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Introduction

The problem of constructing smooth models of Shimura varieties was raised by
Langlands in his Jugendtraum paper [La] as a (very small) part of his program
to describe the zeta function of a Shimura variety in terms of automorphic L-
functions. The point of this paper is to show the existence of reasonable models for
many Shimura varieties, namely for those which are of abelian type.

To explain some of the properties these integral models ought to satisfy, consider
a Shimura datum (G,X) and a Shimura variety ShK(G,X) attached to a compact
open subgroup K ⊂ G(Af ). We will assume that K has the form KpK

p where Kp ⊂
G(Qp), Kp ⊂ G(Apf ), and Apf denotes the finite adeles with trivial p-component.
By results of Shimura, Deligne, Borovoi and Milne it is known that ShK(G,X) has
a model over a number field E = E(G,X) ⊂ C. Let O be the ring of integers of E
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2 MARK KISIN

and v|p a prime of O. Langlands suggested that when Kp is hyperspecial [Ti, 3.8],
the tower of E-schemes

ShKp
(G,X) = lim←−KpShKpKp(G,X)

ought to have a G(Apf )-equivariant extension to a tower of smooth O(v)-schemes
SKp(G,X). The condition on Kp means that Kp = GZp(Zp) for a reductive group
GZp over Zp with generic fibre G. The example of Siegel modular varieties (G =
GSp) already shows that, in general, it is not reasonable to ask for a smooth model
if Kp is merely maximal compact. Hyperspecial subgroups exist if and only if G is
quasi-split at p, and split over an unramified extension of Qp.

Without a further condition the existence of SKp(G,X) is formally vacuous,
since one could take SKp(G,X) = ShKp(G,X). If the varieties ShK(G,X) are
proper one can ask that SKp(G,X) be proper. In general, Milne [Mi 1] suggested
that SKp(G,X) should satisfy a certain extension property. One of the conse-
quences of this property is that the pro-scheme SKp

(G,X) satisfies the valuative
criterion for properness for discrete valuation rings of mixed characteristic. In those
cases when one imagines that SKp(G,X) should be a moduli space for abelian va-
rieties this is justified by the Néron-Ogg-Shafarevich criterion for good reduction of
an abelian variety. In fact the extension property formulated by Milne is stronger,
and has the added benefit of characterizing the pro-scheme SKp(G,X). We refer
to §2.3 for a precise formulation. Milne termed a smooth G(Apf )-equivariant model
of ShKp(G,X) over O(v), satisfying the extension property, an integral canonical
model.

To state our main theorem we recall that a Shimura datum is called of Hodge
type if there is embedding (G,X) ↪→ (GSp, S±) into the Shimura datum for the
symplectic group. Concretely, this means that ShK(G,X) has an interpretation
as a moduli space for abelian varieties equipped with certain Hodge cycles. A
datum (G,X) is called of abelian type if there is a datum of Hodge type (G2, X2)
and a central isogeny Gder

2 → Gder which induces an isomorphism (Gad
2 , Xad

2 ) ∼−→
(Gad, Xad). Then we prove the following1

Theorem. Suppose that (G,X) is of abelian type and Kp ⊂ G(Qp) hyperspecial.
Let v|p be a prime of the ring of integers O ⊂ E(G,X). If p > 2 then the pro-
scheme ShKp(G,X) admits an extension to a G(Apf )-equivariant system of smooth
O(v)-schemes

SKp
(G,X) = lim←−KpSKpKp(G,X)

which has the extension property.

When p = 2 we can still prove the theorem under some restrictions on (G,X).
We refer the reader to the text for a precise statement in this case.

Our construction also shows that SK(G,X) carries a vector bundle with an
integrable connection, equipped with a family of Hodge tensors. Using this one can
obtain natural integral models of the automorphic vector bundles on ShK(G,X) (see
[Mi 2]). This ought to be useful in studying the arithmetic properties of algebraic
automorphic forms on G.

An important class of Shimura varieties for applications consists of those of PEL
type. For these Shimura varieties integral canonical models were constructed by

1Note that the roles of G and G2 are reversed in §3.4 below.
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Kottwitz [Ko], who moreover carried out a large part of Langlands’ program on
mod p points in this case. Let us also remark that a proof in the case of abelian
type has been claimed by Vasiu. See [Va 1], [Va 2], as well as the more recent [Va
4], [Va5].

We now describe some of the techniques of this paper in more detail. For an
overview, the reader may also wish to consult [Ki 4], where we announced these
results and sketched some of the arguments. Unsurprisingly, the theorem is first
proved for Shimura varieties of Hodge type, and the case of abelian type is deduced
from this. (The restrictions when p = 2 all arise in the first step.) Suppose
that V is a Q-vector space equipped with a symplectic pairing ψ. We will write
GSp = GSp(V, ψ). For a Shimura datum of Hodge type a symplectic embedding
(G,X) ↪→ (GSp, S±) induces an embedding of Shimura varieties

(0.1) ShK(G,X) ↪→ ShK′(GSp, S±),

where K ′ = K ′
pK

′p ⊂ GSp(Af ) is a compact open subgroup which can be chosen
so that K ′

p is maximal compact. The interpretation of ShK′(GSp, S±) as a mod-
uli space for abelian varieties leads to a natural integral model SK′(GSp, S±). A
natural candidate for SK(G,X) is the normalization of S −

K(G,X), the closure
of ShK(G,X) in SK′(GSp, S±). The pro-scheme SKp(G,X) is then obviously
G(Apf )-equivariant and the extension property follows from the corresponding prop-
erty for SK′

p
(GSp, S±). It remains to show that these schemes are smooth.

This construction is considered in the papers of both Moonen [Mo] and Vasiu
[Va 1], and in fact goes back to Milne’s paper [Mi 1, 2.15]. To try and address the
remaining problem of smoothness Moonen and Vasiu propose relating the complete
local ring at a closed characteristic p point of SK(G,X) to a deformation ring for
p-divisible groups equipped with a collection of Tate cycles, introduced by Faltings
[Fa, §7].2

To apply Faltings’ construction one needs a kind of crystalline realization of the
group G. To explain how we obtain this crystalline version of G, let k be a perfect
field, K a finite, totally ramified extension of K0 = W (k)[1/p] and G a p-divisible
group over OK . Let L = TpG ∗ be the Tate module of the Cartier dual G ∗ and D the
Dieudonné module of G . Suppose that GZp ⊂ GL(L) is a reductive group defined
by a finite collection of Galois invariant tensors (sα) ⊂ L⊗ (See (1.3) below for the
precise definition of a tensor). The p-adic comparison isomorphism

L⊗Zp Bcris
∼−→ D⊗W (k) Bcris

allows us to think of the sα as being Frobenius invariant tensors in Fil0D[1/p]⊗.
The key which allows us to apply Faltings’ construction is the following

2Of course Vasiu’s papers claim to carry out this proposal using his theory of well positioned
tensors. Using the notation above, let (tα) ∈ L[1/p]⊗ be a family of tensors fixed by G, and
containing a perfect alternating pairing on L[1/p]. The family is said to be well positioned if for
any faithfully flat Zp-algebra R, and any finite free R-module M equipped with an isomorphism

M [1/p]
∼−→ L[1/p]⊗Zp R such that (tα) ⊂ M⊗, the closure of G⊗Zp R in GL(M) is a reductive

group scheme. We make no use of this notion in this paper. Thus, for example, Proposition
(0.2) is a much more specific statement about the behavior of G-structures under the p-adic
comparison isomorphism. In particular, it does not imply the existence of a family of well position
tensors.
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Proposition (0.2). Suppose that p > 2 or that G ∗ is connected. Then

(1) sα ∈ D⊗ (not just after inverting p).
(2) The sα define a reductive subgroup of GW ⊂ GL(D).

The proposition is proved using the theory of our previous paper [Ki 1]. In fact
we are able to prove something much more general: If L is a Galois stable lattice in a
crystalline representation V, then the theory of [Ki 1] produces a natural, Frobenius
stable lattice Lcris ⊂ Dcris(L). For any closed, reductive subgroup GZp ⊂ GL(L)
defined by a collection of Galois invariant tensors, there is a corresponding reductive
subgroup GW ⊂ GL(Lcris). The restriction in the proposition when p = 2 arises
because we do not know whether Lcris may be identified with D in this case.

With (0.2) in hand we can consider Faltings’ deformation ring. This produces a
formally smooth quotient RG of the versal deformation ring R of G0 = G ⊗W (k) k.
Roughly speaking, RG carries a p-divisible group whose crystal is equipped with
Frobenius invariant tensors in degree 0 which deform the sα. Faltings shows that
RG is versal for such deformations, at least for maps into formally smooth complete
local W (k)-algebras. Using results related to (0.2) above, we are able to show that
there is a version of this result for maps into rings of integers in finite extensions of
W (k)[1/p].

Finally consider a closed point x ∈ SK(G,X) in characteristic p, and let Ax
be the corresponding abelian variety. Applying the above theory to the p-divisible
group of Ax, with the (sα) a suitable collection of Hodge tensors, allows us to
identify the complete local ring at x with RG.

To deduce the case of abelian type from the case of Hodge type we follow
Deligne’s construction of canonical models for these varieties [De 3]. Suppose that
K2,p ⊂ G2(Qp) is hyperspecial, and let ShKp

(G,X)+ ⊂ ShKp
(G,X) denote the con-

nected component corresponding to 1 ∈ G(Af ). Then ShKp
(G,X)+ depends only on

the derived group Gder, and one can obtain ShKp(G,X)+ from ShK2,p(G2, X2)+ by
dividing by the action of a finite group ∆. Combining this with the (not completely
trivial) combinatorics which govern the connected components of ShKp

(G,X) one
can construct ShK(G,X) from ShK2,p(G2, X2).

Moonen [Mo, §3], observed that one can make an analogous construction using
the components of SK2,p(G2, X2). When p - |∆| he used a general result about
quotients by groups of prime to p order to show that, if SK2,p(G2, X2) consists of
smooth schemes, then so does the resulting tower SK(G,X).

To prove this in general one needs to show that ∆ acts freely on SK2,p(G2, X2).
The description of the complex points of a Shimura variety as a double quotient
shows that, roughly speaking, the elements of ∆ arise from the adelic points of
ker (Gder

2 → Gder) and from the cokernel of Gder
2 (Q) → Gder(Q). The action of

the latter group is related to the action of Gad
2 (Q) on Sh(G2, X2) considered by

Deligne. We give a moduli theoretic description of the action of Gad
2 (Q) which can

be “reduced mod p”, and using it we are able to show that the action of ∆ is always
free.

Acknowledgment: It is a pleasure to thank A. Beilinson, O. Bültel, B. Conrad,
O. Gabber, R. Kottwitz, B. Moonen, M. Nori and G. Pappas for useful comments
regarding various versions of this paper. We also thank the referee for a careful and
perceptive reading of the paper.
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§1 Reductive groups and p-divisible groups

(1.1) Cocharacters and filtrations: A connected reductive group scheme
G over S is a flat S-group scheme whose fibres are geometrically connected and
reductive. (This is what is called simply a reductive group scheme in [DG]).

By a reductive group over a base S we shall mean a flat S-group G together
with a closed, connected reductive subgroup G0 ⊂ G such that G/G0 is finite étale.
We call G0 the connected component of the identity of G. We will use this more
general notion in §1.3-1.4 below, however the main applications of this paper will
be concerned with connected reductive groups.

In this subsection we study the condition that a filtration on a representation of
a connected reductive group G corresponds to a parabolic subgroup of G.

Lemma (1.1.1). Let S = SpecA be an affine scheme, and M a finite free A-
module with a decreasing, finite length filtration M•, such that gr•M is finite flat
over A.

Let G ⊂ GL(M) be a closed, connected reductive subgroup over S. Denote by
P ⊂ G the closed subgroup which respects the filtration M• and U ⊂ P the closed
subgroup which acts trivially on gr•M.

Then the following conditions are equivalent.
(1) The filtration M• admits a splitting such that the corresponding cocharacter

µ : Gm → GL(M) factors through G.
(2) P ⊂ G is a parabolic subgroup, U ⊂ P is its unipotent radical, and the

grading on gr•M is induced by a cocharacter ν : Gm → P/U.

Proof. (1) =⇒ (2): Note that µ factors through P. Hence once we know that P
and U are flat then we may take ν to be the composite Gm

µ→ P → P/U.
Thus it suffices to prove that P is parabolic with unipotent radical U. For this

we may work locally in the étale topology of S, and assume that G admits a split
maximal torus T ∼−→ Gr

m which contains the image of µ. Let t and g denote the
Lie algebras of T and G respectively, and consider the decomposition

g = t⊕α∈Φ gα

of g into root spaces under the adjoint action of T [DG, I, 4.7.3]. Let Φ′ ⊂ Φ
(resp. Φ′′ ⊂ Φ) be the set of roots α such that α◦µ is a non-negative (resp. positive)
power of the tautological character of Gm. Set p = t⊕α∈Φ′ gα and u = ⊕α∈Φ′′g

α.
By [DG, XXVI, 1.4] p is the Lie algebra of a parabolic subgroup P ′ ⊂ G (Φ′

satisfies the condition (iii) of loc. cit). The action of p on M respects the filtration
so we have P ′ ⊂ P. Since P ′ is flat over S, to show that P ′ is open in P it suffices
to check fibre by fibre, so we may assume that S = k an algebraically closed field.
Then an element of s ∈ g acts on M respecting the filtration if and only if it is
contained in p. Hence LieP = p. To see this write s =

∑
β∈Z sβ where µ has weight

β on sβ ∈ g. If β0 is the smallest β such that sβ 6= 0, choose m ∈M of some weight
j under the action on µ, and such that sβ0m 6= 0. Then

µ(z) · sm = (adµ(z))(s)µ(z)m =
∑
β∈Z

zβ+jsβm.

Hence the component of sm in degree β0 + j is sβ0m 6= 0 and s preserves the
filtration if and only if β0 ≥ 0.
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It follows that P ′ is open in P. As P ′ has connected fibres, this implies that P ′

is normal in P, and hence that P = P ′. Similarly u is the Lie algebra of a unipotent
subgroup U ′ ⊂ G by [DG, XXII 5.11.3] and an argument similar to that above
shows that U ′ is open in U. However, the fibres of U are clearly unipotent, so we
have U = U ′.

(2) =⇒ (1). The group P/U is connected reductive, and since S is affine, there
exists a Levi subgroup L ⊂ P, which maps isomorphically to P/U [DG, XXVI, 2.3].
Hence we may take µ to be ν composed with the inclusion P/U ∼−→ L ⊂ P. �

(1.1.2) If M and M• are as in (1.1.1) and G ↪→ GL(M) a connected reductive
subgroup, then we say a filtration M• is G-split if it satisfies the equivalent con-
ditions of (1.1.1). More generally, if G ↪→ GL(M) is a reductive subgroup, we say
that M• is G-split if it is G0-split, where G0 ⊂ G denotes the connected component
of the identity.

When the above embedding arises from an A-linear fibre functor on a Tannakian
category, the lemma is closely related to [Sa, IV, 2.2.5].

Lemma (1.1.3). With the notation of (1.1.1), suppose that A is a field of char-
acteristic 0. Then M• is G-split if and only if 〈M〉⊗, the Tannakian category of
G-representations generated by M, admits a filtration which induces the given fil-
tration on M.

Proof. We refer to [Sa, IV §2] for the notion of a filtration on a Tannakian category.
If (1.1.1)(1) holds then µ even equips 〈M〉⊗ with a grading. Conversely, a filtra-
tion on 〈M〉⊗ admits a splitting by a theorem of Deligne [Sa, IV §2.4]. If such a
filtration restricts to the given filtration on M, then the splitting gives the required
cocharacter µ. �

Proposition (1.1.4). Suppose that A is a discrete valuation ring with field of
fractions K, and that G ↪→ GL(M) and M• are as above.

Then M• is G-split if and only if the induced filtration on M ⊗AK is G|K-split.

Proof. If M• is G-split then so is the filtration (M ⊗A K)• on M ⊗A K. We prove
the converse.

Let PK be the subgroup of GK which respects the filtration on M ⊗A K, and
UK ⊂ PK the subgroup which acts trivially on gr•M ⊗A K. If (M ⊗A K)• is G|K-
split, then PK is parabolic in G|K , UK ⊂ PK is the unipotent radical of PK and
the action of PK/UK on gr•M ⊗AK is given by a cocharacter νK : Gm → PK/UK .

By [DG, XXVI, 3.5] PK extends uniquely to a parabolic subgroup P ′ ⊂ G. The
unipotent radical of P ′ is a smooth subgroup U ′ extending UK . Since PK and UK
are dense in P ′ and U ′ respectively, P ′ leaves stable the filtration on M and U ′

acts trivially on gr•M.
The cocharacter ν : Gm → GL(gr•M) factors through P ′/U ′ since this is true

for its restriction to K. As in the proof of (1.1.1), we may identify P ′/U ′ with a
Levi subgroup of P ′ and lift this cocharacter to a cocharacter µ : Gm → P ′ which
defines a splitting of the filtration on M•. This shows that M• is G-split (and hence
that P ′ = P and U ′ = U). �

Proposition (1.1.5). Let S = SpecA, be an affine scheme, M a finite free A-
module and G ⊂ GL(M) a closed, connected reductive subgroup. For any A-algebra
B let G-Fil(B) denote the set of GB = G⊗AB-split filtrations on MB = MA⊗AB.
Then the functor B 7→ G-Fil(B) is representable by a smooth proper A-scheme.
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Proof. Let Par denote the functor which assigns to an A-algebra B the set of
parabolic subgroups PB ⊂ GB . Denote by P̃ar the functor which assigns to B the
set of pairs (PB , ν), where PB ⊂ GB is a parabolic subgroup with unipotent radical
UB , and ν : Gm → PB/UB is a cocharacter. Then Par is smooth and representable
over A [DG, XVI, 3.5] and the morphism P̃ar → Par is smooth and relatively
representable by [DG, XI, 4.2]. Hence P̃ar is smooth and representable.

We have a map G-Fil → P̃ar which associates to a filtration M•
B the parabolic

respecting the filtration, together with the cocharacter giving the grading on gr•MB .

We will show that G-Fil is represented by a closed and open subscheme of P̃ar. The
properness then follows from (1.1.4).

Consider an A-algebra B, and a parabolic PB of GB with unipotent radical UB ,
together with a cocharacter ν : Gm → PB/UB . Fix a Levi subgroup LB ⊂ PB
mapping isomorphically to PB/UB , and let µ : Gm → LB be the cocharacter
induced by ν. Let u = LieUB , p = LiePB and decompose u = ⊕n∈Zun and p =
⊕n∈Zpn under the adjoint action of µ, so that µ has weight n on un and pn. Let
G-Fil′(B) ⊂ P̃ar(B) consist of those pairs (PB , ν) such that un = 0 for n 6 0 and
pn = 0 for n < 0. Any two choices of LB differ by conjugation by an element of UB ,
so this condition does not depend on the choice of LB and G-Fil′ is well defined. It
is clearly represented by an open and closed subscheme of P̃ar.

We saw in the proof of (1.1.1) that the functor G-Fil → P̃ar factors through
G-Fil′. Conversely, given a point (PB , ν) of G-Fil′(B) we may choose a Levi sub-
group LB ⊂ PB and consider the filtration given by µ. Let P ′B and U ′B denote the
parabolic and unipotent subgroups defined by µ, and denote their Lie algebras by
p′ and u′ respectively. To see that P ′B = PB , we may work étale locally and assume
that GB contains a split maximal torus TB ⊂ PB with Lie algebra t such that µ
factors through TB . Decompose g = t ⊕α∈Φ gα under the adjoint action of T. The
proof of (1.1.1) shows that p ⊂ p′ and u ⊂ u′. If p ( p′, there is a root space gα ⊂ p′

which is not contained in p. But then g−α ⊂ u [DG, XXII, 5.11.3] and so g−α ⊂ u′

whence gα * p′, a contradiction.
It follows that P ′B = PB and U ′B = UB . In particular these groups are indepen-

dent of the choice of LB and the filtration depends only on ν and not on µ. This
gives a map G-Fil′ → G-Fil which is a section to the inclusion G-Fil → G-Fil′.
Hence G-Fil = G-Fil′ is open and closed in P̃ar. �

(1.1.6) In the situation of (1.1.1) let µ : Gm → G be a cocharacter inducing
the given filtration M•. The centralizer L of µ in G is a Levi subgroup with Lie
algebra t ⊕α∈Φ′\Φ′′ gα [DG, XXVI, 5.11.3]. The parabolic subgroup P ′ defined by
µ−1 satisfies P ′ ∩ P = L. We will refer to the unipotent radical U ′ of P ′ as the
opposite unipotent defined by µ. We have LieG = LieP ⊕LieU ′ [DG, XXVI, 4.3.2].

(1.2) Review of S-modules: We now recall some of the results of [Ki 1]
regarding the classification of crystalline representations and p-divisible groups.

Let k be a perfect field of characteristic p, W = W (k) its ring of Witt vectors
and K0 = W (k)[1/p]. Let K be a finite totally ramified extension of K0, and OK
its ring of integers. Fix an algebraic closure K̄ of K, and set GK = Gal(K̄/K).

We denote by Repcris
GK

the category of crystalline GK-representations, and by
Repcris◦

GK
the category of GK-stable Zp-lattices spanning a representation in Repcris

GK
.

For V a crystalline representation, recall Fontaine’s functors

Dcris(V ) = (Bcris ⊗Qp V )GK and DdR(V ) = (BdR ⊗Qp V )GK .
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Fix a uniformiser π ∈ K, and let E(u) ∈ W (k)[u] be the Eisenstein polynomial
for π. We set S = W [[u]] equipped with a Frobenius ϕ which acts as the usual
Frobenius on W and sends u to up.

Let Modϕ/S denote the category of finite free S-modules M equipped with a
Frobenius semi-linear isomorphism

1⊗ ϕ : ϕ∗(M)[1/E(u)] ∼−→M[1/E(u)].

Note that this definition differs slightly from that of [Ki 1], where we insisted that
the above map be induced by a map ϕ∗(M)→M. This is related to the fact that
in loc. cit we considered crystalline representations with Hodge-Tate weights 6 0,
whereas here we will allow arbitrary Hodge-Tate weights.

For i ∈ Z we set

Filiϕ∗(M) = (1⊗ ϕ)−1(E(u)iM) ∩ ϕ∗(M).

Let OE denote the p-adic completion of S(p), and denote by Modϕ/OE the category

of finite free OE -modules M equipped with an isomorphism ϕ∗(M) ∼−→M. We have
a functor

Modϕ/S → Modϕ/OE ; M 7→ OE ⊗S M.

Theorem (1.2.1). There exists a fully faithful tensor functor

M : Repcris◦
GK
→ Modϕ/S,

which is compatible with formation of symmetric and exterior powers. If L is in
Repcris◦

GK
, V = L⊗Zp Qp, and M = M(L), then

(1) There are canonical isomorphisms

Dcris(V ) ∼−→M/uM[1/p] and DdR(V ) ∼−→ ϕ∗(M)⊗S K,

where the map S→ K is given by u 7→ π. The first isomorphism is compat-
ible with Frobenius and the second maps Filiϕ∗(M)⊗WK0 onto FiliDdR(V )
for i ∈ Z.

(2) There is a canonical isomorphism

OdEur ⊗Zp
L

∼−→ OdEur ⊗S M,

where OdEur is a certain faithfully flat, and formally étale OE -algebra.
(3) If k′/k is an algebraic extension of fields, then there exists a canonical ϕ-

equivariant isomorphism

M(L|GK′ )
∼−→M(L)⊗S S′

where S′ = W (k′)[[u]] and GK′ = Gal(K̄ ·W (k′)[1/p]/K ·W (k′)[1/p]).

Proof. This is an exercise in assembling the results of [Ki 1]:
Let Modϕ,+/S denote the full subcategory of Modϕ/S such that the map 1 ⊗ ϕ

induces a map ϕ∗(M)→M. LetK∞ = K( pn√
π)n≥1 be the field obtained fromK by

adjoining a compatible sequence of p-power roots of π. Write GK∞ = Gal(K̄/K∞),
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and denote by Rep◦GK∞
the category of continuous representations of GK∞ on finite

free Zp-modules.
Then we have functors

(1.2.2) Modϕ,+/S

M7→OE⊗SM−→ Modϕ/OE
∼−→ Rep◦GK∞

,

where the second functor is the equivalence of [Fo, A.1.2.7], and the first functor is
fully faithful by [Ki 1, 2.1.12] (see also [Ki 2, E.4]). Denote by Repfh,◦

GK∞
the essential

image of the composite of (1.2.2).
Let Rep−,◦cris denote the category of GK-stable Zp-lattices in crystalline represen-

tations with Hodge-Tate weights 6 0. By [Ki 1, 2.1.14] the functor

Rep−,◦cris → Rep◦GK∞
; L 7→ L|GK∞

is fully faithful. If L is in Rep−◦cris then [Ki 1, 2.1.5] implies that L[1/p] contains
a GK∞ -stable lattice in Repfh,◦

GK∞
, and hence L|GK∞

itself is in Repfh,◦
GK∞

by [Ki 1,
2.1.15].

We define M as the composite

M : Rep−,◦cris → Repfh,◦
GK∞

∼−→
(1.2.2)

Modϕ,+/S .

To extend this to a functor on Repcris◦
GK

, let S(1) (resp. S(−1)) in Modϕ/S be
the object with underlying S-module equal to S and ϕ given by sending 1 to
E(0)/pE(u) (resp. pE(u)/E(0)). Then M(Zp(−1)) = S(−1), for example by [Ki
1, 2.1.5], and for any L in Rep◦cris we set M(L) = M(L(−m)) ⊗ S(1)⊗m for m a
positive integer such that L(−m)[1/p] has all Hodge-Tate weights 6 0.

(1) now follows from [Ki 1, 2.1.5] and the construction of the quasi-inverse func-
tors D and M in [Ki 1, §1.2]. (2) follows from the construction of the equivalence
in [Fo, A.1]. This also implies the compatibility with symmetric tensors: For n ≥ 1,
there is a natural map

Symn(M(L))→M(Symn(L)).

Using (2) we see that this map is an isomorphism after tensoring by ⊗SOE . Hence
it is an isomorphism by [Ki 1, 2.1.9]. The argument for exterior powers is similar.

Finally (3) is easily seen directly from the construction of the functor M. �

(1.3) Reductive groups and crystalline representations: Let L be a GK-
stable lattice in a crystalline representation, and G ⊂ GL(L) a reductive group such
that the GK-action on L factors through G(Zp). We will apply the theory of the
previous section to produce a “crystalline realization” of G.

(1.3.1) Let R be a Noetherian ring and M a finite free R-module. We begin
by establishing criteria under which a closed R-flat subgroup G ⊂ GL(M) can be
described as the scheme theoretic stabilizer of a collection of tensors.

It will be convenient to denote simply by M⊗ the direct sum of all the R-modules
which can be formed from M using the operations of taking duals, tensor products,
symmetric powers and exterior powers. Note that M⊗ ∼−→ M∗⊗ so that a tensor
in the left hand side may be regarded in the right hand side.

If (sα) ⊂M⊗, and G ⊂ GL(M) is the pointwise stabilizer of the sα, we say G is
the group defined by the tensors sα.



10 MARK KISIN

Proposition (1.3.2). Suppose that R is a discrete valuation ring of mixed char-
acteristic, and let G ⊂ GL(M) be a closed R-flat subgroup whose generic fiber is
reductive. Then G is defined by a finite collection of tensors (sα) ⊂M⊗.

Proof. The proof is similar to that of [De 2, Prop. 3.1].
Let N be an R-module equipped with an action of GL(M) and N ′ ⊂ N a

submodule such that N ′/N is R-flat. If (sα) ⊂ N ′ then the subgroup of GL(M)
fixing the sα is the same as the subgroup fixing the sα considered as elements of N.

Let OGL denote the Hopf algebra of GL(M). For any finite projective R-module
W with an action of GL(M), let W0 denote W with the trivial GL(M) action.

We have the inclusion of R-schemes GL(M) ⊂ End (M), which is fibre by fibre
dense. Thus

OGL = lim−→nSym•(M ⊗M∗
0 )⊗ (detM)−n,

with the transition maps being given by multiplication by det⊗δ−1, where det ∈
Sym•(M ⊗M∗

0 ) is the determinant and δ ∈ detM is some fixed basis vector. The
transition maps in the direct limit remain injective after any base change R→ R′.
Hence each term in the limit is a direct summand in the next and it suffices to find
tensors (sα) ⊂ OGL defining G.

For any finite projective R-module W with an action of GL(M), the OGL-
comodule structure on W gives a GL(M)-equivariant map W → W0 ⊗R OGL.
This map is injective and its cokernel is a direct summand, a section being induced
by the identity section OGL → R. Hence it suffices to find elements defining G in
any representation of GL(M) on a finite projective R-module.

Now let I ⊂ OGL denote the ideal of G. Then G is the scheme theoretic stabilizer
of I. Let W ⊂ OGL be a finite rank, GL(M)-stable, saturated R-submodule such
that W ∩ I contains a set of generators of I. Then G is the stabilizer of W ∩ I ⊂W.
If r = rkRW ∩ I then L = ∧r(W ∩ I) ⊂ ∧rW is a line, and G is the stabilizer of L.

Since G has reductive generic fibre the quotient map (∧rW )∗ → L∗ has a G-
equivariant splitting over the generic point η ∈ SpecR. Hence there exists aG-stable
line L̃∗ ⊂ (∧rW )∗ which maps isomorphically to L∗ over η. Now G acts trivially on
L⊗R L̃∗ as this is true over η, and the stabilizer of L⊗R L̃∗ ⊂ (∧rW )⊗R (∧rW )∗

is equal to G. �

(1.3.3) Let L be a GK-stable lattice in a crystalline representation and G ⊂
GL(L) a reductive group. Then by (1.3.2) G is defined by a finite collection of
tensors (sα) ⊂ L⊗, and the GK-action on L factors through G(Zp) if and only if
these tensors are GK-invariant.

If this is the case, we may view the tensors sα as morphisms sα : 1 → L⊗ in
Repcris◦

GK
. Applying the functor M of the theorem, we obtain morphisms s̃α : 1 →

M(L)⊗ in Modϕ/S.

Proposition (1.3.4). Let L be in Repcris◦
GK

and G ⊂ GL(L) a reductive Zp-subgroup
defined by a finite collection of GK-invariant tensors (sα) ⊂ L⊗. If M = M(L),
then (s̃α) ⊂M⊗ defines a reductive subgroup of GL(M).

If k is separably closed, then there is an S-linear isomorphism. M
∼−→ L⊗Zp S

which takes the tensor s̃α to sα. In particular, the subgroup GS ⊂ GL(M) defined
by (s̃α) is isomorphic to G×Spec Zp Spec S.

Proof. Using the compatibility (1.2.1)(3), it suffices to prove the proposition when
k is separably closed. Moreover the second statement implies the first.
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Now suppose that k is separably closed, set M′ = L ⊗Zp S, and let P ⊂
HomS(M,M′) be the subscheme of isomorphisms between M and M′ which take
s̃α to sα. The fibres of P are either empty or a torsor under G. We claim that P
is a G-torsor. That is, P is flat over S with non-empty fibres. The claim implies
the proposition since a torsor under a reductive group is étale locally trivial, while
the ring S is strictly henselian as k is separably closed, so any G torsor over S is
trivial.

To prove the claim we proceed in several steps. For R a S-algebra, we set
PR = P ×Spec S SpecR.

Step 1: PS(p) is a G-torsor. Since OdEur is faithfully flat over OE and OE is
faithfully flat over S(p), it suffices to show that POcEur

is a G-torsor. However the
isomorphism in (1.2.1)(2) shows that POcEur

is a trivial G-torsor.

Step 2: PK0 is a G-torsor, where we regard K0 as a S-algebra via u 7→ 0. This
follows from (1.2.1)(1), which implies the existence of a canonical isomorphism

BdR ⊗Zp
L

∼−→ BdR ⊗W M/uM.

Step 3: PS[1/pu] is a G-torsor. Let U ⊂ Spec S[1/up] denote the maximal open
subset over which P is flat with non-empty fibres. By Step 1, we know this subset
is non-empty, since it contains the generic point. In particular, the complement of
U in Spec S[1/up] contains finitely many closed points.

Let x ∈ Spec S[1/up] be a closed point. If x /∈ U, we consider two cases.
If |u(x)| < |π|, then since the sα are Frobenius invariant, we have PS[1/p]

∼−→
ϕ∗(PS[1/p]) in a formal neighbourhood of x. Hence PS[1/p] cannot be a G-torsor
at ϕ(x), since ϕ is a faithfully flat map on S. Repeating the argument we find
ϕ(x), ϕ2(x), · · · /∈ U, which gives a contradiction.

Similarly, if |u(x)| ≥ |π| consider a sequence of points x0, x1, . . . with x0 = x, and
ϕ(xi+1) = xi. For i ≥ 1, we have PS[1/p]

∼−→ ϕ∗(PS[1/p]) in a formal neighbourhood
of xi, so we find that xi /∈ U for i ≥ 1.

Step 4: PS[1/p] is a G-torsor. By Step 3, it suffices to show that the restriction
of P to K0[[u]] is a G-torsor. For any N in Modϕ/S there is a unique, ϕ-equivariant
isomorphism

N⊗S K0[[u]]
∼−→ K0[[u]]⊗K0 N/uN[1/p]

lifting the identity map on N/uN ⊗OK0
K0, which is functorial in N (see, for ex-

ample, [Ki 1, 1.2.6]). Applying this to M and the morphisms s̃α shows that the
restriction of P to K0[[u]] is isomorphic to PK0 ⊗K0 K0[[u]], which is a G-torsor by
Step 2.

Step 5: P is a G-torsor. Let U be the complement of the closed point in Spec S.
By Steps 1 and 4 we know that P |U is a G-torsor. By a result of Colliot-Thélène
and Sansuc [CS, Thm. 6.13], P extends to a G-torsor over S and, as we remarked
above, any such torsor is trivial. Hence P |U is trivial, and there is an isomorphism
M|U

∼−→ M′|U taking s̃α to sα. Since any vector bundle over U has a canonical
extension to S, obtained by taking its global sections, this isomorphism extends
to S. This implies that P is the trivial G-torsor, and completes the proof of the
proposition. �
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Corollary (1.3.5). With the assumptions of (1.3.4), suppose that G is connected
and k is finite. Then there exists an isomorphism M

∼−→ L ⊗Zp S which takes
the tensor s̃α to sα. In particular, the subgroup GS ⊂ GL(M) defined by (s̃α) is
isomorphic to G×Spec Zp Spec S.

Proof. As in (1.3.4) we set M′ = L⊗Zp M, and we denote by P ⊂ HomS(M,M′)
the subscheme of isomorphisms between M and M′ which take s̃α to sα. Then P is
a G-torsor by (1.3.4). Since G is connected and k is finite, any such torsor is trivial
[Sp, 4.4], and the corollary follows. �

Corollary (1.3.6). Let L be a GK-stable lattice in a crystalline representation V,
M = M(L) and (sα) ⊂ L⊗ a collection of GK-invariant tensors which define a
reductive subgroup G of GL(L). Then

(1) If we view (sα) ⊂ Fil0Dcris(V )⊗ via the p-adic comparison isomorphism

Bcris ⊗Zp
L

∼−→ Bcris ⊗OK0
Dcris(V )

then (sα) ⊂ (M/uM)⊗ ⊂ Dcris(V )⊗.
(2) If ksep denotes a separable closure of k then there exists a W (ksep)-linear

isomorphism

L⊗Zp W (ksep) ∼−→M/uM⊗W (k) W (ksep)

taking sα to sα. In particular, (sα) ⊂ (M/uM)⊗ defines a reductive sub-
group G′ of GL(M/uM), which is a pure inner form of G.

(3) If k is finite and G is connected then there exists a W -linear isomorphism

L⊗Zp W
∼−→M/uM

taking sα to sα. In particular (sα) ⊂ (M/uM)⊗ defines a reductive subgroup
G′ of GL(M/uM), which is isomorphic to G×Spec Zp SpecW.

Proof. (1) and (2) follow from (1.3.4); in fact (1) holds for anyGK-invariant tensors,
without assuming that G is reductive. To see that G′ is a pure inner form of G
in (2), note that specializing the torsor P which appears in the proof of (1.3.4) at
u = 0 gives a class in H1(SpecW,G), and G′ can be obtained from G by twisting
by this class.

Finally, (3) follows from (1.3.5) once we remark that sα ∈ Dcris(V )⊗ is equal to

s̃α|u=0 : 1→ (M/uM)⊗ ↪→ Dcris(V )⊗,

the final inclusion being given by the first isomorphism of (1.2.1)(1). The equality
is a formal consequence of the functoriality of this isomorphism. �

(1.4) Application to p-divisible groups: We now apply the previous results
to p-divisible groups over OK .

If R is a ring which is p-adically separated and complete, and G is a p-divisible
group over R, we will denote by D(G ) the corresponding (contravariant) Frobenius
crystal on the crystalline site of R.

If R′ → R is a surjection whose kernel is equipped with divided powers and is
topologically nilpotent for the p-adic topology we denote by D(G )(R′) the value
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of D(G ) on R′. In particular, there is a short exact sequence of finite, locally free
R-modules

0→ (Lie G )∗ → D(G )(R)→ Lie G ∗ → 0

where the term on the left is the R-dual of Lie G , and G ∗ is the Cartier dual of
G . If R′ → R is as above, we denote by Fil1D(G )(R′) the preimage of (Lie G )∗ in
D(G )(R′).

Let S be the p-adic completion of W [u,E(u)n/n!]n≥1. We equip it with a Frobe-
nius ϕ which sends u to up. The ideal Fil1S = ker (S u 7→π→ OK) is equipped with
divided powers. In particular, if G is a p-divisible group over OK , then D(G )(S)
is a finite free module, equipped with a semi-linear Frobenius ϕ and a submod-
ule Fil1D(G )(S). In fact ϕ(Fil1D(G )(S)) ⊂ pD(G )(S), but we will not need this
explicitly.

(1.4.1) Let BTϕ/S denote the full subcategory of Modϕ/S consisting of objects M

such that M is ϕ-stable and the cokernel of ϕ∗(M)→M is killed by E(u).
We view S as a S-algebra by sending u to u. If M is in BTϕ/S then following

Breuil [Br], we set M(M) = S ⊗S ϕ∗(M), and equip M(M) with the induced
Frobenius ϕ, and with an S-submodule

Fil1M(M) = {x ∈ S ⊗ϕ,S M : 1⊗ ϕ(x) ∈ Fil1S ⊗S M ⊂ S ⊗S M}.

One checks easily that

Fil1M(M) = S · Fil1(ϕ∗(M)) + Fil1S · M.

We denote by (p-div/OK) the category of p-divisible groups over OK .

Theorem (1.4.2). The functor M of (1.2.1) induces a fully faithful contravariant
functor

M : (p-div/OK)→ BTϕ/S; G 7→M(G ) := M(TpG ∗)

which is an equivalence when p > 2. If G is a p-divisible group over OK and either
p > 2 or G ∗ is connected then there is a canonical isomorphism

D(G )(S) ∼−→M(M(G ))

compatible with ϕ and filtrations.

Proof. That M induces a functor as claimed follows from [Ki 1, 2.2.7] and its proof.
If p > 2, M is in BTϕ/S and G = G (M) is the corresponding p-divisible group, then

the construction of the quasi-inverse to M in loc. cit shows that D(G )(S) ∼−→
M(M(G )). If p = 2 then this formula holds if G ∗ is connected [Ki 3, 1.1.6(2),
1.2.8].3 �

Corollary (1.4.3). Let G be a p-divisible group over OK , and if p = 2 assume that
G ∗ is connected. Let L = TpG ∗, M = M(L) = M(G ) and (sα) ⊂ L⊗ a collection
of GK-invariant tensors defining a reductive subgroup G ⊂ GL(L). Then

(1) There is a canonical ϕ-equivariant isomorphism ϕ∗(M/uM) ∼−→ D(G0)(W ),
where G0 = G ⊗OK

k.

3Note that the correspondence of [Ki 3] is covariant.
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(2) There exists a W (ksep)-linear isomorphism

L⊗Zp
W (ksep) ∼−→ D(G0)(W )⊗W W (ksep)

taking sα to ϕ∗(sα) ∈ D(G0)(W )⊗. In particular, (ϕ∗(sα)) ⊂ D(G0)(W )⊗

defines a reductive subgroup GW ⊂ GL(D(G0)(W )) which is an inner form
of G.

(3) If G is connected and k is finite then there exists a W -linear isomorphism

L⊗Zp W
∼−→ D(G0)(W )

taking sα to ϕ∗(sα) ∈ D(G0)(W )⊗. In particular, (ϕ∗(sα)) ⊂ D(G0)(W )⊗

defines a reductive subgroup GW ⊂ GL(D(G0)(W )) which is isomorphic to
G×Spec Zp W.

(4) The filtration Fil1D(G0)(k) ⊂ D(G0)(k) is given by a cocharacter

µ0 : Gm → GW ⊗W k.

Proof. For (1) note that if we view W as an S-algebra by sending u to 0, then using
(1.4.2) we have

D(G0)(W ) ∼−→ D(G )(S)⊗S W
∼−→M(M(G ))⊗S W

= ϕ∗(M(TpG ∗))⊗S W = ϕ∗(M)/uϕ∗(M).

In particular, we may view the tensors ϕ∗(sα) in D(G0)(W )⊗ by (1.3.6)(1), and (2)
follows from (1.3.6)(2). Similarly, (3) follows from (1.3.6)(3).

By (1.3.4), (sα) ⊂ L⊗ gives rise to a collection of ϕ-invariant tensors (s̃α) ⊂M⊗,
which define a reductive subgroup GS ⊂ GL(M). Pulling these back by ϕ and
specializing at u = π we obtain tensors

sα,K = ϕ∗(s̃α)|u=π ∈ (ϕ∗(M)⊗S OK)⊗

which define a reductive subgroup GOK
⊂ GL(ϕ∗(M)⊗S OK).

By (1.4.2), we have ϕ∗(M) ⊗S OK
∼−→ D(G )(OK) compatible with ϕ and fil-

trations. Hence it suffices to show that the filtration on D(G )(OK) is given by a
cocharacter Gm → GOK

, that is, in the terminology of §1, that it is GOK
-split.

By (1.1.4) it suffices to show that the induced filtration on D(G )(OK) ⊗OK
K is

GOK
|K-split. Now using (1.2.1) and (1.4.2) we have

(1.4.4) DdR(V ) ∼−→ ϕ∗(M)⊗S K
∼−→ D(G )(OK)⊗OK

K

where V = L[1/p]. The compatibility with filtrations in (1.2.1)(1) and (1.4.2) shows
that this is an isomorphism of filtered K-vector spaces, so we have to show that
the filtration on DdR(V ) is GOK

|K-split. This follows from (1.4.5) below. �
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Lemma (1.4.5). Let D be a weakly admissible filtered K0-module, and let (sα) ⊂
Fil0D⊗ be a collection of ϕ-invariant tensors defining a reductive subgroup G ⊂
GL(D). Then the filtration on DK = D ⊗K0 K is G⊗K0 K-split.

Proof. Let 〈D〉⊗ be the Tannakian category generated by the weakly admissible
module D. Let ω be the fibre functor on 〈D〉⊗ given by ω(W ) = W ⊗K0 K. Since
the sα ∈ Fil0D⊗ we have

Aut⊗(ω) ⊂ G⊗K0 K ⊂ GL(D ⊗K0 K).

By (1.1.3) the filtration on D⊗K0 K is Aut⊗(ω)-split and hence G⊗K0 K-split. �

(1.4.6) We remark that the condition in the corollary when p = 2 is one of the
two points which force us to assume that p > 2.

The statement of (1.3.6)(2) was conjectured by Milne [Mi 3], without the restric-
tion at p = 2 which should be unnecessary. See also [Va 3].

(1.5) Deformation theory: We keep the notation of the previous section.
Let G0 be a p-divisible group over k. We recall the explicit description of the

versal deformation ring of G0 given by Faltings [Fa, §7] (see also [Mo, §4]).
Fix a cocharacter µ : Gm → GL(D(G0)(W )) whose reduction mod p, µ0, gives rise

to the filtration on D(G0)(k). The filtration on D(G )(W ) defined by µ corresponds
to a p-divisible group G over W lifting G0 [Me].

Let U◦ ⊂ GL(D(G0)(W )) be the opposite unipotent defined by µ, and R the
complete local ring at the identity section of U◦. Then R

∼−→ W [[t1, . . . , tn]] is a
power series ring over W where

n = dimU◦ = dimkgr−1End kD(G0)(k).

We equip R with a Frobenius ϕ = ϕR sending ti to tpi and acting as the usual
Frobenius on W.

Write M0 = D(G0)(W ) equipped with the filtration Fil1M0, induced by the
chosen character µ and Frobenius ϕ = ϕM0 . Let M = M0 ⊗W R with the filtra-
tion induced from M0. We equip M with a semi-linear Frobenius ϕ given by the
composite

M = M0 ⊗W R
ϕ⊗ϕ→ M

u→M

where u ∈ U◦(R) is the tautological R-point of U◦.
Then there is a p-divisible group GR over R such that GR ⊗R R/(t1, . . . , tn)

∼−→
G and GR is a versal deformation of G0, and an isomorphism D(GR)(R) ∼−→ M
compatible with Frobenius and filtration [Mo, 4.5]. Since R is formally smooth, the
structure of F -crystal on D(GR) is given by a connection ∇ : M → M ⊗ Ω1

R, such
that ϕ∗(M)→M is parallel. That is, it is compatible with the connections ϕ∗(∇)
and ∇ on ϕ∗(M) and M, respectively.

If R′ is any p-adically complete, p-torsion free W -algebra, equipped with a lift
of Frobenius ϕR′ and ι : R→ R′ is a map of W -algebras, then the Frobenius on

MR′ := M ⊗R R′
∼−→ D(GR ⊗R R′)(R′)

is given as follows: Since ϕR′ ◦ι and ι◦ϕR have the same reduction modulo p (we do
not assume they are equal), the structure of crystal on D(GR) induces a canonical
isomorphism ε : ϕ∗R′ι

∗M
∼−→ ι∗ϕ∗RM, and the Frobenius ϕR′ on MR′ is given by

(1.5.1) ϕ∗R′(MR′) = ϕ∗R′ι
∗M

∼−→
ε
ι∗ϕ∗RM → ι∗M = MR′ .
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The map ε is compatible with the connections ϕ∗R′ι
∗(∇) and ι∗ϕ∗R(∇) on ϕ∗R′ι

∗M
and ι∗ϕ∗RM respectively. This compatibility follows from the cocycle condition in
the definition of a crystal, or equivalently the integrability of ∇. In particular, one
sees that (1.5.1) is parallel for ∇R′ = ι∗(∇).

Explicitly, ε has the following description [Fa, p134], [Mo, 4.3]: If i = (i1, . . . , in)
is a multi-index, write ∇(∂)i = ∇(∂t1)i1 . . .∇(∂tn)in and zi = zi11 . . . zinn where
zi = ϕR′ ◦ ι(ti)− ι ◦ ϕR(ti). Then

ε(m⊗ 1) =
∑
i

∇(∂)i(m)⊗ zi

i!
.

We will need the following lemma relating the action of ϕ and ∇R′ .4

Lemma (1.5.2). Let ι : R → R′ be as above. Suppose that ι ◦ ϕR = ϕR′ ◦ ι and
that there is a smooth subgroup H ⊂ GL(M0), such that the composite

θ : M0
m7→ϕ−1(m)⊗1−→ ϕ∗(MR′)→MR′ = M0 ⊗W R′

is given by θ(m) = A ·m for some A ∈ H(R′). Then β : M0
∇R′→ MR′ ⊗R′ Ω1

R′ , the
linear map induced by ∇R′ , is given by an element of LieH ⊗W Ω1

R′ .

Proof. Note that θ is well defined, without inverting p, as ι◦ϕR = ϕR′ ◦ι. It suffices
to prove the lemma with ι(R) in place of R′, so we may assume that ι is surjective.

Since the map ϕ∗(MR′)→MR′ is parallel for ∇R′ one computes that dA+βA =
Aϕ(β) as elements of EndMR′ ⊗R′ Ω1

R′ [1/p], where ϕ(β) is the composite

M0
ϕ−1

→ M0[1/p]
∇R′→ MR′ ⊗R′ Ω1

R′ [1/p]

= M0 ⊗W ΩR′ [1/p]
ϕ⊗ϕ→ M0 ⊗W ΩR′ [1/p] = MR′ ⊗R′ Ω1

R′ [1/p].

Hence ϕ(β) = A−1dA+A−1βA ∈ EndR′MR′ ⊗R′ Ω1
R′ and

β = −dAA−1 +Aϕ(β)A−1.

Repeatedly substituting the right hand side of the above formula for β one ob-
tains a series whose mth term is contained in LieH ⊗W R′ · ϕm−1(Ω1

R′). Since ι
is ϕ-compatible and for any ω ∈ Ω1

R, ϕ
m(ω) ∈ (tp

m−1
1 , . . . , tp

m−1
r )Ω1

R, the series
converges to an element of LieH ⊗W Ω1

R′ . �

Corollary (1.5.3). We have
(1) The map ∇ : M0 →M ⊗R Ω1

R is given by an element of LieU◦ ⊗W Ω1
R.

(2) For any ι : R→ R′ as in (1.5), the map

θ : M0 →MR′ [1/p]; m 7→ ϕR′(ϕ−1(m)⊗ 1)

is given by an element of U◦(R′[1/p]).

4cf. the second remark in [Fa, p136].
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Proof. (1) follows from (1.5.2), applied with ι the identity map.
For (2), denote by ϕW : R → R the endomorphism given by ϕ on W, and

ϕW (ti) = ti and by ϕR/W theW -linear endomorphism of R given by ϕR/W (ti) = tpi .
Then ϕR = ϕR/W ◦ ϕW . We will also denote by ϕW , the ϕW -semi-linear map on
MR = M0 ⊗W R, given by ϕ|M0 ⊗ ϕW .

To show (2) we first note that the composite

ϕW∇ϕ−1
W : MR

ϕ−1
W→ MR[1/p] ∇→MR ⊗R Ω1

R[1/p]
ϕW⊗ϕW→ MR ⊗R Ω1

R[1/p]

is given by an element of LieU◦ ⊗W Ω1
R[1/p]. Indeed, in the notation of the proof

of (1.5.2), composing this map with 1⊗ϕR/W : M0⊗W Ω1
R[1/p]→M0⊗W Ω1

R[1/p]
produces the map

ϕ(β) = A−1dA+A−1βA ∈ LieU◦ ⊗W Ω1
R.

Hence, we compute for any m ∈M0,

ϕR′(ϕ−1(m)⊗ 1) = (ι∗(ϕR ⊗ 1) ◦ ε)(ϕ−1(m)⊗ 1)

= ι∗(ϕR ⊗ 1) exp(
∑
i

∇(∂ti)(ϕ−1(m)⊗ 1)⊗ zi)

= ι∗(ϕR ◦ ϕ−1
W ) exp(

∑
i

ϕW∇ϕ−1
W (∂ti)(m⊗ 1)⊗ zi)

Since
∑
i ϕW∇ϕ

−1
W (∂ti)(m⊗1)⊗zi is in LieU◦⊗W R′[1/p], by what we saw above,

and ι∗(ϕR ◦ ϕ−1
W ) is given by the universal element u ∈ U◦(R), this proves the

lemma. �

(1.5.4) Suppose G ⊂ GL(M0) is a connected reductive subgroup defined by a
family of ϕ-invariant tensors (sα) ⊂ M⊗

0 , such that the filtration on D(G0)(k) is
G ⊗W k-split.5 A tensor in M⊗

0 is said to be ϕ-invariant if it is ϕ-invariant in
M0[1/p]⊗. Choose a character µ0 : Gm → G⊗W k inducing this filtration. We may
take µ to be a character µ : Gm → G lifting µ0. Such a lifting always exists [DG
XI, 4.2]. Let g denote the Lie algebra of G. Then µ induces a grading of g.

Let U◦G ⊂ G be the opposite unipotent defined by µ, and RG the complete local
ring at the identity section of U◦G. Then RG is a formally smooth quotient of R. We
choose the co-ordinates ti so that RG = R/(tr+1, . . . , tn) where r = rkW g/Fil0g.

Let MRG
= M ⊗R RG, and let ∇RG

be the induced connection on MRG
. By

(1.5.2), ∇RG
induces a map M0 →MRG

⊗RG
Ω1
RG

which is in LieU◦G ⊗W Ω1
RG
. In

particular we have ∇RG
(sα ⊗ 1) = 0. Hence sα ⊗ 1 may be viewed as a morphism

of crystals 1 → D(GR ⊗R RG)⊗. In particular, for any map ι : R → R′ as in (1.5),
if ι factors through RG, then ε(sα ⊗ 1) = sα ⊗ 1. (This may also be seen directly
from the explicit description of ε in terms of ∇.).

(1.5.5) We want to describe which points of R come from RG-points. In [Mo,
4.9] this is done for points with values in a power series ring over W, following a
remark of Faltings [Fa, p136]. We will need to consider the case of the ring of
integers in a finite extension of K0. For this we need some preparation.

5Note that, in general, there is a well defined Frobenius only on M0[1/p]⊗ and not M⊗
0 , as the

dual module M∗
0 need not be Frobenius stable.
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Consider the ring K0[[u]] equipped with the Frobenius given by the usual Frobe-
nius on K0 and sending u to up. Let D0 be a finite dimensional K0-vector space,
and set D = D0⊗K0 K0[[u]]. Given an isomorphism ϕ∗(D) ∼−→ D, there is a unique
ϕ-equivariant section ξ : D0 = D/uD → D. To construct it choose any K0-linear
section ξ0 : D/uD → D, and set (cf. [Ki 1, 1.2.6])

ξ = lim−→nϕ
n ◦ ξ0 ◦ ϕ−n.

The connection ∇D on D, such that ∇D(ξ(D0)) = 0 is the unique connection for
which ϕ∗(D) ∼−→ D is parallel.

Suppose that D0 is equipped with a decreasing filtration D•
0 , and equip D with

the induced filtration D•.

Lemma (1.5.6). Suppose that D0 with its Frobenius and filtration is a weakly
admissible K0-module. Let (sα) ⊂ Fil0(D⊗

0 ) be a collection of ϕ-invariant tensors
defining a reductive subgroup G ⊂ GL(D0), and fix a cocharacter µ : Gm → G
inducing the filtration D•

0 . Suppose that
(1) For each α, ξ(sα) ∈ Fil0D⊗.
(2) If U◦ ⊂ GL(D0) denotes the opposite unipotent defined by µ, then the K0[[u]]-

linear automorphism of D,

θ : D = D0 ⊗K0 K0[[u]]→ D : m0 ⊗ a 7→ ϕ(ϕ−1(m0)⊗ 1)⊗ a

lies in U◦(K0[[u]]).
Then ξ(sα) = sα⊗ 1 ∈ D⊗ for each α, and the automorphism θ lies in the opposite
unipotent subgroup U◦G ⊂ G defined by µ.

Proof. We remark that a cocharacter µ as in the lemma always exists by (1.4.5).
Since G is defined by a finite subset of the sα, we may assume that the collection
of tensors (sα) is indexed by some finite set I.

Each sα generates a ϕ-invariant line in a weakly admissible submodule of D⊗
0 , so

this line cannot lie in filtration degree 1, and sα gives rise to a morphism 1→ D⊗
0

in the category of (Ind-)weakly admissible modules. Now consider the map

EndK0D0 → (D⊗
0 )|I|; g 7→ (g(sα))α∈I

This is a map of (Ind)-weakly admissible filtered ϕ-modules, and hence strict for
filtrations. In particular, if g ∈ EndK0D0 maps (sα)α∈I into Fil0(D⊗

0 )|I| then
g ∈ LieP + LieG, where P ⊂ GL(D0) is the parabolic corresponding to D•

0 .
Let Dn = D/un+1D and let θn be the automorphism of Dn induced by θ. We

will show by induction on n that ξ(sα) = sα ⊗ 1 modulo un. Note that this implies

θn−1(sα ⊗ 1) = ϕ(sα ⊗ 1) = ϕ(ξ(sα)) = ξ(sα) = sα ⊗ 1

so that θn−1 ∈ U◦G(K0[[u]]/un).
Suppose ξ(sα) = sα ⊗ 1 modulo un, and let θ̃n−1 ∈ U◦G(K0[[u]]/un+1) be any lift

of θn−1. Then

θn ◦ θ̃−1
n−1(sα ⊗ 1) = ϕ(sα ⊗ 1) = ξ(sα) = w(sα ⊗ 1)
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for some w ∈ ker (U◦(K0[[u]]/un+1)→ U◦(K0[[u]]/un)). Writing w = 1 + unw0 with
w0 ∈ LieU◦, we have

unw0(sα ⊗ 1) = ξ(sα)− sα ⊗ 1 ∈ Fil0(D⊗
n ),

so w0sα ∈ Fil0D⊗
0 . It follows that

w0 ∈ LieU◦ ∩ (LieP + LieG) = LieU◦ ∩ (LieP + LieU◦G) = LieU◦G.

Hence w ∈ U◦G(K0[[u]]/un+1) so ξ(sα) = sα ⊗ 1, and θ ∈ U◦G(K0[[u]]). �

(1.5.7) We now return to the notation and assumptions of (1.5.4). We will need
a variant of the ring S. Let I [n] ⊂ S denote the divided powers of I = ker (S →
OK), and set6 Ŝ = lim←−nS/I

[n]. If p > 2, the divided powers of p are topologically
nilpotent, and this is the same as the completion of S with respect to the topology
defined by the divided powers of the closure of the ideal (uei/i!)i≥1. In particular,
when p > 2, we may regard Ŝ as a subring of K0[[u]], containing S.

Proposition (1.5.8). Suppose p > 2 or that G ∗
0 is connected. Let $ : R → OK

be a map of W -algebras and denote by G$ the induced p-divisible group over OK .
Then $ factors through RG if and only if there exists a collection of ϕ-invariant
tensors (s̃α) ⊂ D(G$)(S)⊗ lifting (sα) ⊂ D(G0)(W )⊗, such that

(1) If sα,OK
denotes the image of s̃α in D(G$)(OK)⊗, then

(sα,OK
) ⊂ Fil0(D(G$)(OK)⊗).

(2) The (s̃α) define a reductive subgroup GS ⊂ GL(D(G$)(S)).

Proof. If $ factors through RG, we may lift it to a map $̃ : RG → S, and set
s̃α = $̃(sα ⊗ 1). Then s̃α clearly satisfy (1) and (2). We have to check that the
$̃(sα ⊗ 1) are ϕ-invariant. The Frobenius on MS := D(G$)(S) = MRG

⊗RG
S is

given by

(1.5.9) ϕ∗(MS) = ϕ∗$̃∗(MRG
) ∼−→

ε
$̃∗ϕ∗(MRG

)
$̃∗(1⊗ϕ)−→ $̃∗(MRG

)

where ε is as in (1.5). Now we have

$̃∗(ϕ⊗ 1) ◦ ε($̃(sα ⊗ 1)) = $̃∗(ϕ⊗ 1)($̃(sα ⊗ 1)) = $̃(sα ⊗ 1)

where the first equality was seen in (1.5.4) and the second follows from the ϕ-
invariance of sα.

Now suppose that there exist s̃α satisfying (1) and (2). Denote by $0 : R→W
the map given by $0(ti) = 0 for i = 1, . . . , n. We denote by G$×$0 the p-divisible
group over OK ×k W induced by $ ×$0 : R→ OK ×k W.

Assume first that p > 2. Then the surjective map W [u]→ OK×kW sending u to
(π, 0) induces a map Ŝ → OK×kW. LetGbS = GS⊗S Ŝ. By (1.1.5) there is aGbS-split
filtration on D(G$(Ŝ)) which simultaneously lifts the filtration on D(G$(OK)) and
the chosen filtration on D(G )(W ). Since the kernel of Ŝ → OK ×k W is equipped

6This is the ring considered in [Fa]
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with topologically nilpotent divided powers such a filtration corresponds to a p-
divisible group7 G$̃ over Ŝ, deforming G$×$0 . Since R is a versal deformation ring
for G0, G$̃ is induced by a map $̃ : R→ Ŝ lifting $ ×$0.

We may identify

D(G$̃)(Ŝ) = D(G$)(Ŝ) = D(G$(S))⊗S Ŝ

with MbS := MR ⊗R Ŝ = M0 ⊗W Ŝ, and we view s̃α as elements of M⊗bS . Consider
the composite

(1.5.10) ϕ∗(MbS) ∼−→
ε
$̃∗ϕ∗(MR)

$̃∗(ϕ⊗1)−→ $̃∗(MR) = MbS .
Since the filtration on D(G$̃)(Ŝ) is GbS-split we have s̃α ∈ Fil0D(G$)(Ŝ)⊗, and
(1.5.3)(2) shows that the map θ : M0 →MbS = M0 ⊗W Ŝ is induced by an element
of U◦(Ŝ[1/p]). Hence, viewing s̃α and sα ⊗ 1 in (MbS ⊗bS K0[[u]])⊗, and applying
(1.5.6), we find that s̃α = sα ⊗ 1 and that θ is induced by a point of U◦G(K0[[u]]) ∩
U◦(Ŝ[1/p]) = U◦G(Ŝ[1/p]). In particular, each of the two maps in (1.5.10) sends
sα⊗ 1 to sα⊗ 1. For ε this holds as ∇bS(sα⊗ 1) = ∇bS(s̃α) = 0 by (1.5.2), while the
composite of the maps in (1.5.10) has this property since s̃α is ϕ-invariant.

It follows that

$∗(ϕ⊗ 1) : M0
m7→m⊗1−→ $̃∗ϕ∗(MR)→ $̃∗MR = M0 ⊗W Ŝ

has the form m 7→ Aϕ(m) for some A ∈ U◦G(Ŝ). This means that $̃ factors through
RG, and hence so does $.

Finally suppose that G ∗
0 is connected. Then using results of Zink, we can repeat

the above argument with S in place of Ŝ, even when p = 2 : Consider the map
S → OK ×k W sending u to (π, 0), and choose a GS-split filtration on D(G$)(S)
which lifts the filtrations on D(G )(W ) and D(G$)(OK). In the terminology of [Zi
2] this filtration gives D(G$)(S) the structure of an S-window over S, and hence
gives rise to a p-divisible group G$̃ over S which deforms G$×$0 . By [Zi 1, Cor. 97]
the canonical isomorphism D(G$̃)(S) ∼−→ D(G$)(S) respect filtrations. The rest of
the argument is as in the case p > 2. �

Corollary (1.5.11). Suppose p > 2 or G ∗
0 is connected. Let K ′/K be a finite

extension and $ : R → OK′ a map of W -algebras inducing a p-divisible group G$
over OK′ . Let L = TpG ∗ and suppose there exists a family of GK′-invariant tensors
(sα,ét) ⊂ L⊗ defining a reductive subgroup of GL(L), such that under the p-adic
comparison isomorphism

L⊗Zp Bcris
∼−→M0 ⊗Zp Bcris

sα,ét maps to sα ∈M⊗
0 .

7By the main result of [Me]. Note that the divided powers on Fil1S are not topologically

nilpotent, so we cannot make the following argument with S in place of bS, as the theorem in [Me]
does not apply. When G ∗

0 is connected the main result of loc. cit should hold without assuming
the divided powers are nilpotent, but as remarked in [Zi 1, p214] there seems to be no reference
for this.
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Then $ factors through RG.

Proof. Let k′ be the residue field of K ′. After replacing R and RG by R⊗W W (k′)
and R ⊗W W (k′) respectively, we may assume that K ′ = K. We use the notation
of §1.2. Let M = M(L). The tensors sα,ét give rise to ϕ-invariant tensors (s̃α,ét) ⊂
M⊗, which define a reductive subgroup of GL(M). Then we have

(1⊗ s̃α,ét) ⊂M(M) ∼−→ D(G )(S),

by (1.4.2). We saw in the proof of (1.3.6) that the image of sα,ét under the p-adic
comparison isomorphism is s̃α,ét|u=0. Hence 1 ⊗ s̃α,ét|u=0 = sα and (1 ⊗ s̃α,ét) ⊂
D(G )(S) is a collection of tensors satisfying the hypotheses of (1.5.8). �

§2 Integral canonical models of Hodge type

(2.1) Shimura varieties: We recall the definition of a Shimura datum and the
associated Shimura variety [De 3, §2.1]. Let G be a connected reductive group over
Q and X a conjugacy class of maps of algebraic groups over R

h : S = ResC/RGm → GR.

On R-points such a map induces a map of real groups C× → G(R).
We require that (G,X) satisfy the following conditions:
(1) Let g denote the Lie algebra of GR. We require that the composite

S→ GR → Gad
R → GL(g)

defines a Hodge structure of type (−1, 1), (0, 0), (1,−1). This means that
under the action of C× on gC = g⊗R C we have a decomposition

gC = V −1,1 ⊕ V 0,0 ⊕ V 1,−1

where z ∈ C× acts on V p,q via z−pz̄−q.
(2) h(i) is a Cartan involution of Gad

R (note that adh(−1) = 1 on g so h induces
an involution of Gad

R ). This means that we require the real form of Gad

defined by the involution g 7→ h(i)ḡh(i)−1 to be compact.
(3) Gad has no factor defined over Q whose real points form a compact group.
The second condition implies that for any h0 ∈ X the stabilizer K∞ ⊂ G(R)

(acting by conjugation) of h0 is compact modulo its center, and G(R)/K∞
∼−→ X

has a complex structure. A pair (G,X) satisfying the above conditions is called a
Shimura datum.

Let Af denote the finite adeles over Q, and Apf ⊂ Af the subgroup of adeles
with trivial component at a prime p. Let K = KpK

p ⊂ G(Af ) be a compact open
subgroup, where Kp ⊂ G(Qp), and Kp ⊂ G(Apf ) are compact open.

A theorem of Baily-Borel asserts that

ShK(G,X)C = G(Q)\X ×G(Af )/K

has a natural structure of an algebraic variety over C. Results of Shimura, Deligne,
Milne and others imply that ShK(G,X)C has a model ShK(G,X) over a number
field E = E(G,X) - the reflex field - which does not depend on K [Mi 2, §4,5].
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We will sometimes consider the pro-variety

ShKp
(G,X) = lim←−ShK(G,X),

where K runs through compact open subgroups as above with a fixed factor Kp

at p. Similarly we denote by Sh(G,X) the projective limit taken over all compact
open subgroups K ⊂ G(Af ).

A morphism i : (G1, X1)→ (G2, X2) of Shimura data is a map of groups G1 →
G2, which induces a map X1 → X2. A morphism i induces a map

(2.1.1) ShK1(G1, X1)→ ShK2(G2, X2),

provided the compact open subgroups are chosen so that K1 maps into K2. This
map is defined over the composite of the reflex fields E(G1, X1) ·E(G2, X2) [De 1,
5.4]. If i is an embedding, then for any K1, the subgroup K2 can always be chosen
so that (2.1.1) is a closed embedding [De 1, 1.15]. We will need the following
refinement of this result.

Lemma (2.1.2). Let i : (G1, X1) ↪→ (G2, X2) be an embedding of Shimura data,
and K2,p ⊂ G2(Qp) a compact open subgroup. Let K1 = K1,pK

p
1 be a compact open

subgroup of G1(Af ) such that K1,p = K2,p ∩ G(Qp). Then there exists a compact
open subgroup K2 = K2,pK

p
2 of G2(Af ) with K1 ⊂ K2, and such that i induces an

embedding
ShK1(G1, X1) ↪→ ShK2(G2, X2).

Proof. We follow the argument of [De 1.15] which shows that it suffices to check
that the map

ShK1,p
(G1, X1)→ ShK2,p

(G2, X2)

is an embedding. We now compute the complex points of these Shimura varieties.
Let Z1 ⊂ G1 and Z2 ⊂ G2 denote the centers of G1 and G2. Write Z1(Q)− and

Z2(Q)− for the closures of Z1(Q) and Z2(Q) in G1(Apf ) and G2(Apf ) respectively.
Let U1 ⊂ Z1(Q) be the group of units.8 By a theorem of Chevalley [Ch] any finite
index subgroup of U1 is open in the topology induced by the inclusion U1 ⊂ Z1(Apf ).
Hence

Z1(Q)− = lim←−nZ1(Q)/Un1

and Z1(Q)− is also equal to the closure of Z1(Q) in G1(Af ). We set

Ĝ1(Q) = lim←−nG1(Q)/Un1 ,

and similarly for Ĝ2(Q). Then Ĝ1(Q) is an extension of G1(Q)/Z1(Q) by Z1(Q)−.
One checks easily that Ĝ1(Q) injects into G1(Apf ). Now the complex points of
ShK1(G1, X1) are given by

G1(Q)\X1 ×G(Af )/K1 = (G1(Q)/Z1(Q))\X1 × (G(Af )/Z1(Q) ·K1).

8An element u ∈ Z1(Q) is a unit if the sequence {un}n≥1 is contained in a compact subset
of Z1(Qp) for any prime p. If we embed Z1 into a torus of the form

Q
i ResFi/QGm with Fi a

number field, then this condition holds if and only if the image of u in each factor F×i is a unit in
the number field Fi.
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Passing to the inverse limit with Kp
1 we see that ShK1,p(G1, X1)(C) is given by

(cf. [De 3, 2.1.10])

(G1(Q)/Z1(Q))\X1 × (G(Af )/Z1(Q)− ·K1,p) = Ĝ1(Q)\X1 ×G(Af )/K1,p.

To show that

(2.1.3) Ĝ1(Q)\X1 ×G(Af )/K1,p → Ĝ2(Q)\X2 ×G(Af )/K2,p

is an injection, consider the map

(2.1.4) Ĝ1(Q)\G1(Apf )→ Ĝ2(Q)\G2(Apf ).

Note that for any x ∈ X1, the image of Z1(Q) in G2(Q) is contained in the central-
izer of S hx→ G1(R) → G2(R), which is compact mod center. Hence U2 contains a
subgroup which has finite index in the image of U1 and (2.1.4) is well defined. An
argument as in [De 1, 1.15.3] shows that (2.1.4) is injective. Fix a set of coset rep-
resentatives of Ĝ1(Q) in G1(Apf ). Since Ĝ1(Q) is a subgroup of G1(Apf ), the fibres
of the projection

Ĝ1(Q)\X1 ×G1(Af )/K1,p → Ĝ1(Q)\G1(Apf )

may be identified with X1 ×G1(Qp)/K1,p. Since K1,p = K2,p ∩G1(Qp), the map

X1 ×G1(Qp)/K1,p → X2 ×G2(Qp)/K2,p

is injective, and the lemma follows. �

(2.1.5) Fix a Q-vector space V with a perfect alternating pairing ψ. For any
Q-algebra R, we write VR = V ⊗QR. Take G = GSp(V, ψ) the corresponding group
of symplectic similitudes, and let X = S± be the Siegel double space, defined as
the set of maps h : S→ GR such that

(1) The C× action on VR gives rise to a Hodge structure of type (−1, 0), (0, 1) :

VC
∼−→ V −1,0 ⊕ V 0,−1.

(2) (x, y) 7→ (x, h(i)y) is (positive or negative) definite on VR.

The reflex field of (GSp, S±) is Q.
If VZ ⊂ V is a Z-lattice, and h ∈ S±, then V −1,0/VZ is an abelian variety. For a

ring R we write VR = VZ⊗Z R. If VbZ is stable by K, then for Kp sufficiently small9

this gives rise to an interpretation of ShK(G,X) = ShK(GSp, S±) as a moduli space
for abelian varieties [De 1, §4], [RZ, §6]. Here Ẑ denotes the profinite completion
of Z. In particular, for sufficiently small Kp there exists an abelian scheme A over
ShK(GSp, S±), defined over Q.

(2.2) Absolute Hodge cycles: We recall some of Deligne’s results on absolute
Hodge cycles. Suppose we have an embedding of Shimura data i : (G,X) ↪→
(GSp, S±). Then (G,X) is said to be of Hodge type. Fix compact open subgroups

9which we sometimes tacitly assume in the following
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K = KpK
p ⊂ G(Af ) and K ′ = K ′

pK
′p ⊂ GSp(Af ) such that K ⊂ K ′. Since

(GSp, S±) has reflex field Q, the map ShK(G,X) → ShK′(GSp, S±) induced by i
is defined over E = E(G,X).

Let (sα,B) ⊂ V ⊗ be a finite collection of tensors defining the subgroup G ⊂
GSp(V ) ⊂ GL(V ) (see (1.3.2) above). Fix a Z-lattice VZ ⊂ V such that VZ ⊗Z Ẑ is
stable by K ′, as in (2.1.5), and let h : A → ShK(G,X) denote the universal abelian
scheme, which exists assuming that Kp is sufficiently small. Write V = R1h∗Ω• for
the first relative de Rham cohomology of A. This is a vector bundle on ShK(G,X)
equipped with an integrable connection ∇. Let ṼC and VC denote the pullbacks of
V to X ×G(Af )/K and ShK(G,X)C respectively, so that ṼC is an analytic vector
bundle over a complex analytic space.

Using the de Rham isomorphism, we may view sα,B as a section of Ṽ⊗C . Since
sα,B is G(Q) equivariant, this section descends to a section sα,dR of V⊗C . More
precisely, sα,B descends to a ∇-parallel section of Van⊗

C where Van
C is the analytic

vector bundle attached to VC. Any ∇-parallel section of Van⊗
C arises from V⊗C . This

follows from the equivalence between algebraic vector bundles equipped with a flat
connection with regular singular points, and the category of analytic vector bundles
equipped with a flat connection [De 4] (cf. [De 2. p31]).

Now let κ ⊃ E be a field of characteristic 0, and κ̄ an algebraic closure of κ.
Fix an embedding Qp ↪→ C and an embedding of E-algebras σ : κ̄ ↪→ C. Let
x ∈ ShK(G,X)(κ) and denote by Ax the corresponding abelian variety over κ.
Denote by H1

B(Ax(C),Q) the Betti cohomology of Ax(C). Write H1
dR(Ax) for its de

Rham cohomology and H1
ét(Ax,κ̄) = H1

ét(Ax,κ̄,Qp) for the p-adic étale cohomology
of Ax,κ̄ = Ax ⊗κ κ̄. The embedding σ induces isomorphisms

H1
dR(Ax)⊗κ,σ C ∼−→ H1

B(Ax(C),Q)⊗Q C ∼−→ H1(Ax,κ̄,Qp)⊗Qp C.

Let sα,B,x be the fibre of sα,B at x (regarded as a C-valued point via σ), and denote
by sα,dR,x ∈ H1

dR(Ax)⊗⊗κ,σ C and sα,ét,x ∈ H1
ét(Ax,κ̄)⊗ the images of sα,B,x under

these two isomorphisms.

Lemma (2.2.1). The action of Gal(κ̄/κ) on H1
ét(Ax,κ̄,Qp) fixes each sα,ét,x and

factors through G(Qp). Moreover we have sα,dR,x ∈ H1
dR(Ax)⊗.

Proof. Let ShKp(G,X) = lim←−Hp
ShHpKp(G,X) where Hp runs over compact open

subgroups of Kp, and similarly for ShK′p(GSp, S±).
The action of Gal(κ̄/κ) on H1

ét(Ax,κ̄,Qp) is induced by the map Gal(κ̄/κ)→ K ′
p,

obtained by pulling back to κ̄ the K ′
p-torsor ShK′p(GSp, S±)→ ShK′(GSp, S±). On

the other hand, we have a commutative, Kp-equivariant diagram

ShKp(G,X) //

��

ShK′p(GSp, S±)

��
ShK(G,X) // ShK′(GSp, S±)

which shows that the restriction of ShK′p(GSp, S±) to ShK(G,X) descends to a
Kp-torsor. This shows that the action of of Gal(κ̄/κ) on H1

ét(Ax,κ̄,Qp) is induced
by a map Gal(κ̄/κ)→ Kp ⊂ G(Qp). In particular this action fixes each sα,ét,x.
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To see the final statement note that, by a result of Deligne [De 2, 2.11], the
Hodge cycle (sα,dR,x, sα,ét,x) is an absolute Hodge cycle, for each α. In particular,
this implies [De 2, 2.7] that sα,dR,x ∈ H1

dR(Ax)⊗ ⊗κ κ̄. Moreover, since an absolute
Hodge cycle is determined by either its de Rham or étale component Gal(κ̄/κ) fixes
sα,dR,x as it fixes sα,ét,x. Hence sα,dR,x ∈ H1

dR(Ax)⊗. �

Corollary (2.2.2). The section sα.dR of V⊗ is defined over E, and not just over
C.

Proof. This follows by applying (2.2.1) with κ the generic point of each component
of ShK(G,X) (equipped with any complex embedding of κ.). �

(2.2.3) Our main results will concern the situation where Kp is a hyperspecial
subgroup of G(Qp). Recall that this means that there is a reductive group scheme
GZp over Zp with generic fibre GQp = G⊗Q Qp such that Kp = GZp(Zp) ⊂ G(Qp).
Any such subgroup is maximal compact in G(Qp) [Ti, 1.10, 3.8].

Hyperspecial subgroups exist if and only GQp is quasi-split and split over an
unramified extension. Under these conditions the reflex field E = E(G,X) is
unramified at p [Mi 4, 4.7]. For the rest of this section we assume that Kp is
hyperspecial.

Fix an algebraic closure Ē of E, and let π0(ShK(G,X)) denote the set of con-
nected components of ShK(G,X) ⊗E Ē. We refer to these as the geometrically
connected components of ShK(G,X).

Proposition (2.2.4). The geometrically connected components of ShK(G,X) are
defined over an extension of E which is unramified at primes dividing p.

Proof. One can extract this from Deligne’s description of the action of Gal(Ē/E)
on the geometrically connected components [De 3, 2.6.3]. We give a more direct
argument, though still based on the reciprocity law for special points.

Let
π0(ShKp(G,X)) = lim←−Kpπ0(ShKpKp

(G,X)).

By (2.2.5) below, G(Apf ) acts transitively on π0(ShKp(G,X)). As this action com-
mutes with that of Gal(Ē/E), it suffices to exhibit an element of π0(ShKp(G,X))
whose stabilizer in Gal(Ē/E) corresponds to an (infinite) extension of E which is
unramified at each v|p. We will do this by showing the stronger statement that
there is a point of ShKp

(G,X) defined over such an extension. The argument is a
variant of that of [De 2, p75].

Let x∞ ∈ ShK(G,X)(C) be any point, and T∞ ⊂ GR a maximal torus containing
the image of the cocharacter hx∞ : S→ GR corresponding to x∞. Let λ∞ ∈ LieT∞
be a regular element such that T∞ is the centralizer of λ∞ in GR. Let Tp ⊂ GQp be
a maximal torus which is the generic fibre of a maximal torus Tp,Zp ⊂ GZp . Then
Tp splits over an unramified extension of Qp. Let λp ∈ LieTp be a regular element
so that Tp is the centralizer of λp in GQp .

Since the map h 7→ [h, λp] induces an automorphism of LieGQp/LieTQp , the
image of the map

G(Qp)→ LieGQp/LieTp; g 7→ ad(g)(λp)

contains an open neighbourhood of 0. Hence, if λ ∈ LieG is a regular element which
is sufficiently close to λ∞ in the real vector space LieGR and to λp in the Qp-vector
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space LieGQp , then there exists gp ∈ GZp(Zp) such that ad(gp)(λ) ∈ LieTp and
similarly, there exists g∞ ∈ G(R)+, the connected component of the identity in
G(R), such that ad(g∞)(λ) ∈ LieT∞. Thus, if T ⊂ G is the centralizer of λ, then

T = g−1
p Tpgp = g−1

∞ T∞g∞.

The cocharacter h = ad(g−1
∞ )(hx∞) factors through TR. Let Jp = T (Qp) ∩Kp =

g−1
p Tp,Zpgp(Zp), Jp = T (Af ) ∩ Kp and set J = JpJ

p. The reflex field E(T, h)
is contained in the splitting field of T, which is unramified over p. The points
of ShJ(T, h) are defined over the abelian extension of E(T, h) corresponding to
the quotient T (Af )/T (Q)T (R)+J, where T (R)+ ⊂ T (R) denotes the connected
component of the identity [De 3, 2.6]. Since Jp ⊂ T (Qp) is maximal compact this
is an extension of E(T, h) which is unramified at any prime over p. It follows that
any point in the image of

ShJp(T, h)→ ShKp(G,X)

is defined over an extension of E in which p is unramified. �

Lemma (2.2.5). G(Apf ) acts transitively on π0(ShKp(G,X)).

Proof. Fix a cocharacter h0 ∈ X, so that X ∼−→ G(R)/K∞ as in (2.1). Let x ∈
ShKp(G,X) and [h, gp, gp] be a representative of x where h ∈ G(R), gp ∈ G(Qp)
and gp ∈ G(Apf ). We have to show that we can choose this representative so that
h ∈ G(R)+ and gp ∈ Kp.

By the real approximation theorem G(Q) is dense in G(R), so we may assume
h ∈ G(R)+. By (2.2.6) below, we may write gp = g0g

′
p with g0 ∈ G(Q)+ = G(Q) ∩

G(R)+ and gp ∈ Kp. Then the triple [g−1
0 h, g′p, g

p] represents x and has the required
property. �

Lemma (2.2.6). Let H be a connected reductive group over Z(p). Then we have
H(Zp) ·H(Q)+ = H(Qp), where H(Q)+ = H(Q) ∩H(R)+.

Proof. Suppose first that H is a torus over Z(p). Let H(R)c ⊂ H(R) denote the
maximal compact subgroup. Then

H(Q) · [H(R)c ×H(Zp)] = H(R)×H(Qp)

by a result of Colliot-Thélène and Suresh [CSu, 2.1,2.2]. Hence

H(Q)+ · [H(R)c ×H(Zp)] = H(R)+ ×H(Qp)

and the lemma follows for H a torus.
In general, let T ⊂ H be a maximal torus such that TQp contains a maximal

split torus in HQp . Such a torus can be constructed using the same argument as in
the proof of (2.2.4): Take a maximal torus Tp,Zp ⊂ HZp which is the centralizer of
a maximal split torus in HZp = H ⊗Z(p) Zp. Let λp ∈ LieHZp be a regular element
whose centralizer in HZp is Tp,Zp and define T to be the centralizer of an element
λ ∈ LieH which is sufficiently close to λp.
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Let H̃ be the universal cover of Hder. Then by the strong approximation theorem
H̃(Zp) · H̃(Q)+ = H̃(Qp), so H(Zp) · H(Q)+ contains the image of H̃(Qp). Since
H(Qp)/H̃(Qp) is abelian,

H(Zp) ·H(Q)+ = H(Zp)H(Q)+H(Zp) ⊃ H(Zp)T (Qp)H(Zp) = H(Qp).

where the inclusion follows from the case of a torus considered above, and the final
equality follows from the Cartan decomposition [Ti, 3.3.3]. �

(2.3) Integral models: We retain the notation introduced above, so that i :
(G,X) ↪→ (GSp, S±), and K = KpK

p with Kp ⊂ G(Qp) hyperspecial and equal to
GZp(Zp) for a reductive group GZp over Zp. We will need the following

Lemma (2.3.1). Let W be a Qp-vector space and i : GQp ↪→ GL(W ) a closed
embedding of algebraic groups. If p = 2 assume that Gad

Qp
has no factors of type

B.10 Suppose that GZp is a reductive group over Zp with generic fibre GQp .
Then there exists a Zp-lattice WZp ⊂ W such that i is induced by a closed em-

bedding iZp : GZp ↪→ GL(WZp).

Proof. Let Zur
p denote a strict henselisation of Zp, and write Qur

p = Zur
p [1/p]. Write

W ur = W ⊗Zp Zur
p and GZur

p
= GZp ⊗Zp Zur

p . Then GZp(Zur
p ) is a bounded subgroup

of GQp(Qur
p ) in the sense that any regular function on GZur

p
is bounded on GZur

p
(Zur
p )

[Ti, 3.2, 3.4, 3.8].
Let L ⊂ W ur be any Zur

p -lattice. The translates g · L for g ∈ GZur
p

(Zur
p ) are

contained in a common Zur
p -lattice in W ur. Indeed, otherwise there exists v ∈ L

and a linear form λ : W ur → Qur
p such that the function g 7→ λ(g · v) is unbounded,

which contradicts the boundedness of GZur
p

(Zur
p ).

Let Γ = Gal(Qur
p /Qp). Since Γ is a compact group, the above shows that the

translates γ ·L for γ ∈ GZur
p

(Zur
p )oΓ are contained in a common Zur

p -lattice. Hence

WZur
p

=
∑
γ

γ · L

is a lattice in W ur, where γ runs over elements of GZur
p

(Zur
p ) o Γ. Since WZur

p
is

GZur
p

-stable, i induces a map of algebraic groups over Zur
p

iZur
p

: GZur
p
→ GL(WZur

p
)

by [BT, 1.7.6]. Since WZur
p

is Γ-stable it arises from a Zp-lattice WZp
⊂ W by

étale descent. The map iZur
p

is compatible with the descent data on the source and
target, as this can be checked on generic fibres, so it descends to a map iZp : GZp →
GL(WZp). Finally our hypotheses when p = 2 insure that iZp is a closed embedding
as i is [PY, 1.3] (cf. [Va 2, 3.1.2.1]). �

(2.3.2) Now assume that if p = 2 then G has no factors of type B. By (2.3.1)
there is a lattice VZ ⊂ V such that i is induced by an embedding GZp ↪→ GL(VZp).
Fix such a VZ. Since GZp has generic fibre G⊗QQp, flat base change implies that the
closure of G in GL(VZ(p)) is a reductive subgroup GZ(p) with GZ(p) ⊗Z(p) Zp = GZp .

10This restriction which arises from the necessary restriction in the result of Prasad-Yu [PY,
1.3] used in the proof, is one of reasons for the restrictions in our results when p = 2.
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By (1.3.2) GZ(p) is defined by a finite collection of tensors (sα) ⊂ V ⊗Z(p)
, which we

now fix.
Since Kp leaves VZ(p) stable by construction, K leaves VbZ stable provided Kp is

small enough. Fix such a Kp. Let K ′
p ⊂ GSp(Qp) denote the stabilizer of VZp . This

is a maximal compact subgroup of GSp(Qp) but is not, in general, hyperspecial.
By (2.1.2) we may choose K ′ = K ′

pK
′p so that i induces an embedding

ShK(G,X) ↪→ ShK′(GSp, S±).

After replacing K ′p be an open subgroup containing Kp, we may also assume that
K ′ leaves VbZ stable.

(2.3.3) Recall that the interpretation of ShK′(GSp, S±) as a moduli space of
polarized abelian varieties gives rise to a natural model SK′(GSp, S±) of this
scheme over Z. For simplicity, we describe this only over Z(p), as this is all we will
need.

After scaling the lattice VZ ⊂ VQ, we may assume that ψ induces an inclusion

VZ
ψ→ V ∗Z into the dual lattice V ∗Z ⊂ VQ. Let d = |V ∗Z /VZ| and write 2g = dimQV.

For a Z(p)-scheme T and an abelian scheme B over T we set

V̂ p(B) = lim←−p-nB[n]

viewed as an étale local system on T. Denote by Isom(VbZp , V̂
p(A)) the étale sheaf

on T consisting of isomorphisms VbZp

∼−→ V̂ p(A) which are compatible with the
pairings induced by ψ and λ up to a Ẑp×-scalar. Here Ẑp =

∏
` 6=p Z`.

We denote by Ag,d,K′(T ) the set of isomorphisms classes of triples (A, λ, εp)
consisting of an abelian scheme equipped with a polarization λ : A → A∗ of degree
d, and a section

εp ∈ Γ(T, Isom(VbZp , V̂
p(A))/K ′p).

If K ′p is sufficiently small then Ag,d,K′ is representable by a quasi-projective
Z(p)-scheme which we denote by the same symbol [MFK, Thm. 7.9]. There is
a natural embedding of Z(p)-schemes ShK′(GSp, S±) ↪→ Ag,d,K′ , and we define11

SK′(GSp, S±) as the closure of ShK′(GSp, S±) in Ag,d,K′ . For any ring R we will
denote by SK′(GSp, S±)R the base change of SK′(GSp, S±) to R.

Let O denote the ring of integers of E = E(G,X). Let v|p be a prime of E, and
denote by O(v) the localization of O at v, and by Ov the v-adic completion of O(v).

Denote by S −
K(G,X) the closure of ShK(G,X) in SK′(GSp, S±)O(v) .

From now on we make the following assumption when p = 2.

(2.3.4) If p = 2 then G has no factors of type B, and the abelian variety over

any characteristic p point of S −
K(G,X) has connected p-divisible group.

These restrictions in the results below arise from those in (1.4.3) and (2.3.1).

11One can give an explicit description of the image of this embedding and its closure as in [RZ,
§6], by considering triples (A, λ, εp) with λ satisfying a more precise condition than merely being
of degree d.
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Proposition (2.3.5). Let x ∈ S −
K(G,X) be a closed point with residue field of

characteristic p, and write Ûx for the completion of S −
K(G,X) at x. Then the

irreducible components of Ûx are formally smooth over O(v).

Proof. By (2.2.2) the tensors sα,dR ∈ V⊗ are defined over E, and for F/E finite
and y ∈ ShK(G,X)(F ), the tensors sα,ét,y are Gal(Ē/F )-invariant by (2.2.2).

Let k be the residue field of x, write W = W (k) and denote by G0 the p-divisible
group of the abelian variety corresponding to x. Let F/E be a finite extension and
x̃ ∈ S −

K(G,X)(F ) a point specializing to x. By (1.4.3) the Gal(Ē/F )-invariant ten-
sors sα,ét,x̃ give rise, via the p-adic comparison isomorphism, to ϕ-invariant tensors
(sα,0) ⊂ D(G0)(W )⊗, which define a reductive subgroup GW ⊂ GL(D(G0)(W )) and
such that the filtration on D(G0)(W )⊗W k is induced by a cocharacter µ0 : Gm →
GW ⊗W k. Applying the theory of (1.5.4) we obtain a quotient RGW

of the versal
deformation ring R of G0.

Extend the valuation v to Ē. Let Û ′x be the completion of SK′(GSp, S±) at x,
and let j : Û ′x → SpfR be a map defining the p-divisible group over Ûx which arises
from the universal family of polarized abelian varieties over SK′(GSp, S±). Then
j is an embedding, since a polarization on a deformation of G0 is determined by its
restriction to G0. Let Z ⊂ Ûx be the irreducible component containing (the image
of) x̃. We claim that the composite

Z ↪→ Ûx ↪→ Û ′x ↪→ SpfR.

factors through SpfRGW
. By (1.5.11) it suffices to check that for any finite extension

F ′/F in Ē and x̃′ ∈ ShK(G,X)(F ′) lying in Z(F ′v), the tensor sα,ét,x̃′ maps to sα,0
under the p-adic comparison isomorphism for the abelian variety Ax̃′,Ē .

A result of Blasius and Wintenberger [Bl] asserts that the p-adic comparison
isomorphism takes sα,ét,x̃′ to sα,dR,x̃′ , so it suffices to check that the isomorphism

H1
cris(Ax/W )⊗F ′ F ′v

∼−→ H1
dR(Ax̃′)⊗F ′ F ′v

takes sα,0 to sα,dR,x̃′ , or equivalently that the composite

(2.3.6) H1
dR(Ax̃)⊗F F ′v

∼−→ H1
cris(Ax/W )⊗F ′ F ′v

∼−→ H1
dR(Ax̃′)⊗F ′ F ′v

takes sα,dR,x̃ to sα,dR,x̃′ . Now the relative crystalline cohomology of the universal
abelian variety over SK′(GSp, S±)Ov is an isocrystal on SK′(GSp, S±)Ov [BO
§2] and the composite in (2.3.6) is given by parallel transport with respect to the
Gauss-Manin connection [BO, 2.9]. Since the generic fibre Zη of Z is connected and
sα,dR|Zη is parallel, (2.3.6) sends sα,dR,x̃ to sα,dR,x̃′ as required, and this proves the
claim.

Since Z and RGW
both relative dimension gr−1LieGW ovr W, this shows that

Z
∼−→ SpfRGW

. As x̃ was an arbitrary point of S −
K(G,X) lifting x̃, this proves the

proposition. �

(2.3.7) We are now ready to prove the first main theorem of this paper. To
explain it we recall the extension property of integral canonical models. This was
formulated by Milne [Mi 1, §2], in order to give a characterization of the integral
models for non-proper Shimura varieties whose existence had been conjectured by
Langlands. We follow, in part, the treatment in [Mo, §3].
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A scheme or pro-scheme over O(v) is said to have the extension property if for
any regular, formally smooth O(v)-scheme S, a map S ⊗ E → X extends to S.

For each Kp ⊂ G(Apf ) sufficiently small, we now fix K ′p ⊂ GSp(Apf ) so that
there is an embedding

ShK(G,X) ↪→ ShK′(GSp, S±).

If p = 2 then we continue to assume that the condition (2.3.4) holds.

Theorem (2.3.8). For K = KpK
p, let SK(G,X) denote the normalization of

S −
K(G,X), and set

SKp(G,X) = lim←−KpSKpKp(G,X),

where Kp ⊂ G(Apf ) runs over sufficiently small compact open subgroups of G(Apf ).
Then

(1) SKp
(G,X) is an inverse limit of smooth O(v)-schemes with finite étale tran-

sition maps, whose restriction to E may be G(Apf )-equivariantly identified
with ShKp

(G,X).
(2) SKp(G,X) has the extension property, and in particular depends only on

(G,X) and Kp, and not on the symplectic embedding i.

Proof. The first claim follows directly from (2.3.5). For the second, suppose that S
is regular and formally smooth over O(v). A morphism S⊗E → SK′

p
(GSp, S±) can

be extended to the height 1 primes by the argument of [Mi 1, Prop. 2.13] and then to
all of S by a result of Faltings [Mo, 3.6].12 Hence a morphism S⊗E → ShK′

p
(G,X)

extends to a map S → S −
Kp

(G,X) and this map lifts to SKp(G,X) since S is
formally smooth. This proves (2). �

Corollary (2.3.9). Let V◦ be the vector bundle on SKp
(G,X) obtained by pulling

back the de Rham cohomology of the universal abelian variety over SK′
p
(GSp, S±).

Then the sections sα,dR ∈ V⊗ extend to G(Apf )-invariant sections of V◦⊗ over O(v).

Proof. It suffices to show that for Kp sufficiently small, and any closed point x ∈
SK(G,X) of characteristic p, the sα,dR extend to sections of V◦,⊗ over the formal
neighbourhood of x, N̂x ⊂ SK(G,X).

To see this we use the notation of the proof of (2.3.5), which shows that N̂x may
be identified with SpfRGW

. As in §1.5, let GRGW
denote the tautological deforma-

tion of G to RGW
. By the construction in (1.5.4), the tensors sα,0 ∈ D(G0)(W )⊗

lift to parallel tensors s′α,dR in D(GRGW
)(RGW

)⊗. The proof of (2.3.5) shows that
sα,dR and s′α,dR have the same specialization at a Zariski dense set of closed points
of SpecRGW

[1/p]. Hence sα,dR = s′α,dR. �

.

12This is stated in [Mo] for p > 2, but when the second condition in (2.3.4) holds the same
proof works for p = 2.
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§3 Integral canonical models of abelian type

(3.1) Twisting abelian varieties: In this subsection we deduce the existence
of integral canonical models for Shimura varieties of abelian type from the results
of §2.

We begin with a construction which twists an abelian variety by a torsor. Let
Z be an affine group scheme of finite type over Q. We will write OZ for the Hopf
algebra of Z. Let P be a Z-torsor, and OP the ring of functions on P.

Lemma (3.1.1). Let V be a Q-vector space equipped with the structure of an OZ
comodule. Then

(1) V is a union of finite dimensional OZ-comodules.
(2) The natural map

(V ⊗Q OP)Z ⊗Q OP
∼−→ V ⊗Q OP .

is an isomorphism.

Proof. The first claim is in [Wa, 3.3]. This shows that it is enough to check (2) for
finite dimensional comodules, which is well known. �

(3.1.2) Let S be a scheme and A/S an abelian S-scheme. We will consider A in
the category of abelian schemes up to isogeny, which is obtained from the category of
abelian S-schemes by tensoring the Hom groups by ⊗Q. An object in this category
will be called an abelian scheme up to isogeny. An isomorphism in this category
will be called a quasi-isogeny. For T an S-scheme we set A(T ) = HomS(T,A)⊗Z Q.

Denote by AutQ(A) the Q-group whose points in a Q-algebra R are given by

AutQ(A)(R) = ((End SA)⊗Z R)×.

Let Z and P be as above, and suppose that we are given a map of Q-groups
Z → AutQ(A). We define a pre-sheaf AP in the fppf topology of S by setting

AP(T ) = (A(T )⊗Q OP)Z .

Lemma (3.1.3). AP is a sheaf, represented by an abelian scheme up to isogeny.

Proof. Using (3.1.1) one sees that V 7→ (V ⊗Q OP)Z is an exact functor, which
implies that AP is a sheaf.

Let E/Q be a finite Galois extension such that P admits an E-valued point γ̃.
Specializing the map in (3.1.1) by γ̃ yields an isomorphism of abelian sheaves

(3.1.3) AP ⊗Q E
∼−→ A⊗Q E.

Now Gal(E/Q) acts on the left hand side via its action on E. Transferring this
action to the right hand side of (3.1.3), we see that AP = (A ⊗Q E)Gal(E/Q) so
that AP is the kernel of a map α of abelian schemes up to isogeny. Such a kernel
is represented by an abelian scheme up to isogeny, which can be constructed by
realizing α as a map of abelian schemes, and taking the connected component of
the identity of the kernel. �
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(3.1.4) Keeping the above assumptions, denote by A∗ the dual abelian scheme.
There is a natural isomorphism α : End SA

∼−→ (End SA∗)op and hence an isomor-
phism

AutQ(A) ∼−→ AutQ(A∗); g 7→ α(g)−1.

In particular we have a map Z → AutQ(A∗).
Let c : Z → Gm be a character. We will denote by A(c) the abelian scheme A

equipped with the map Z → AutQA obtained by multiplying the map in (3.1.2) by
c.

Let λ : A → A∗ be a weak polarization [De 1, 4.4]. We say that λ is a c-
polarization if the induced map A → A∗(c) is compatible with Z-actions.

Lemma (3.1.5). There is a natural isomorphism (A∗)P ∼−→ AP∗. If λ : A → A∗
is a c-polarization, then there is a unique weak polarization λP : AP → AP∗ such
that the diagram

AP ⊗Q OP
λP⊗1 //

∼
��

AP∗ ⊗Q OP

∼
��

A⊗Q OP
λ⊗1 // A∗ ⊗Q OP

commutes up to an element of O×P . Here the map on the right is obtained by com-
posing AP∗ ∼−→ (A∗)P with the isomorphism of (3.1.1)(2).

Proof. Let Ext1(A,Gm) denote the sheaf in the fppf topology of S whose value on
an S-scheme T is the group of extensions of A by Gm, viewed as fppf sheaves on
SpecT. Then there is a canonical isomorphism A∗ ∼−→ Ext1(A,Gm) [GRR, VIII
§3].

Since the functor V 7→ (V ⊗OP)Z of (3.1.1) is exact we have,

Ext1(A,Gm)⊗OP
∼−→ Ext1OP (A⊗OP ,Gm ⊗OP)
∼−→ Ext1OP (AP ⊗OP ,Gm ⊗OP) ∼−→ Ext1(AP ,Gm)⊗OP .

Taking Z-invariants on both sides yields an isomorphism

(A∗)P ∼−→ (Ext1(A,Gm)⊗OP)Z ∼−→ Ext1(AP ,Gm)⊗OZP
∼−→ AP∗.

Now let λ : A → A∗ be a c-polarization, and let fc ∈ O×P be a function such
that Z acts on fc via c. Let λ̃P : AP ⊗Q OP → AP∗(c)⊗Q OP be the isomorphism
making the diagram

(3.1.6) AP ⊗Q OP
f−1

c ·λ̃P//

∼
��

AP∗(c)⊗Q OP

∼
��

A⊗Q OP
λ⊗1 // A∗(c)⊗Q OP

commute. Here the map on the right is obtained by twisting the composite

AP∗ ⊗Q OP
∼−→ A∗P ⊗Q OP

∼−→ A∗ ⊗Q OP
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by c. By definition, the bottom map is Z-equivariant, as are the restrictions of
the vertical maps to AP and AP∗ respectively. (Here we regard AP and AP∗ as
equipped with the trivial Z-action, so Z acts on AP∗(c) via c.) Hence λ̃P sends AP
to AP∗(c) and induces an isomorphism λP : AP ∼−→ AP∗(c).

Finally to see that λP : AP ∼−→ AP∗ is a weak polarization, choose a finite
extension F/Q such that P(F ) is non-empty, and specialize (3.1.6) by some F -
valued point. One checks easily that λP is a weak polarization if and only if the
induced map

AP ⊗Q F
∼−→ AP∗ ⊗Q F

is. The latter map is a weak polarization as λ is. �

(3.2) The action of Gad(Q) : Let (G,X) be a Shimura datum. Denote by
Gad(R)1 the image of G(R) in Gad(R), and set Gad(Q)1 = Gad(Q) ∩ Gad(R)1.
Recall [De 3, §2] that there is an action of Gad(Q)1 on

Sh(G,X) = lim←−KShK(G,X)

defined as follows. On complex points γ ∈ Gad(Q)1 takes

(h, g) ∈ G(Q)\X ×G(Af )

to (γ(h), γgγ−1), and this action is defined over E = E(G,X) [De 3, 2.7.12].
Our first task is to give another description of this action in the case when (G,X)

is of Hodge type. Suppose that there is an embedding (G,X) ↪→ (GSp, S±), where
GSp is defined by a symplectic Q-vector space V = VQ, as in §2. We fix compact
open subgroups K ⊂ G(Af ) and K ′ ⊂ GSp(Af ) such that there is an induced
embedding of E-schemes.

ShK(G,X) ↪→ ShK′(GSp, S±).

Let A denote the abelian scheme over the E-scheme ShK(G,X), obtained by
pulling back the universal abelian scheme on ShK′(GSp, S±). If x ∈ ShK(G,X)(C),
then a lifting of x to X×G(Af ) determines an isomorphism VQ

∼−→ H1(Ax(C),Q).
For any two liftings these isomorphisms differ by an element of G(Q) acting on VQ.
Hence the composite

(3.2.1) Z = Z(G) ↪→ G ↪→ GL(H1(Ax(C),Q))

depends only on x.
The following lemma is presumably well known.

Lemma (3.2.2). There exists an embedding Z ↪→ AutQA which induces the em-
bedding (3.2.1) for any x ∈ ShK(G,X)(C).

Proof. We will write EndA(C) for the endomorphisms of A(C) viewed as a family
of complex tori over ShK(G,X)(C), and we set End QA(C) = EndA(C)⊗Z Q.

Let AutQA(C) denote the Q-group such that for a Q-algebra R we have

(AutQA(C))(R) = (End QA(C)⊗Q R)×.
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Then AutQA is a closed subgroup of AutQA(C), and a point of AutQA(C) lies on
AutQA if and only if the corresponding (R-valued) endomorphism of A(C) is in-
duced by an endomorphism of the abelian scheme A over the E-scheme ShK(G,X).

For x ∈ ShK(G,X)(C), the image of the composite

(3.2.3) G
(3.2.1)
↪→ GL(H1(Ax(C),Q))→ End Q(H1(Ax(C),Q))

depends only on x. Its commutant is a subalgebra of End QA(C). In particular we
see that there is an inclusion Z ⊂ AutQA(C) which induces the embedding (3.2.1)
for any complex point x.

To see that this makes Z a subgroup of AutQA note that under the action of
G(Af ) on the tower lim←−KShK(G,X), Z(Q) acts trivially. Hence we see that

Z(Q) ⊂ (AutQA)(Q).

Let Z0 ⊂ Z denote the connected component of the identity. As Z0(Q) is Zariski
dense in Z0 (for example using the real approximation theorem), we see that Z0 ⊂
AutQA.

Now suppose that z ∈ Z(R) for some finite Q-algebra R. Fix an embedding
Ē ⊂ C. Since an R-valued endomorphism of A(C) is determined by its action on
the l-adic Tate module lim←−nA[ln], for any prime l, z is induced by an automor-
phism of A over Ē. We have to check that σ∗(z) = z for every σ ∈ Gal(Ē/E).
Let y ∈ ShK(G,X)(Ey) be a special point defined over its reflex field Ey, and
associated to a maximal torus T ⊂ G. The observation of the previous paragraph
applied to T, implies that for τ ∈ Gal(Ē/Ey), τ∗(z) = z over the connected com-
ponent of ShK(G,X) containing y. Since G(Af ) acts transitively on the connected
components of Sh(G,X), this implies that τ∗(z) = z.

Finally, by [De 1, 5.1] and its proof, y may be chosen so that Ey is linearly
disjoint from any finite extension of E. This implies that the subgroups Gal(Ē/Ey)
generate Gal(Ē/E) (cf. [De 3, 2.6.3]). �

(3.2.4) We will need a description of the points of Sh(GSp, S±) in terms of
abelian varieties up to isogeny. This is slightly different from that sketched in
§2 but is more convenient for describing the actions of GSp(Af ) and Gad(Q) on
Sh(G,X).

For an E-scheme T, and an abelian scheme B over T, we set

V̂ (B) = lim←−nB[n]

viewed as a local system on T. Let V̂ (B)Q = V̂ (B)⊗Z Q. Note that B 7→ V̂ (B)Q is
functorial for quasi-isogenies.

Recall [De 1, 4.20] that ShK′(GSp, S±)(T ) is in canonical bijection with the set
of isomorphism class of triples (Ax, λ, εK′), consisting of an abelian scheme up to
isogeny Ax over T, equipped with a weak polarization λ, and a section

εK′ ∈ Γ(T, Isom(VAf
, V̂ (Ax)Q)/K ′).

Here, as in (2.3.3), Isom(VAf
, V̂ (Ax)Q) denotes the étale sheaf of isomorphisms

VAf
= V ⊗Q Af

∼−→ V̂ (Ax)Q which is compatible with the pairings induced by ψ
and λ, up to a Q×-scalar.
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Now suppose x ∈ ShK(G,X)(T ). Then for any finite index subgroup K ′
1 ⊂ K ′

containing K, there is an embedding

ShK(G,X) ↪→ ShK′
1
(GSp, S±),

so x gives rise to a point of ShK′
1
(GSp, S±)(T ), and hence to a section

εK′
1
∈ Γ(T, Isom(VAf

, V̂ (Ax)Q)/K ′
1).

Passing to the limit over all such K ′
1 we obtain a section

ε ∈ Γ(T, Isom(VAf
, V̂ (Ax)Q)/K).

Now let γ ∈ Gad(Q), and let P ⊂ G be the fibre of γ. By (3.2.2) we may apply
the construction of (3.1) to Ax, and obtain an abelian scheme (up to isogeny) APx
over T. Moreover by (3.1.5) λ induces a weak polarization λP : AP ∼−→ AP∗.

Lemma (3.2.5). Let F be a finite Galois extension of Q such that P(F ) is non-
empty, and let γ̃ ∈ P(F ). For σ ∈ Gal(F/Q) let cγ̃(σ) = σ(γ̃)γ̃−1 ∈ Z(F ), and
let

ιγ̃ : APx ⊗Q F
∼−→ Ax ⊗Q F

be the isomorphism obtained by specializing the map of (3.1.1)(2) at γ̃. Then
(1) σ ◦ ιγ̃ ◦ σ−1 = cγ̃(σ)−1 · ιγ̃ .
(2) The composite (defined étale locally on T )

V ⊗Q Af ⊗Q F
γ̃−1·→ V ⊗Q Af ⊗Q F

ε→ V̂ (Ax)Q ⊗Q F
ι−1
γ̃→ V̂ (APx )Q ⊗Q F

is Gal(F/Q)-invariant and induces a section

εP ∈ Γ(T, Isom(VAf
, V̂ (APx )Q)/γKγ−1).

Proof. Consider the commutative diagram

APx //

ιγ̃

&&LLLLLLLLLLL Ax ⊗ F ⊗OP
1⊗cγ̃(σ)//

1⊗γ̃
��

Ax ⊗ F ⊗OP

1⊗γ̃
��

Ax ⊗ F
1⊗σ // Ax ⊗ F

Since APx = (Ax ⊗OP)Z , we see that the composite of the maps in the top line is
the composite

APx
(3.1.1)(2)→ Ax ⊗ F ⊗OP

cγ̃(σ)−1⊗1→ Ax ⊗ F ⊗OP .

The formula in (1) now follows from the commutativity of the diagram. The claim
in (2) follows from (1) by a simple calculation. �
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Lemma (3.2.6). Suppose that γ ∈ Gad(Q)1, and let K ′
γ ⊂ GSp(Af ) be a compact

open subgroup containing γKγ−1 such that the induced map

ShγKγ−1(G,X)→ ShK′
γ
(GSp, S±)

is a closed embedding. Then the map

ShK(G,X)→ ShK′
γ
(GSp, S±)

given on T -valued points by the assignment

(Ax, λ, ε) 7→ (APx , λP , εP)

factors through ShγKγ−1(G,X). The induced map

ShK(G,X)→ ShγKγ−1(G,X)

is the one attached to γ in (3.2).

Proof. It suffices to check both statements on C-valued points. Thus we may assume
that T = Spec C. Recall that the point (h, g) ∈ GSp(Q)\S±×GSp(Af )/K attached
to a triple (Ax, λ, ε) as above may be computed as follows: Choose an isomorphism
α : H1(Ax(C),Q) ∼−→ VQ respecting the polarizations induces by λ and ψ up to a
Q×-scalar. The Hodge decomposition then gives a grading of VC which determines
the cocharacter h, while the element g is given by the composite

VAf

ε→ V̂ (Ax)Q
∼−→ H1(Ax(C),Q)⊗Q Af

α⊗1→ VAf
.

The resulting element of GSp(Q)\S±×GSp(Af )/K does not depend on the choice
of α.

Now let F/Q be a finite Galois extension and γ̃ ∈ P(F ). The same argument as
in (3.2.5) shows that there exists an isomorphism αP : H1(APx (C),Q) ∼−→ VQ such
that the diagram

V ⊗ Af ⊗ F

γ̃−1

��

εP⊗1 // V̂ (APx )Q ⊗ F
∼ //

ιγ̃

��

H1(APx (C),Af ⊗ F )
αP⊗1 //

ιγ̃

��

V ⊗ Af ⊗ F

γ̃−1

��
V ⊗ Af ⊗ F

ε⊗1 // V̂ (Ax)Q ⊗ F
∼ // H1(Ax(C),Af ⊗ F )

α⊗1 // V ⊗ Af ⊗ F

commutes. By (3.1.5) γ̃−1 ◦ (αP ⊗ 1) is compatible with polarizations up to a
F×-scalar, so αP is compatible with polarizations up to a Q×-scalar. Hence the
maps obtained by taking Gal(F/Q)-invariants in the top line may be used to com-
pute the point of GSp(Q)\S± ×GSp(Af )/K ′

γ corresponding to (APx , λP , εP). The
commutativity of the diagram shows that this point is γ(x). �

(3.3) Connected Shimura varieties: We now recall the relationship between
Shimura varieties and connected Shimura varieties. This is a variant of [De 3, §2],
which was already sketched in [Mo, §3].
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(3.3.1) We recall the notation of [De 3, 2.0]. Let H be a group equipped with
an action of a group ∆, and Γ ⊂ H a ∆-stable subgroup. Suppose given a ∆-
equivariant map ϕ : Γ → ∆ where ∆ acts on itself by inner automorphisms, and
suppose that for γ ∈ Γ, ϕ(γ) acts onH as inner conjugation by γ. Then the elements
of the form (γ, ϕ(γ)−1) form a normal subgroup of the semi-direct product H o ∆.
We denote by H ∗Γ ∆ the quotient of H o ∆ by this subgroup.

Converting the left action of Gad(Q)1 on Sh(G,X) into a right action one obtains
a right action of G(Af )/Z(Q)− ∗G(Q)/Z(Q) G

ad(Q)1 on Sh(G,X), where Z(Q)−

denotes the closure of Z(Q) in G(Af ).
For a subgroup H ⊂ G(R) denote by H+ the preimage in H of Gad(R)+, the

connected component of the identity in Gad(R). As usual, we write Gad(Q)+ =
Gad(Q) ∩Gad(R)+. Since G(Q) is dense in G(R) we have

G(Af )/Z(Q)− ∗G(Q)/Z(Q) G
ad(Q)1

∼−→ G(Af )/Z(Q)− ∗G(Q)+/Z(Q) G
ad(Q)+.

We denote this group by A (G).
Let G(Q)−+ denote the closure of G(Q)+ in G(Af ) and set

A (G)◦ = G(Q)−+/Z(Q)− ∗G(Q)+/Z(Q) G
ad(Q)+.

This group depends only on Gder and not on G; it is equal to the completion of
Gad(Q)+ with respect to the topology whose open sets are images of congruence
subgroups in Gder(Q) [De 3, 2.1.15].

(3.3.2) Now let GZ(p) be a reductive group over Z(p) with generic fibre G. To
avoid overloading notation we will usually write G(Z(p)) and G(Zp) for GZ(p)(Z(p))
and GZ(p)(Zp).

Let ZZ(p) be the center of GZ(p) and Gad
Z(p)

= GZ(p)/ZZ(p) . Write G(Z(p))+ =
G(Z(p)) ∩G(Q)+ and Gad(Z(p))+ = Gad(Z(p)) ∩Gad(Q)+. We denote by Z(Z(p))−

the closure of Z(Z(p)) in Z(Apf ), and by G(Z(p))−+ the closure of G(Z(p))+ in G(Apf ).
Set

A (GZ(p)) = G(Apf )/Z(Z(p))− ∗G(Z(p))+/Z(Z(p)) G
ad(Z(p))+

and
A (GZ(p))

◦ = G(Z(p))−+/Z(Z(p))− ∗G(Z(p))+/Z(Z(p)) G
ad(Z(p))+.

As in (3.3.1), using [De 3, 2.0.12] one sees that the latter group depends only on
Gder

Z(p)
and not on GZ(p) .

Now let G2,Z(p) be a reductive group over Z(p), equipped with a central isogeny
ψ : Gder

Z(p)
→ Gder

2,Z(p)
. We denote by Z2,Z(p) the center of G2,Z(p) and by G2 and Z2

the generic fibres of G2,Z(p) , and Z2,Z(p) respectively.

Lemma (3.3.3). The natural map

(3.3.4) A (GZ(p))
◦\A (G2,Z(p))→ A (G)◦\A (G2)/G2(Zp),

where G2(Zp) acts on A (G2) via right multiplication on G2(Qp), is an isomorphism
of abelian groups.

Proof. We remind the reader that A (G)◦ acts on A (G2) via

A (G)◦ ∼−→ A (Gder)◦ → A (Gder
2 )◦ → A (G2)
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and similarly for A (GZ(p))
◦. Recall that A (GZ(p))

◦\A (G2,Z(p)) and A (G)◦\A (G2)
are abelian groups since, as in [De 3, 2.5.1], the strong approximation theorem,
implies that G(Q)−+ (resp. G(Z(p))−+) contains the image of G̃(Af ) (resp. G̃(Apf ))
where G̃ is the universal cover of Gder. This shows that the map in the lemma is a
morphism of abelian groups.

To check that (3.3.4) is surjective let (g, γ) ∈ A (G2) with g ∈ G2(Af ) and
γ ∈ Gad

2 (Q)+. By (2.2.6), after multiplying (g, γ) on the right by an element of
G2(Zp), we may assume that gp, the p-component of g, is trivial. Then multiplying
on the left by an element of A (G)◦, we may assume in addition that γ = 1. Then
(g, 1) is clearly in the image of (3.3.4)

Next we check injectivity. Let (g, γ) ∈ A (G2,Z(p)), where we view g ∈ G2(Af )
having trivial p-component. Multiplying by an element of A (GZ(p))

◦, we may
assume γ = 1. Suppose that (g, 1) is in the kernel of (3.3.4). Then there exists
(g1, γ1) ∈ A (G)◦ and h ∈ G2(Zp) such that

(g, 1) = (g1, γ1) · h = (g1, γ1)(h, 1) = (g1γ1hγ
−1
1 , γ1)

in A (G2). Hence g = g1γ1h in G2(Af )/Z2(Q)−.
Since g1 may be approximated by elements of G(Q)+, we may replace (g1, γ1)

by a pair which represents the same element of A (G)◦ and such that g1p ∈ G2(Zp).
Since γ1 = g−1

1 gh−1 comparing p-components then shows that γ1 ∈ Gad(Z(p))+.
Hence we have (g, 1) = (g1γ1hγ

−1
1 , γ1) in

[G2(Apf )×G2(Zp)]/Z2(Z(p))− ∗G2(Z(p))+/Z2(Z(p)) G
ad
2 (Z(p))+ ⊂ A (G2).

Dividing both sides by G2(Z(p)) shows that (gp, 1) = (gp1 , γ1) in A (G2,Z(p)). �

(3.3.5) As in [De 3, 2.7], for a locally compact, totally disconnected group Γ, a
scheme with continuous Γ-action is an inverse system of quasi-projective13 schemes
S = lim←−KSK indexed by the compact open subgroups K ⊂ Γ, and equipped with
a right action of Γ, induced by isomorphisms γ : SK

∼−→ Sγ−1Kγ , which are the
identity if γ ∈ K, and such that SK/(K ′/K) ∼−→ SK′ for K ⊂ K ′ ⊂ Γ compact
open. In particular the maps in the inverse limit are finite, so S may also be viewed
as a scheme.

If Γ→ Γ′ is a map of locally compact, totally disconnected groups, with compact
kernel, then Γ acts on the scheme Γ′ × S by (γ′, s)γ = (γ−1γ′, sγ). The quotient
scheme S′ = Γ′ × S/Γ is associated to a scheme with continuous Γ′-action, lim←−S

′
K′

where S′K′ = S′/K ′. The quotient S′K′ also has an explicit description in terms of
the SK .

(3.3.6) As in §2, we let E = E(G,X), and we fix an algebraic closure Ē of E.
Let Ep ⊂ Ē be the maximal extension of E which is unramified at primes dividing
p. We set Kp = G(Zp) and K2,p = G2(Zp), and we write K = KpK

p for a compact
open subgroup of G(Af ).

We now assume given a Shimura datum (G2, X2) such that the isomorphism
Gad ∼−→ Gad

2 induces (Gad, Xad) ∼−→ (Gad
2 , Xad

2 ). Here, as usual, Xad denotes the
Gad(R)-conjugacy class which contains the image of X.

13over some base, which will be clear in applications
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Fix a connected component X+ ⊂ X. For any compact open subgroup K ′ ⊂
G(Af ) we denote by ShK′(G,X)+ ⊂ ShK′(G,X) the geometrically connected com-
ponent which is the image of X+× 1. By (2.2.4), the geometrically connected com-
ponents of ShK(G,X) are defined over Ep. In particular ShK(G,X)+ is defined
over Ep. We write

ShKp(G,X)+ := lim←−KpShK(G,X)+,

and Sh(G,X)+ for the limit over all compact open subgroups of G(Af ).

Lemma (3.3.7). Let E (Gder
Z(p)

) ⊂ A (GZ(p)) × Gal(Ep/E) denote the stabilizer of
ShKp(G,X)+ ⊂ ShKp(G,X) (viewed as Ep-schemes). Then

(1) E (Gder
Z(p)

) is an extension of Gal(Ep/E) by A (GZ(p))
◦ which depends (as an

extension) only on Gder
Z(p)

and Xad, and not on GZ(p) .

(2) There is a canonical isomorphism

A (GZ(p)) ∗A (GZ(p)
)◦ E (Gder

Z(p)
) ∼−→ A (GZ(p))×Gal(Ep/E).

where an element of E (Gder
Z(p)

) acts on A (GZ(p)) via conjugation by its image
in A (GZ(p)).

Proof. Consider the exact sequence

(3.3.8) 0→ A (G)◦ → A (G)→ A (G)◦\A (G)→ 0.

The conjugacy class X determines a map r : Gal(Ē/E) → A (G)/A (G)◦ [De
3, 2.5.9], and pulling (3.3.8) back by this map produces an extension E (Gder) of
Gal(Ē/E) by A (G)◦. Clearly A (G) ∗A (G)◦ E (Gder) ∼−→ A (G) × Gal(Ē/E), and
this isomorphism identifies E (Gder) with the stabilizer of Sh(G,X)+ in A (G) ×
Gal(Ē/E) [De 3, 2.6.3].

Now let

Ã (GZ(p)) = [G(Apf )×G(Zp)]/Z(Z(p))− ∗G(Z(p))+/Z(Z(p)) G
ad(Z(p))+ ⊂ A (G)

and

Ã (GZ(p))
◦ = G(Z(p))∼+/Z(Z(p))− ∗G(Z(p))+/Z(Z(p)) G

ad(Z(p))+ ⊂ A (G)◦

where G(Z(p))∼+ denotes the closure of G(Z(p))+ in G(Apf )×G(Zp).
By (3.3.3) we have a bijection

Ã (GZ(p))
◦\Ã (GZ(p))

∼−→ A (G)◦\A (G).

Hence (3.3.8) is obtained by pushout from the sequence

0→ Ã (GZ(p))
◦ → Ã (GZ(p))→ Ã (GZ(p))

◦\Ã (GZ(p))→ 0,

and pulling the latter sequence back by r gives rise to an extension Ẽ (Gder
Z(p)

) of

Gal(Ē/E) by Ã (GZ(p))
◦, which may be identified with the stabilizer of Sh(G,X)+ ⊂
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Sh(G,X) in Ã (GZ(p)) × Gal(Ē/E). The same argument as in [De 3, 2.5.6] shows
that this extension depends only on Gder

Z(p)
.

Now the isomorphism Ã (GZ(p))/G(Zp)
∼−→ A (GZ(p)) induces an isomorphism

Ã (GZ(p))
◦/(Ã (GZ(p))

◦ ∩G(Zp))
∼−→ A (GZ(p))

◦,

so the quotient Ẽ (Gder
Z(p)

)/(Ã (GZ(p))
◦ ∩ G(Zp)) is an extension of Gal(Ē/E) by

A (GZ(p))
◦ which may be identified with the stabilizer of

Sh(G,X)+/[A (G)◦ ∩G(Zp)] = ShKp(G,X)+ ⊂ ShKp(G,X) = Sh(G,X)/G(Zp)

in A (GZ(p))×Gal(Ē/E).
Finally, since ShKp(G,X)+ is defined over Ep, Gal(Ē/Ep) ⊂ Ẽ (Gder

Z(p)
), and the

quotient Gal(Ē/Ep)\Ẽ (Gder
Z(p)

)/(Ã (GZ(p))
◦ ∩ G(Zp)) is the required extension of

Gal(Ep/E) by A (GZ(p))
◦. �

(3.3.9) Consider the right action of E (Gder
Z(p)

) on A (G2,Z(p)) × ShKp
(G,X)+

given by (a, s)e = (ē−1aē, se), where ē denotes the image of e in A (G2,Z(p)). This
extends uniquely to an action of the semi-direct product A (G2,Z(p)) o E (Gder

Z(p)
) in

which A (G2,Z(p)) acts by (a, s) · a′ = (aa′, s). This action descends to an action
of A (G2,Z(p)) ∗A (GZ(p)

)◦ E (Gder
Z(p)

) on [A (G2,Z(p))×ShKp(G,X)+]/A (GZ(p))
◦ where

we use the notation of (3.3.5). Note that the kernel of

A (GZ(p))
◦ ∼−→ A (Gder

Z(p)
)◦ → A (Gder

2,Z(p)
)◦ ↪→ A (G2,Z(p))

is easily seen to be finite, so the quotient makes sense.

Proposition (3.3.10). There is an isomorphism of Ep-schemes with continuous
G2(Apf )-action

ShK2,p
(G2, X2)

∼−→ [A (G2,Z(p))× ShKp
(G,X)+]/A (GZ(p))

◦

which is compatible with the action of Gal(Ep/E) when the right hand side is
equipped with the action of

A (G2,Z(p)) ∗A (GZ(p)
)◦ E (Gder

Z(p)
) ∼−→ A (G2,Z(p))×Gal(Ep/E).

Proof. We will use the notation introduced in the proof of (3.3.7). By [De 3, 2.7.11,
2.7.13] there is an isomorphism of Ē-schemes with continuous G2(Af )-action

Sh(G2, X2)
∼−→ [A (G2)× Sh(G,X)+]/A (G)◦

∼−→ [Ã (G2,Z(p))× Sh(G,X)+]/Ã (GZ(p))
◦

compatible with the action of Gal(Ē/E) on both sides. Here the second isomor-
phism follows from (3.3.3). The Gal(Ē/E) actions on the second and third terms
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are induced by the action of E (Gder) and Ẽ (Gder
Z(p)

) respectively, which are defined
as in (3.3.9).

Dividing by G2(Zp) induces Gal(Ē/E)-compatible isomorphisms of Ē-schemes
with continuous G2(Apf )-action.

ShK2,p(G2, X2)
∼−→ [A (G2,Z(p))× Sh(G,X)+/(A (G)◦ ∩G(Zp))]/A (GZ(p))

◦

∼−→ [A (G2,Z(p))× ShKp
(G,X)+]/A (GZ(p))

◦

Finally, descending the first and last term to Ep, gives the isomorphism of the
proposition. �

(3.4) Integral models II: Now assume that, if p = 2, then (G,X) satisfies the
condition (2.3.4). In particular, we have the integral canonical model SK(G,X)
over O(v), constructed in (2.3.8) as the normalization of the closure of

ShK(G,X) ↪→ SK′(GSp, S±).

We again denote by (A, λ) the pullback to SK(G,X) of the universal polarized
abelian scheme over SK′(GSp, S±).

Lemma (3.4.1). The embedding of (3.2.2) induces an embedding

Z ↪→ AutQA.

Proof. This follows from the fact that any endomorphism of A|ShK(G,X) extends to
an endomorphism over SK(G,X) [FC,I 2.7]. Note that this shows that the group
AutQA in the statement of the lemma agrees with the one denoted by the same
symbol in (3.1.2). �

(3.4.2) Let B be an abelian scheme up to isogeny over an O(v) scheme T. Using
the notation of (2.3.3), we write

V̂ p(B)Z(p) = V̂ p(B)⊗Z Z(p) = V̂ p(B)⊗Z Q.

Note that this is functorial for quasi-isogenies.
Now consider the category obtained from the category of abelian schemes over

T, by tensoring the Hom groups by ⊗Z(p). An object in this category will be called
an abelian scheme up to prime to p isogeny. An isomorphism in this category will
be called a p′-quasi-isogeny.

Now fix a Z-lattice VZ ⊂ V as in (2.3.2). By (2.3.3) any x ∈ ShK′(GSp, S±)(T )
gives rise to a triple (Ax, λ, εpK′), consisting of an abelian scheme, a polarization
and a section of Γ(T, Isom(VbZp , V̂

p(Ax))/K ′p). We will view Ax as an abelian
scheme up to prime to p-isogeny, λ as a weak polarization and εpK′ as a section
of Γ(T, Isom(VAp

f
, V̂ p(Ax)Z(p)/K

′p)). (When viewed in this way, the triple depends,
up to isomorphism, only on VZ(p) and not on VZ.)

If x ∈ ShK(G,X)(T ) then, as in (3.2.4), we may promote εpK′ to a section

εp ∈ Γ(T, Isom(VAp
f
, V̂ p(Ax)Z(p))/K

p).

Fix a point x as above. Let γ ∈ Gad(Q) and let P be the corresponding Z-torsor,
as in (3.2.4).
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Lemma (3.4.3). Fix a finite Galois extension F/Q with P(F ) non-empty and let
γ̃ ∈ P(F ). For σ ∈ Gal(F/Q) let cγ̃(σ) = σ(γ̃)γ̃−1 ∈ Z(F ), and let

ιγ̃ : APx ⊗Q F
∼−→ Ax ⊗Q F

be the isomorphism obtained by specializing the map of (3.1.1)(2) at γ̃. Then

(1) σ ◦ ιγ̃ ◦ σ−1 = cγ̃(σ)−1 · ιγ̃ .
(2) The composite (defined étale locally on T )

V ⊗Q Apf ⊗Q F
γ̃−1·→ V ⊗Q Apf ⊗Q F

εp

→ V̂ p(Ax) ⊗Q F
ι−1
γ̃→ V̂ p(APx ) ⊗Q F

is Gal(F/Q)-invariant and induces a section

εp,P ∈ Γ(T, Isom(VAp
f
, V̂ p(APx )Z(p))/γK

pγ−1)

Proof. It suffices to prove the lemma when Ax = A is the universal abelian scheme
over SK(G,X). Since SK(G,X) is flat over O(v) it suffices to check (1) and (2)
over ShK(G,X). In this case the lemma is a formal consequence of (3.2.5). �

(3.4.4) In the following we will consider the triple (APx , λP , εp,P). Note that
APx is defined only in the isogeny category of abelian T -schemes. If (A′, λ′, εp′)
is a triple of the form discussed in (3.4.2), so that A′ is an abelian scheme up to
prime to p isogeny, we will say that (A′, λ′, εp′) is isogenous to (APx , λP , εp,P) if
these triples become isomorphic when one considers A′ as an abelian scheme up to
isogeny.

Lemma (3.4.5). The action of A (G) on Sh(G,X) induces an action of A (GZ(p))
on SKp(G,X). More precisely, if (h, γ−1) ∈ A (GZ(p)) then the above action in-
duces a map

(h, γ−1) : SK(G,X)→ S γKγ−1(G,X)

such that the triple attached to (h, γ−1)(x) is isogenous to (APx , λP , εp,P ◦ γ̃hγ̃−1),
where we use the notation of (3.4.3).

Proof. Since γ ∈ G(Z(p)), we have γKpγ
−1 ⊂ Kp, so the action of A (G) on

Sh(G,X) induces an action of A (GZ(p)) on ShKp(G,X). More precisely, (h, γ−1)
induces a map

ShK(G,X)→ ShγKγ−1(G,X).

The extension property implies that this map extends to a map

SK(G,X)→ S γKγ−1(G,X).

By (3.2.6) and [FC, I 2.7], the triple attached to (h, γ−1)(x) is (APx , λP , (εp◦h)P).
As (εp ◦ h)P = εp,P ◦ γ̃hγ̃−1 the lemma follows �
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Proposition (3.4.6). The group

∆(G,Gad) = ker (A (GZ(p))→ A (Gad
Z(p)

))

acts freely on SKp(G,X).

Proof. Let (h, γ−1) ∈ ∆(G,Gad) with h ∈ G(Apf ) and γ ∈ Gad(Z(p))+. As usual,
we denote by P the Z-torsor associated to γ, and we fix a Galois extension F/Q
and a point γ̃ ∈ P(F ).

Let x ∈ SKp(G,X)(T ), where T is the spectrum of an algebraically closed
field, and suppose that (h, γ−1) fixes x. Write (Ax, λ, εp) for the corresponding
triple introduced in (3.4.2). Then by (3.4.5), for every compact open subgroup
Kp ⊂ G(Apf ) there exists a quasi-isogeny α = α(Kp) : Ax

∼−→ APx respecting
polarizations, and such that the left hand square of the following diagram (defined
étale locally on T ) commutes moduloKp (That is up to multiplication by an element
of Kp on the bottom left hand corner.)

(3.4.7) V̂ p(Ax)⊗ F
∼
α⊗1

// V̂ p(APx )⊗ F
ιγ̃ // V̂ p(Ax)⊗ F

V ⊗ Apf ⊗ F
γ̃hγ̃−1

//

εp

OO

V ⊗ Apf ⊗ F

εp,P

OO

γ̃−1· // V ⊗ Apf ⊗ F

εp

OO

while the right square commutes by the definition of εp,P .
For Kp sufficiently small, the map α(Kp) is unique. Hence if Kp is sufficiently

small then α does not depend on Kp, and we may assume that (3.4.7) commutes.
Note that the composite of the maps in the lower row of (3.4.7) is hγ̃−1. Since

(h, γ−1) ∈ ∆(G,Gad), we have hγ̃−1 ∈ Z(Apf ⊗ F ). Hence

ιγ̃ ◦ α ∈ Z(Apf ⊗ F ) ∩ (AutQAx)(F ) = Z(F ) ⊂ (AutQAx)(A
p
f ⊗ F ).

Hence hγ̃−1 ∈ Z(F ). Writing

γ̃ = (h−1γ̃) · (γ̃−1hγ̃)

and noting that γ̃−1hγ̃ is Gal(F/Q)-invariant, we see that the cocycle cγ̃(σ) is
trivial.

It follows that P is trivial. Let PZ(p) denote the fibre of GZ(p) → Gad
Z(p)

over γ.
Then PZ(p) is a ZZ(p)-torsor with generic fibre P. It follows from (3.4.8) below that
PZ(p) is the trivial torsor, so that we may assume that γ̃ ∈ G(Z(p))+, and after
replacing h by hγ̃−1, that γ̃ = 1.

In particular, we may identify Ax and APx and regard the latter as an abelian
scheme up to prime to p isogeny. Since (h, 1) fixes x, there exists a p′-quasi-isogeny
α : Ax

∼−→ Ax making the left square in (3.4.7) commute.14 Moreover, we have
already observed that h ∈ Z(Q) (as we can now take F = Q above).

14Note that when γ̃ 6= 1, it does not make sense to require that α : Ax
∼−→ APx be a p′-quasi-

isogeny, since APx is defined only up to isogeny.
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It remains to show that, via (3.4.1), an element z ∈ Z(Q) induces a p′-isogeny
Ax → Ax if and only if z ∈ Z(Z(p)). Since the degree of an isogeny of abelian
schemes is a locally constant function, it suffices to check this over the generic fibre
of SK(G,X), and then on complex points. Then z induces a p′-isogeny if and only
if

z ∈ Z(Q) ∩K ′
p = Z(Q) ∩Kp = Z(Q) ∩G(Z(p)) = Z(Z(p)).

�

Lemma (3.4.8). Let PZ(p) be a ZZ(p)-torsor. If P = PZ(p) |Spec Q is a trivial Z-
torsor, then PZ(p) is a trivial ZZ(p)-torsor.

Proof. In order not to overload notation, we write Z be ZZ(p) . By [DG, XII,
Thm. 4.7] Z is of multiplicative type, and hence is an extension of a finite flat
multiplicative group scheme by a torus Z0 ⊂ Z. Now consider the commutative
diagram

H0(Z(p), Z/Z
0) //

��

H1(Z(p), Z
0) //

��

H1(Z(p), Z) //

��

H1(Z(p), Z/Z
0)

��
H0(Q, Z/Z0) // H1(Q, Z0) // H1(Q, Z) // H1(Q, Z/Z0)

where the H∗ means cohomology in the fppf topology of the spectrum of the indi-
cated ring.

For a finite flat Z(p)-scheme the Z(p)-points are in bijection with the Q-points.
Hence the map on the left is a bijection and the map on the right is an injection.
To prove the lemma, we have to show that the third map is an injection. By the
five lemma it suffices to prove that the second map is an injection.

To see this note that the kernel of this map is the cokernel of

Z0(Q)/Z0(Z(p))→ H1
(p)(Z(p), Z

0),

where H1
(p) denotes cohomology with support in (p). By Lang’s lemma we have

H1(Zp, Z0) = 0, so that

H1
(p)(Z(p), Z

0) = H1
(p)(Zp, Z

0) ∼−→ Z0(Qp)/Z0(Zp).

Finally, by (2.2.6), Z0(Q)/Z0(Z(p)) → Z0(Qp)/Z0(Zp) is a surjection and the
lemma follows. �

(3.4.9) We are now ready to prove the main theorem of this section. Let (G2, X2)
be as in (3.3.6). Thus, G2,Z(p) is a reductive Z(p)-group equipped with a central
isogeny Gder

Z(p)
→ Gder

2,Z(p)
which induces an isomorphism (Gad, Xad) ∼−→ (Gad

2 , Xad
2 ),

and K2,p = G2,Z(p)(Zp) ⊂ G2(Qp) is a hyperspecial subgroup. We will denote by
E2 = E(G2, X2) ⊂ E the reflex field of (G2, X2), and by O2 its ring of integers.

Theorem (3.4.10). Let v|p be a prime of O2. Then the tower of E2-schemes
ShK2,p(G2, X2) admits a G2(Apf )-equivariant extension to a tower of O2,(v)-schemes

SK2,p(G2, X2) = lim←−Kp
2
SK2,pK

p
2
(G2, X2)
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which has the extension property.

Proof. For each K = KpK
p with Kp ⊂ G(Apf ) a compact open subgroup, let

K ′ = K ′
pK

′p be as in (2.3.7), and denote by SK(G,X) the normalization of the
closure of

ShK(G,X) ↪→ SK′(GSp, S±)O(p) .

Note that the O(v)-scheme denoted by the same symbol in (2.3.8) is the localization
of SK(G,X) at (v). By (2.3.8)

SKp
(G,X) = lim←−KpSK(G,X)

is a G(Apf )-equivariant tower of smooth O(p)-schemes having the extension property.
In particular, the action of A (GZ(p)) on ShKp(G,X) extends to SKp(G,X), as
already noted in (3.4.5).

As in (3.3.6), let Ep ⊂ Ē be the maximal subfield in which p is unramified,
and write Op(p) for its ring of integers localized at (p). Denote by SK(G,X)+ the
closure of ShK(G,X)+ in SK(G,X)⊗O(p) O

p
(p). Set

SKp(G,X)+ = lim←−KpSK(G,X)+.

The action of A (GZ(p)) × Gal(Ep/E) on SKp(G,X) ⊗E Ep, induces an action of
E (Gder

Z(p)
) on SKp(G,X)+. Write

(3.4.11) SK2,p(G2, X2) = [A (G2,Z(p))×SKp(G,X)+]/A (GZ(p))
◦.

Since ker (A (GZ(p))
◦ → A (G2,Z(p))) is a subgroup of ∆(G,Gad), (3.4.6) implies that

(3.4.11) is a tower of smooth Op(p)-schemes. The E (Gder
Z(p)

)-action on SKp(G,X)+

induces a A (G2,Z(p))×Gal(Ep/E)-action on (3.4.11). By (3.3.10), the generic fibre
of (3.4.11) may be A (G2,Z(p)) × Gal(Ep/E)-equivariantly identified with the Ep-
scheme ShK2,p

(G2, X2). Hence (3.4.11) descends to a tower of smooth O(p)-schemes,
again denoted SK2,p(G2, X2) whose generic fibre may be G2(Apf )-equivariantly
identified with ShK2,p(G,X). That this tower has the extension property follows
from the argument in [Mo, Prop. 3.21.4].

Finally, since ShK2,p
(G2, X2) has a canonical model defined over E2, the tower

of E-schemes ShK2,p(G2, X2) is equipped with a descent datum relative E/E2. The
extension property implies that this induces a descent datum on SK2,p(G2, X2)
relative to O(p)/O2,(p). Since descent for a quasi-projective schemes relative to a
finite flat morphism is effective, SK2,p(G2, X2) descends to a G2(Apf )-equivariant
tower of smooth O2,(p)-schemes having the extension property. �

(3.4.12) Let (G2, X2) be a Shimura datum of abelian type and K2 = K2,pK
p
2 ⊂

G2(Af ) a compact open with K2,p hyperspecial. By (3.4.10), ShK2,p(G2, X2) has
a canonical integral model at any prime v|p of E(G2, X2), provided K2,p can be
constructed starting with a hyperspecial subgroup of G(Qp), where (G,X) is a
Shimura datum of Hodge type as in (3.3.6). It remains to show that we can always
choose (G,X) so that this condition is satisfied.15

To do this we recall Deligne’s classification of Shimura data of abelian type.

15At least when p > 2. When p = 2 whether (G, X) can be made to satisfy (2.3.4) depends on
(G2, X2).
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Lemma (3.4.13). Let (H,Y ) be a Shimura datum of abelian type with H an ad-
joint group. Then there exists a central isogeny H] → H such that

(1) If (G,X) is a Shimura datum of Hodge type such that (Gad, Xad) is isomor-
phic to (H,Y ) then Gder is a quotient of H].

(2) There exists a Shimura datum of Hodge type (G,X) such that (Gad, Xad) is
isomorphic to (H,Y ) and Gder = H].

(3) If H is quasi-split and unramified at a prime p, then (G,X) in (2) can be
chosen so that G is quasi-split and unramified at p.

Proof. The first two claims are implicit in [De 3], but we explain how to reduce
them to the results proved by Deligne in loc. cit.

Let (H,Y ) = (H1, Y1) × · · · × (Hr, Yr) with Hi adjoint and Q-simple. For each
i = 1, . . . , r let Hi,v, for v = 1, . . . , ji, denote the simple factors of Hi over R. Write
H̃i,v (resp. H̃i, resp. H̃) for the universal cover of Hi,v, (resp. Hi, resp. H). Let
H]
i be the cover of Hi constructed in [De 3, 2.3.7, 2.3.8]. Then H]

i satisfies (1)
with (Hi, Yi) in place of (H,Y ). (See the remark at the end of [De 3, 2.3.7].) We
fix h ∈ Y, and a fractional lifting h̃ : S → H̃R of h. We denote by h̃i,v : S → H̃i,v

the components of h̃. Finally we denote by µ̃h and µ̃hi,v
the fractional cocharacters

attached to h̃ and h̃i,v respectively [De 3, 1.2.4].
Suppose that (G,X) is as in (1) and consider an embedding of Shimura data

(G,X) ↪→ (GSp(V ), S±). We think if V as a H̃-representation via H̃ → Gder ⊂ G.
Let W ⊂ VC be an irreducible H̃-subrepresentation. Write W = ⊗i,vWi,v where
Wi,v is an irreducible complex representation of H̃i,v. If Wi,v is non-trivial, let wi,v
be the highest weight of Wi,v as a H̃i,v-representation, and for each i, v, let Si,v be
the set of wi,v with Wi,v non-trivial as W runs over irreducible factors of VC. For
each i the absolute Galois group of Q permutes the Hi,v transitively. If a Galois
element sends Hi,v to Hi,v′ then it maps Si,v bijectively onto Si,v′ . Note that the
Si,v are non-empty since V is a faithful representation of G.

As in [De 3, 1.3.5], µ̃h acting on W has two weights, a, a + 1, for some a ∈ Q.
Hence for each W there is at most one pair (i, v) such that the action of µ̃hi,v

on Wi,v is non-trivial. For such a pair the weights of µ̃hi,v
on Wi,v have the form

a, a+1, and hence wi,v is a fundamental weight which appears in the table of [De 3,
1.3.9]. For each i at least one of the factors Hi,v is non-compact. Hence the remark
on transitivity of the Galois action shows that all the Si,v consist of fundamental
weights which appear in loc. cit.

Now for each i let Si be the union of the Si,v, v = 1, . . . , ji. where we now con-
sider the elements of Si,v as fundamental weights of Hi. Then the set Si satisfies16

the conditions (b),(c),(d) of [De 3, 2.3.7]: It is a non-empty, Galois stable, set of
fundamental weights of Hi such that any element which is a fundamental weight
for a non-compact Hi,v appears in [De 3, 1.3.9]. Hence, by definition, the action of
H̃i on V factors through H]

i .

This proves that H] satisfies (1), and (2) follows from [De 3, 2.3.10]. Finally,
to see (3), note that Hi has the form ResF/QH

s
i with F a totally real field, and

Hs
i absolutely simple [De 3, 2.3.4]. If H is quasi-split and unramified at p, then p

is unramified in F. Now (3) follows from the proof of [De 3, 2.3.10] since the field

16In fact, to be strictly compatible with Deligne’s notation we should take Si = {{w} : w ∈
Si,v , v = 1, . . . ji}
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K in loc. cit can be chosen to be an extension of F which is unramified at primes
above p. �

Corollary (3.4.14). Let (G2, X2) be a Shimura datum of abelian type, and K2 =
K2,pK

p
2 ⊂ G2(Af ) compact open with K2,p hyperspecial. If p > 2,17 and v|p is

a prime of the ring of integers O2 ⊂ E(G2, X2), then the tower of E2-schemes
ShK2,p(G2, X2) admits a G2(Apf )-equivariant extension to a tower of O2,(v)-schemes

SK2,p(G2, X2) = lim←−Kp
2
SK2,pK

p
2
(G2, X2)

which has the extension property.

Proof. Let (G,X) be a Shimura datum of Hodge type and Gder → Gder
2 a central

isogeny inducing an isomorphism (Gad, Xad) ∼−→ (Gad
2 , Xad

2 ). By (3.4.13)(1), Gder,
and hence Gder

2 , is a quotient of Gad]. Hence by (3.4.13)(3), we may assume that G
is quasi-split and unramified at p.

Now let G2,Z(p) be a reductive group over Z(p) with generic fibre G2, and such
that K2,p = G2,Z(p)(Zp). The central isogeny Gder → Gder

2 extends uniquely to a
central isogeny Gder

Z(p)
→ Gder

2,Z(p)
, of reductive groups over Z(p).

Let Z ⊂ G denote the center of G. Since G admits an extension to a reductive
group over Z(p), Z admits an extension to a flat Z(p)-group ZZ(p) of multiplicative
type. The kernel of Gder × Z → G is a finite, multiplicative Z(p)-group, and
extends to a finite flat, multiplicative subgroup C ⊂ Gder

Z(p)
× ZZ(p) . The quotient

GZ(p) = Gder
Z(p)
× ZZ(p)/C is a reductive group over Z(p) with generic fibre G, and

derived group Gder
Z(p)

.

Thus the assumptions introduced at the end of (3.3.2) and in (3.3.6) are satisfied,
and we may apply (3.4.10) to conclude the corollary. �

(3.4.15) If p = 2 then the conclusion of the corollary still holds provided the
pair (G,X) with G quasi-split and unramified at p, which was constructed in the
proof of (3.4.14), can be chosen so as to satisfy the conditions (2.3.4).
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