

7In fact Schlessinger’s criterion involves an even more restricted class of triples (B, B′, B′′) but
the surjectivity of B → B′ is all we will need.
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Since Dπ̄,ξ → ξ is fully faithful, the injectivity of (2.2.7) follows from the cor-
responding property for |ξ|. To check surjectivity, let (πB , ιB) (resp. (πB′ , ιB′)) be
in Dπ̄,ξ(B) (resp. Dπ̄,ξ(B′)) with image in Dπ̄,ξ(B′′) isomorphic to some object
(πB′′ , ιB′′). Fix such an isomorphism and set

πC = πB ×πB′′ πB′ .

Then πC is a free C-module. To produce a C-basis, choose a basis for πB′ , take
its image in πB′′ and lift the resulting B′′-basis to a πB′ . Hence πC is in Dπ̄,ψ(C).
Moreover, using the exactness of V, one sees that the maps ιB , ιB′ induce an iso-
morphism

ιC : V(πC) ∼−→ V(πB)×V(πB′′ )
V(πB′)

∼−→ VA ⊗A C.

This produces the required element in the left hand side of (2.2.7) �

(2.3) By an admissible O-lattice we mean a representation of GL2(Qp) on a
p-adically separated and complete, p-torsion free O-module Π, such that Π has an
O-valued central character and Π/pnΠ is a smooth finite length representation of
GL2(Qp). We extend the functor V to O-lattices by setting

V(Π) = lim←−nV(Π/pnΠ).

We denote by πO a uniformiser for O.

Lemma (2.3.1). Let VF and π̄ be as in (2.1.1). Suppose that V is a deformation of
VF to a representation of GQp on a finite free O-module. Let Π′ be an admissible O-
lattice such that π̄ and Π′/πOΠ′ have isomorphic semi-simplifications, and suppose
that there exists an injective GQp-equivariant map V → V(Π′) with finite cokernel.

Then there is an admissible O-sublattice Π ⊂ Π′ such that V(Π) ⊂ V(Π′) is
identified with V. Moreover Π/πOΠ is isomorphic to π̄.

Proof. We begin by proving the first claim. Let Π ⊂ Π′ be a minimal admissi-
ble O-sublattice, such that V ⊂ V(Π). Then V ( πOV(Π), so the image WF ⊂
V(Π)/πOV(Π) of V is non-zero. If this image is two dimensional then V = V(Π)
and we are done. Thus we may assume that WF is 1-dimensional and, in particular,
that VF is reducible.

It will suffice to show that there exists a subrepresentation σ ⊂ Π/πOΠ such that
V(σ) is identified with WF, for if Σ ⊂ Π denotes the preimage of σ, then V ⊂ V(Σ)
which contradicts the minimality of Π. If V(Π)/πOV(Π) is not a direct sum of two
characters then we may take for σ any submodule of Π/πOΠ which has infinite
dimension and codimension. Thus we may assume V(Π)/πOV(Π) is a sum of two
characters. If VF �

( ω ∗
0 1

)
⊗ χ, then π̄ has two Jordan-Hölder factors, and by [Co

2, Prop. VII.4.16] Π/πOΠ is a sum of two infinite dimensional representations, so
we are done in this case also.

It remains to consider the case VF ∼
( ω ∗

0 1

)
⊗ χ, with ∗ a non-trivial extension

class,8 and after twisting, we may assume χ = 1. Then using the notation of [Co
2], the Jordan-Hölder factors of π̄ consist of one copy of the trivial representation
1, and two infinite dimensional representations St and B(1, ω) with image under

8Note in particular, that this implies p ≥ 5 since we are assuming VF �
“

1 ∗
0 ω

”
⊗ χ.
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V equal to ω and 1 respectively. If Π/πOΠ contains a subrepresentation of infinite
dimension and codimension, which has B(1, ω) as a Jordan-Hölder factor, then we
are done. Suppose no such subrepresentation exists. Since there are no non-trivial
extensions of B(1, ω) by St [Co 2, Prop. VII.4.25], Π/πOΠ must have socle St and
cosocle B(1, ω). But then V(Π/πOΠ) is a non-trivial extension of 1 by ω, by [Co
2, Thm. VII.4.21], so VF admits ω as a quotient, contradicting our assumptions.

It remains to show that Π/πOΠ is isomorphic to π̄. Since these two representa-
tions have the same Jordan-Hölder factors, this follows from the results of Colmez
cited above. �

(2.3.2) Suppose now that R is a complete local O-algebra with residue field F,
and radical mR. Let VR be a deformation to R of the GQp-representation VF. For
n ≥ 1, let ξn denote the groupoid associated to VR⊗RR/mn

R. Then (2.2.6) produces
a quotient Rπ̄,n for R/mn

R which represents Dπ̄,ξn . Passing to the limit we obtains
a quotient Rπ̄ of R.

In particular, applying this construction with R = R�
VF,O, we obtain a quotient

R�
π̄,ψ of R�

VF,O.

Proposition (2.3.3). Suppose VF �
(

1 ∗
0 ω

)
⊗ χ. Then

SpecRψχcyc,�
VF,O ∩ SpecR�

π̄,ψ ⊂ SpecR�
VF,O.

contains every irreducible component of SpecRψχcyc,�
VF

[1/p] which contains a twisted
benign point.

Proof. Let ψ′ : GQp → O× be a character such that ψ′|IQp
is an integral power

of χcyc and ψ′ has the same reduction as ψ. Suppose also that ψ′ψ−1 admits an
O×-valued square root ε whose reduction is trivial (a condition which is automatic
unless p = 2). Twisting by ε induces an automorphism of R�

VF
. Hence by the second

claim in (2.1.1), we may replace ψ by ψ′ and assume that ψ|IQp
is a power of the

cyclotomic character.
Let x ∈ SpecRψχcyc,�

VF,O be a twisted benign point. We will show that x is in
SpecR�

π̄,ψ ⊂ SpecR�
VF,O. To prove this we may extend the base ring O, and assume

that x has residue field E. Let V = Vx be the deformation of VF to O corresponding
to x.

The results of Colmez [Co 1], Berger-Breuil [BB] and Breuil-Emerton [BE] imply
that there exists an admissible O-lattice Π′ with central character ψ, such that
V(Π′) ⊗Zp Qp

∼−→ V ⊗Zp Qp as GQp-representations (see [Ki 4, 1.2.8]). Moreover,
by a result of Berger [Be 2], Π′/πOΠ′ and π̄ have the same Jordan-Hölder factors.
Dividing this map by a power of πO we may assume that V ⊂ V(Π′). Applying
(2.3.1), there is an admissible O-sublattice Π ⊂ Π′ such that V(Π) ⊂ V(Π′) is
identified with V, and Π/πOΠ ∼−→ π̄. Hence Π corresponds to an O-valued point of
SpecR�

π̄,ψ which maps to x.
It follows that any element in ker (R�

VF,O → R�
π̄,ψ) vanishes at a twisted benign

point of Rψχcyc,�
VF,O . Hence the lemma follows from (1.3.8). �

Corollary (2.3.4). Suppose p > 2, VF �
(

1 ∗
0 ω

)
⊗ χ and V̄ |IQp

�
(
ω2

2 0

0 ω6
2

)
⊗ χ if

p = 3. Then the image of

SpecR�
π̄,ψ ↪→ SpecR�

VF,O
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contains SpecRψχcyc,�
VF,O .

Proof. This follows from (2.3.3) and (1.3.12). �

(2.3.5) Note that (2.3.4) produces a map

(2.3.6) R�
π̄,ψ → R

ψχcyc,�
VF,O .

If one assumes that for any A in ARO and πA in Dπ̄(A) with central character ψ,
one has detAV(πA) = ψχcyc, one finds that (2.3.6) is an isomorphism.

As mentioned in the introduction, by bounding the dimension of the tangent
space of R�

π̄,ψ, Paskunas has shown that (2.3.6) is an isomorphism when π̄ is su-
persingular. Hence in this case one does have detAV(πA) = ψχcyc. On the other
hand the formula detAV(πA) = ψχcyc does not always hold. For example it fails,
in general, if VF is unipotent. We are grateful to Paskunas for pointing this out to
us.

For V a finite dimension E-representation of GQp
, let L ⊂ V be a GQp

-stable
lattice. We denote by V̄ the semi-simplification of L/πOL. This does not depend
on the choice of L.

Corollary (2.3.7). Suppose p > 2. Let L be a representation of GQp on a free

O-module of rank 2, and suppose that L/πOL �
(

1 ∗
0 ω

)
⊗ χ and L/πOL|IQp

�(
ω2

2 0

0 ω6
2

)
⊗ χ if p = 3. Then there exists an admissible O-lattice Π with central

character detL · χ−1
cyc, such that V(Π) is isomorphic to L.

Proof. This is an immediate consequence of (2.3.4). �

Corollary (2.3.8). Suppose p > 2. Let V be an irreducible, 2-dimensional E-
representation of GQp

. If p = 3 assume that V̄ �
(

1 0

0 ω

)
⊗χ and V̄ |IQp

�
(
ω2

2 0

0 ω6
2

)
⊗

χ. Then there exists an admissible O-lattice Π with central character detV · χ−1
cyc,

such that
V(Π)⊗Zp

Qp
∼−→ V.

Proof. Let L ⊂ V be a GQp
-stable lattice. Our assumptions on V̄ imply that L

satisfies the conditions of (2.3.7), expect possibly when p ≥ 5, and V̄ ∼
(

1 0

0 ω

)
⊗χ.

In this case, since V is irreducible L can be chosen so that L/πOL ∼
( ω ∗

0 1

)
⊗χ with

∗ a non-trivial extension class. In particular, such an L satisfies the conditions of
(2.3.7), and the corollary follows. �
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