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Abstract

The superradiant scattering of a scalar field with frequency and angular momentum
(ω,m) by a near-extreme Kerr black hole with mass and spin (M,J) was derived in
the seventies by Starobinsky, Churilov, Press and Teukolsky. In this paper we show
that for frequencies scaled to the superradiant bound the full functional dependence
on (ω,m,M, J) of the scattering amplitudes is precisely reproduced by a dual two-
dimensional conformal field theory in which the black hole corresponds to a specific
thermal state and the scalar field to a specific operator. This striking agreement
corroborates a conjectured Kerr/CFT correspondence.
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1 Introduction

An extreme Kerr black hole saturates the angular momentum bound GM2 ≥ J . As the

horizon of such a black hole is approached, the left and right sides of the future light cone

coalesce and all observers are forced to corotate with the horizon at the speed of light. All

near-horizon excitations are chiral “left-movers”. In accord with this it was recently argued

in [1], following the spirit of [2], that the so-called1 “NHEK” region of an extreme Kerr black

hole is dual to a chiral left-moving (half of a) two-dimensional conformal field theory with

central charge c = 12J
~

. Evidence for this conclusion was supplied by the fact that application

of the Cardy formula to the 2D CFT precisely reproduces the Bekenstein-Hawking entropy

1for Near Horizon Extreme Kerr.
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SBH = 2πJ
~

. The analysis was subsequently generalized to a large variety of extreme black

holes with perfect agreement in every case [3].

An important next step is to extend this duality to near -extreme Kerr. In this case, the

light cones do not quite coalesce at the horizon, and right-moving excitations are allowed.

One therefore expects a non-chiral 2D CFT.

A natural approach to this problem, continuing in the spirit of [2], is to try to generalize

the near-horizon boundary conditions employed in [1] to allow non-chiral excitations.2 Al-

though puzzles remain, this approach has recently met with partial success. In [7] consistent

boundary conditions were found - an adaptation of those analyzed in [8] - which allow right-

moving conformal transformations but exclude left-moving ones. Up to a potential scaling

ambiguity the deviation of the near-extreme entropy from its extreme value is accounted

for by right-moving excitations. Similar results were found in [9]. Consistent boundary

conditions which allow both left and right movers have not been found.

In this paper, we adopt an alternate approach to this problem. Instead of continuing

in the spirit of [2], we proceed along the alternate route which was originally followed in

[10, 11] and led to the discovery of the AdS/CFT correspondence in string theory. In this

approach, no explicit boundary conditions on the near-horizon region are needed.3 One

simply computes the black hole scattering amplitudes and determines “phenomenologically”

whether or not in the appropriate scaling limit the black hole reacts like a 2D CFT to external

perturbations originating in the asymptotically flat region.

The problem of scattering of a general spin field from a Kerr black hole was solved in

a series of classic papers by Starobinsky [14], Starobinsky and Churilov [15], and Press and

Teukolsky [16, 17, 18] in the early seventies (see also [19]). For the case of a scalar incident

on extreme Kerr, the scattering is superradiant when the frequency and angular momentum

ω and m of the mode and the extremal angular velocity of the horizon Ω̄ = 1
2M

obey the

inequality

0 ≤ ω ≤ mΩ̄, (1.1)

derived by Zel’dovich [20] and Misner [21]. In this case the classical reflected wave is more

energetic than the incident one, and at the quantum level there is decay into such modes

even though the Hawking temperature vanishes for extreme Kerr. The relevant limit for

2The dynamics following from the boundary conditions of [1] restricted to the special case of pure gravity
have recently been carefully studied in [4, 5] and the precise sense in which they are the right choice for
studying the chiral half of a CFT explained in [6].

3Moreover, since gravitational backreaction of the scattering mode is higher order, we sidestep (for now)
the difficult issue of infrared divergences which have a tendency to destroy the NHEK boundary conditions
[4, 5, 6]. These divergences are essentially the same as those studied in [12] and arise whenever an AdS2

factor is present. An interesting recent discussion can be found in [13].
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Kerr/CFT is one in which the mode frequencies are scaled to the top of the superradi-

ant bound while the Hawking temperature is scaled to zero. In this case the absorption

probability reduces to

σabs =
(8πmMTH)2βeπm

πΓ(2β)2Γ(2β + 1)2
sinh π(m+

ω −mΩ̄

2πTH
)
∣

∣Γ(
1

2
+β+im)

∣

∣

4∣
∣Γ(

1

2
+β+i

ω −mΩ̄

2πTH
)
∣

∣

2
, (1.2)

which turns out to be negative in the superradiant regime.4 β here is algebraically related to

the numerically computable eigenvalues of certain deformed spherical harmonics: see section

4 for details.5

Equation (1.2) is a rather complicated expression. Remarkably, we find that, up to a

constant normalization prefactor, it is entirely reproduced from a hypothesis relating the

excitations of extreme Kerr to those of a nonchiral CFT. (1.2) is exactly the CFT two point

function of the CFT operator dual to the scalar field! This is our main result. It corroborates

the notion that near-extreme Kerr is dual to a nonchiral 2D CFT.

In the course of our analysis several interesting features emerged. First, in order to match

the gravity result, we need to posit the existence of a right moving U(1) current algebra with

(half-integrally moded) zero mode Q0 in the dual CFT, as in [11] where it was used to explain

the cosmic censorship bound on the mass for Kerr-Newman. Excitations of such a CFT are

then labelled by three conserved quantities: L0, L̄0 and Q0. This does not match the two

conserved quantities (ω,m) of Kerr excitations. A match is obtained by constraining the

CFT to states with L0 = Q0.
6 This harmonizes well with features of the NHEK geometry.

With the “chiral” boundary conditions of [1], the U(1) isometry is the zero mode of the

left-moving L0. On the other hand with the “anti-chiral” boundary conditions of [7, 8, 9],

the same U(1) isometry is a right-moving current algebra zero mode Q0. So, in demanding

the identification L0 = Q0, the scattering analysis here manages to be consistent with all

the previous treatments!

Secondly, we initially expected only to be able to derive and match the dependence of σabs

on the ratio of the right-moving energy to the right-moving temperature of the CFT, which

turns out to be ω−mΩ̄
TH

. These are directly determined by the unbroken SL(2, R) invariance of

the NHEK geometry. Them and β dependence on the other hand do not seem so determined,

and a priori might be affected by CFT operator normalization ambiguities. However it turns

out that the obvious and simplest form for the normalization of the dual CFT operator

4σabs is related to the plane-wave absorption cross section by a frequency and dimension dependent factor.
5 In general β can be real or imaginary. (1.2) is for the real case; the more general formula is given below.
6The analysis and zero modes here refer only to the linearized fluctuations around extreme Kerr. At this

level L0 = Q0 can be seen to be equivalent to L0 = L̄0. In a more general context there may be other ways
of expressing the constraint.
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gives all the complicated m, β dependence in (1.2). It does not seem possible that this is an

accident, but why things worked out so simply is a mystery yet to be unraveled.

This paper is organized as follows. In section 2, we review the extreme Kerr and NHEK

geometries and the chiral extreme Kerr/CFT. Section 3 describes the near-NHEK geometry.

This is the analog of a black hole in NHEK. Although the asymptotically-defined Hawking

temperature TH vanishes, near-NHEK has a blueshifted near-horizon temperature which is

finite and will be denoted TR. In section 4, we rederive the formula (1.2) of [15, 18] for

near-superradiant scattering by solving the wave equation in the near-NHEK and far regions

and matching. The angular part of the near-NHEK equations is solved by Heun functions

whose associated eigenvalues Kℓ are known only numerically. We also separate (1.2) into

near-NHEK and far contributions. In section 5, we show that the right-moving conformal

weight hR of a scalar field Φ in NHEK is 1
2
+ β, and give an algebraic formula for β in terms

of Kℓ. Assuming that the scalar field is dual to a CFT operator OΦ with hL = hR = 1
2

+ β,

we reproduce the near-NHEK contribution to σabs from the appropriate finite temperature

CFT correlators. The far contribution is then precisely matched to the amplitude of the

asymptotic wave at its inner boundary where it meets the NHEK region. Finally we discuss

and match the case of imaginary β, which corresponds to superradiant instabilities which

persist all the way to TR = 0. In section 6 we move to five dimensional rotating black

holes with up to three electric charges. Although observed black holes are of course four-

dimensional, it is useful to consider five dimensional generalizations both as a tool to better

understand the nature of the correspondence and to make contact with AdS/CFT and the

extensive string theory literature on the subject. As in four dimensions a perfect match is

obtained, but now involving more parameters.

2 Review of Kerr and Kerr/CFT

The metric of the Kerr black hole is [22, 23]

ds2 = −∆

ρ̂2

(

dt̂− a sin2 θdφ̂
)2

+
sin2 θ

ρ̂2

(

(r̂2 + a2)dφ̂− adt̂
)2

+
ρ̂2

∆
dr̂2 + ρ̂2dθ2 (2.1)

∆ ≡ r̂2 − 2Mr̂ + a2 , ρ̂2 ≡ r̂2 + a2 cos2 θ ,

where we take G = ~ = c = 1. It is parameterized by the mass M and angular momentum

J = aM . There are horizons at

r± = M ±
√
M2 − a2 . (2.2)
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The Hawking temperature, angular velocity of the horizon, and entropy are

TH =
r+ − r−
8πMr+

, (2.3)

ΩH =
a

2Mr+
,

SBH =
Area

4
= 2πMr+ .

It will be convenient to also define the dimensionless Hawking temperature

τH =
r+ − r−
r+

= 8πMTH . (2.4)

The extreme Kerr has the maximum allowed value of the angular momentum, J = M2.

In this case, r+ = r−, TH = 0, and the entropy is

Sext = 2πJ. (2.5)

The proper spatial distance to the horizon of extreme Kerr is infinite, which allows us to

zoom in on the near horizon region and treat it as its own spacetime [24]. To take the near

horizon limit, define

t = λ
t̂

2M
, r =

r̂ −M

λM
, φ = φ̂− t̂

2M
, (2.6)

and take λ→ 0. The resulting geometry, called “NHEK” for near horizon extreme Kerr, is

ds2 = 2J Γ(θ)

(

−r2dt2 +
dr2

r2
+ dθ2 + Λ(θ)2(dφ+ rdt)2

)

, (2.7)

where

Γ(θ) =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ

1 + cos2 θ
, (2.8)

and φ ∼ φ + 2π, 0 ≤ θ ≤ π. The boundary at r = ∞ corresponds to the entrance to the

throat, where the near horizon region glues onto the full asymptotically flat geometry. In

global coordinates (the coordinate transformation can be found in [24]) we have

ds2 = 2J Γ(θ)

(

−(1 + ρ2)dτ 2 +
dρ2

1 + ρ2
+ dθ2 + Λ2(θ)(dϕ+ ρdτ)2

)

. (2.9)

NHEK has an enhanced isometry group

U(1)L × SL(2,R)R , (2.10)

generated by

Q0 = −i∂ϕ , (2.11)

L̄0 = i∂τ ,

L̄±1 = ie±iτ

(

ρ
√

1 + ρ2
∂τ ∓ i

√

1 + ρ2∂ρ +
1

√

1 + ρ2
∂ϕ

)

.
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In [1] it was argued, for a certain choice of boundary conditions enforcing M2 = J , that

quantum gravity on NHEK is holographically dual to a chiral half of a two-dimensional CFT.

The asymptotic symmetry algebra was found to contain a full Virasoro algebra extending

the U(1)L isometry, with zero mode Q0 = −i∂ϕ. The central charge of the Virasoro algebra,

computed semiclassically using the Dirac bracket algebra of asymptotic symmetries, is

cL = 12J . (2.12)

The presence of a Virasoro algebra implies that the quantum theory is holographically dual

to a 2D CFT containing a chiral left-moving sector. From the expression for the Frolov-

Thorne vacuum [25], or equivalently from the first law of black hole thermodynamics, the

temperature of left-movers in the CFT is

TL =
1

2π
. (2.13)

Assuming unitarity and using these values of cL and TL in the Cardy formula, the microstate

counting in the CFT reproduces the extremal Kerr Bekenstein-Hawking entropy Sext = 2πJ

[1].

The boundary conditions in [1] were chosen to eliminate excitations above extremality.

Non-extremal excitations with M2−J > 0 correspond to non-zero charges under SL(2,R)R.

To see this, note that the zero mode of SL(2,R)R in terms of the original Kerr coordinates

acts on the boundary near τ = 0 as L̄0 = i
λ
(2M∂t̂ + ∂φ̂) , so in terms of charges

δL̄0 ∼
1

λ
δ(M2 − J) . (2.14)

This suggests that in the dual CFT, excitations above extremality correspond to right-

movers. One way to demonstrate this would be to find consistent boundary conditions which

allow for right-moving energy and lead to an asymptotic symmetry group which extends

SL(2,R)R to Virasoro. Such boundary conditions have so far not been found, but may exist

as a generalization of those described in [8]. In this paper we simply assume that the right-

movers are governed by a CFT, and find that this assumption correctly reproduces Kerr

scattering amplitudes.

3 Near-NHEK

Scattering by an extreme Kerr black hole involves infinitesimal excitations above extremality.

In order to study such excitations it is useful to consider a generalization of the near-horizon

limit of the preceding section in which the temperature of the near-horizon geometry, denoted

TR, is fixed and non-zero. The resulting “near-NHEK” geometry is derived in this section.7

7We are grateful to M. Guica for earlier collaboration on this section.
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The relevant limit is an adaptation to Kerr of a limit of Reissner-Nordstrom introduced

in [12, 26].8 It is defined by taking TH → 0 and r̂ → r+ while keeping the dimensionless

near-horizon temperature

TR ≡ 2MTH
λ

=
τH
4πλ

(3.1)

fixed. This implies that the temperature as measured at asymptotically flat infinity goes to

zero, but it remains finite in the NHEK region due to the infinite blueshift. Near extremality

r+ = M + λM2πTR +O(λ2) (3.2)

a = M − 2M(λπTR)2 +O(λ3) (3.3)

M −
√
J = M(λπTR)2 +O(λ3) . (3.4)

The coordinate change

t = λ
t̂

2M
(3.5)

r =
r̂ − r+
λr+

=
r̂ −M

λM
− r̂2πTR

M
+O(λ) (3.6)

φ = φ̂− t̂

2M
, (3.7)

followed by the limit λ→ 0 with TR held fixed gives the near-extremal, near-horizon metric

ds2 = 2JΓ

(

−r(r + 4πTR)dt2 +
dr2

r(r + 4πTR)
+ dθ2 + Λ2 (dφ+ (r + 2πTR)dt)2

)

. (3.8)

We will refer to this as the near-NHEK geometry. Globally, the maximal analytic extension

of this solution is diffeomorphic to NHEK, as can be seen for example from the fact that the

coordinate transformation

τ± = tanh[
1

4
(4πTRt± ln

r

r + 4πTR
)] (3.9)

φ′ = φ+
1

2
ln

1 − (τ+)2

1 − (τ−)2

eliminates 4πTR. However these coordinate transformations are singular on the boundary:

the boundary regions where the far region is glued to the near region are not diffeomorphic

for NHEK and near-NHEK. Singular coordinate transformations in general relate physically

inequivalent objects. As discussed in detail in [12, 26] in the AdS2 context, near-NHEK is

the NHEK analog of the BTZ black hole. Although the Hawking temperature of the original

black hole vanishes in this limit, observers at fixed r in near-NHEK measure a Hawking

8A similar limit was considered in the context of Kerr/CFT in [27], and this one was recently independently
considered in [4].
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temperature proportional to 4πTR and see an event horizon. We note that the entropy SBH

and the ADM mass M as defined in the asymptotically flat region are given by their extremal

values in this limit and do not depend on TR. We will see however that the near extremal

scattering amplitudes do depend on TR.

Only modes with energies very near the superradiant bound survive this limit. Consider

a scalar field on near-extremal Kerr expanded in modes

Φ = e−iωt̂+imφ̂R(r̂)S(θ) . (3.10)

The near horizon quantum numbers nR,L are defined by

e−iωt̂+imφ̂ = e−inRt+inLφ , (3.11)

where

nL = m , nR =
1

λ
(2Mω −m) . (3.12)

The Boltzmann factor e
−

ω−mΩH
TH appears in the Hawking decay rate and the Frolov-Thorne

vacuum state. Identifying

e
−

ω−mΩH
TH = e

−
nL
TL

−
nR
TR (3.13)

defines the left and right temperatures

TL =
r+ −M

2π(r+ − a)
, TR =

r+ −M

2πλr+
. (3.14)

For later convenience, we define the ratio

ñR =
nR

2πTR
=
ω −mΩ̄

2πTH
. (3.15)

In the limit we consider here, TR, nR and ñR are held fixed while TH → 0. This means we

are considering only those modes with energies very near the superradiant bound ω = mΩH .

Modes with energies which do not scale to the bound have wavefunctions which do not

penetrate into the near-NHEK region.

4 Macroscopic greybody factors

Superradiance is a classical phenomenon in which an incident wave is reflected with an

outgoing amplitude larger than the ingoing one, resulting in a negative absorption probability

σabs < 0. This effect occurs for rotating black holes and allows energy to be extracted. For

an incident scalar field, expanding in modes as

Φ = e−iωt̂+imφ̂R(r̂)S(θ) , (4.1)

8



superradiance occurs when

ω < mΩH . (4.2)

At the quantum level, superradiant modes with ω < mΩH are spontaneously emitted by

the black hole. This phenomenon is closely related to Hawking radiation, and in fact the

standard formula for the decay rate

Γ =
1

e(ω−mΩH)/TH − 1
σabs (4.3)

accounts for both processes. In the extremal limit TH → 0 with fixed ω, however, there is a

clear distinction. The thermal factor becomes a step function,

Γext = −Θ(−ω +mΩH)σabs , (4.4)

so ordinary Hawking emission with σabs > 0 and ω > mΩH vanishes while quantum super-

radiant emission persists.

The greybody factor, which modifies the spectrum observed at infinity from that of a pure

blackbody, is equal to the absorption probability σabs. In this section we review the greybody

computation near the superradiant bound by approximately solving the wave equation. The

absorption probabilities of Kerr were originally studied in detail in [20, 21, 14, 15, 16, 17, 18].

All of the results in this section either appear in these papers or can be easily derived from

formulas therein, but our derivations are self contained.

The wave equation of a massless scalar (4.1) in the full Kerr metric (2.1) separates into

the spheroidal harmonic equation

1

sin θ
∂θ(sin θ∂θS) +

(

Kℓ −
m2

sin2 θ
− a2ω2 sin2 θ

)

S = 0 (4.5)

and the radial equation

∆∂2
r̂R + 2(r̂ −M)∂r̂R +

(

[(r̂2 + a2)ω − am]2

∆
+ 2amω −Kℓ

)

R = 0 . (4.6)

Although we label the separation constant Kℓ only by the integer ℓ to avoid clutter, it

depends on ℓ,m, and aω and must be computed numerically. To generalize to the case of

a scalar with mass µ one simply shifts Kℓ by µ2 in (4.6). For ω = 0, (4.5) is an ordinary

spherical harmonic equation, so at low frequency Kℓ = ℓ(ℓ+1)+O(a2ω2). For a scalar at the

superradiant bound ω = mΩH on an extreme black hole, we denote the separation constant

by

K̄ℓ = Kℓ|a2ω2=m2/4 . (4.7)

Numerical values of K̄ℓ are tabulated in [24, 28].

9



In terms of the rescaled frequency ñR = nR

2πTR
and dimensionless Hawking temperature

τH = 8πMTH defined in (2.4),(3.15), the near-extremal near-superradiant regime corre-

sponds to

τH ≪ 1 , ñR = O(1) . (4.8)

Defining the dimensionless coordinate

x =
r̂ − r+
r+

, (4.9)

the radial equation (4.6) in this regime reduces to

x(x+ τH)R′′ + (2x+ τH)R′ +
(

V − K̄ℓ

)

R = 0 , (4.10)

where the prime denotes ∂x and

V = m2 +
[x(x+ 2)m+ τH(m+ ñR)]2

4x(x+ τH)
. (4.11)

The condition for superradiance, ω < mΩH , translates to

m+ ñR < 0 , (4.12)

but our computation is valid for both signs of ω −mΩH . For the matching procedure, we

will take the near region x ≪ 1 and the far region x ≫ τH , so a suitable matching region

satisfying both criteria exists when τH ≪ 1.

4.1 Far region

In the far region x≫ τH the radial wave equation is

x2R′′ + 2xR′ +

(

1

4
m2(2 + x)2 +m2 − K̄ℓ

)

R = 0 . (4.13)

The solution is9

Rfar = N

[

Ae−
1

2
imxx−

1

2
+β

1F1(
1

2
+ β + im, 1 + 2β, imx) +B(β → −β)

]

(4.14)

where A,B are constant coefficients, the overall normalization N is included for later con-

venience, and

β2 = K̄ℓ − 2m2 +
1

4
. (4.15)

9The fact that we encounter hypergeometric, rather than Bessel, functions indicates that there may be
some kind of SL(2, R) or even conformal symmetry associated with the far region. Indeed we will see below
that the 4D (but not 5D) scattering amplitudes have an extra far region gamma function contribution which
has the characteristic form of a CFT correlator. This is mysterious to us and we will have nothing further
to say about it in this paper.
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Note that β may be real or imaginary. For x≪ 1 near the outer boundary of the near region,

Rfar → NAx−
1

2
+β +NBx−

1

2
−β . (4.16)

In the flat region x≫ 1,

Rfar → Zoute
1

2
imxx−1+im + Zine

− 1

2
imxx−1−im (4.17)

where

Zin = N(AC+ +BC−) , (4.18)

Zout = N(AC̃+ +BC̃−) ,

C± =
Γ(1 ± 2β)

Γ(1
2
± β − im)

(−im)−
1

2
∓β−im

C̃± =
Γ(1 ± 2β)

Γ(1
2
± β + im)

(im)−
1

2
∓β+im .

4.2 Near region

Now consider the near region, defined by x≪ 1. The wave equation is

x(x+ τH)R′′ + (2x+ τH)R′ +

(

[τH ñR +m(2x+ τH)]2

4x(x+ τH)
+m2 − K̄ℓ

)

R = 0 . (4.19)

Using the relations x = λr, τH = λ4πTR, this is just the wave equation in the near-NHEK

geometry (3.8). The solutions are

Rin
near = Nx−

i
2
(m+ñR)

(

x

τH
+ 1

)− i
2
(m−ñR)

2F1

(

1

2
+ β − im,

1

2
− β − im; 1 − i(m+ ñR);− x

τH

)

,

Rout
near = Nx

i
2
(m+ñR)

(

x

τH
+ 1

)− i
2
(m−ñR)

2F1

(

1

2
+ β + iñR,

1

2
− β + iñR; 1 + i(m+ ñR);− x

τH

)

.

(4.20)

The first is ‘ingoing’ in the sense that a local observer at the horizon will see particles falling

into the black hole. For m + ñR < 0 (ω < mΩH), the phase velocity is outgoing, but the

group velocity is always ingoing. The second solution Rout
near has particles coming out of

the past horizon, so in the scattering computation we match onto Rin
near. We note that,

mysteriously, Rin
near(m, ñR) = Rout

near(−ñR,−m): left and right-moving quantum numbers

appear symmetrically in the near-horizon scalar modes even though one is associated to an

SL(2, R) symmetry and the other a U(1) symmetry.

Near the horizon,

Rin
near → Nx−

1

2
i(m+ñR) , (4.21)

11



and for x≫ τH ,

Rin
near → N

Γ(−2β)Γ(1 − im− iñR)

Γ(1
2
− β − im)Γ(1

2
− β − iñR)

τ
1

2
+β− i

2
(m+ñR)

H x−
1

2
−β + (β → −β) . (4.22)

4.3 Near-far matching

In the overlap region τH ≪ x ≪ 1, both solutions Rfar and Rin
near are valid. Comparing

coefficients in the matching region from (4.16) and (4.22), we find

B =
Γ(−2β)Γ(1 − im− iñR)

Γ(1
2
− β − im)Γ(1

2
− β − iñR)

τ
1

2
+β− i

2
(m+ñR)

H (4.23)

A =
Γ(2β)Γ(1 − im− iñR)

Γ(1
2

+ β − im)Γ(1
2

+ β − iñR)
τ

1

2
−β− i

2
(m+ñR)

H .

The flux is normalized at the horizon so that for real β,

AB∗ − BA∗ = −iτH(m+ ñR)

2β
. (4.24)

4.4 Absorption probability

The absorption probability is the ratio of absorbed flux to incoming flux,

σabs =
Fabs

Fin
. (4.25)

It is convenient to normalize Fin = 1 by choosing

N =

√

2

m
(AC+ +BC−)−1 , (4.26)

implying Zin =
√

2
m

. The absorption probability is

σabs = 1 − m

2
|Zout|2 =

(m+ ñR)τH
m

1

|AC+ +BC−|2
, (4.27)

where the second equality follows from (4.24) and a similar condition on C±. The form of

σabs depends on whether β is real or imaginary. For real β, B is suppressed by a positive

power of τH compared to A, so it can be ignored, resulting in the simplification

σabs =
(m+ ñR)τH

m

1

|AC+|2
. (4.28)

Plugging in from (4.23,4.18), the absorption probability is

σabs =
(mτH)2βeπm

πΓ(2β)2Γ(2β + 1)2
sinh π(m+ ñR)

∣

∣Γ(
1

2
+ β + im)

∣

∣

4∣
∣Γ(

1

2
+ β + iñR)

∣

∣

2
. (4.29)
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In the limit TH → 0 with ñR → ∞, which corresponds to a fixed finite value of ω −mΩH ,

we recover the extremal absorption probability of Starobinsky and Churilov [14, 15]. In the

superradiant regime m+ ñR < 0, this is negative. The quantum decay rate is

Γ =
1

e(ω−mΩH )/TH − 1
σabs (4.30)

=

∣

∣Γ(1
2

+ β + im)
∣

∣

4

2πΓ(2β)2Γ(2β + 1)2
(mτH)2βe−πñR

∣

∣Γ(
1

2
+ β + iñR)

∣

∣

2
.

If β is imaginary, then both A and B must be included in the cross section. Writing

β = iδ,

σabs = sinh2 2πδ sinh π(m+ ñR)eπm/[e−πδ cosh2 π(δ −m) cosh π(δ − ñR) (4.31)

+eπδ cosh2 π(δ +m) cosh π(δ + ñR)

−2 cosψ cosh π(δ +m) cosh π(δ −m) cosh1/2 π(δ − ñR) cosh1/2 π(δ + ñR)]

where

ψ = arg
−(mτH)−2iδΓ(2iδ)4

Γ(1
2

+ iδ + im)2Γ(1
2

+ iδ − im)2Γ(1
2

+ iδ − iñR)Γ(1
2

+ iδ + iñR)
. (4.32)

This is the result of Press and Teukolsky [18]. Holding ñR fixed, ψ = −2δ lnmτH +constant,

so σabs oscillates an infinite number of times as τH → 0 and the extremal limit is ill defined.

If we instead take the limit τH → 0 with ω − mΩH held fixed (ñR → ∞), we recover the

extremal absorption cross section of [14, 15, 18], which is still singular in the limit ω → mΩH .

4.5 Near and far factors

Note that the cross section (4.28) has two factors, one coming from the NHEK region, and

the other from the far region. With B ∼ 0, it follows from (4.16) with N given by (4.26)

that the squared amplitude of the normalized incoming wave at the outer boundary of the

NHEK region is proportional to

1

m|C+|2
=

m2βeπm

Γ(1 + 2β)2
|Γ(

1

2
+ β + im)|2 . (4.33)

This far region factor has nontrivial dependence on m because the far region, described by

the wave equation (4.13), is not flat space. It is asymptotically flat but contains a curved

intermediate region near x ∼ 1.10 The remaining factor comes from propagation in the

NHEK region and is given by

(m+ ñR)
τH
|A|2 =

τ 2β
H

πΓ(2β)2
sinh π(m+ ñR)|Γ(

1

2
+ β + im)|2|Γ(

1

2
+ β + iñR)|2 . (4.34)

10 Such additional factors do not appear in AdS/CFT absorption computations because the near horizon
AdS region is matched onto a flat far region.
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As the NHEK region is conjecturally dual to a CFT, it is this factor we will reproduce

microscopically in the next section.

5 Microscopic greybody factors

We now derive the greybody factor from the dual CFT. Our approach is similar to [11]

-see also [29, 30, 31, 32] - where the ω ≪ 1/M greybody factor for near-BPS 4d Kerr-

Newman black holes was derived from conformal field theory. However in the case ω ∼ mΩH

relevant to Kerr/CFT the wavelength of the quanta are no longer much larger than the black

hole and several new ingredients appear. As discussed in the introduction, matching with

gravity requires a current algebra in the right moving sector of the CFT, as had already

been indicated from several other points of view. The Hilbert space is then constrained so

that zero mode of this current algebra equals the left-moving Virasoro zero mode, again as

previously indicated from other perspectives.

5.1 Conformal dimensions

Consider a massless scalar Φ on NHEK. The bulk operator which creates a mode of the

scalar field must have a counterpart boundary operator OΦ in the dual CFT. The SL(2,R)

representations in which this operator lies must be the same on both sides. Therefore we can

identify the L̄0 eigenvalue of a highest weight mode of the bulk scalar in global coordinates

with the conformal dimension of the primary operator in the dual CFT. Writing

Φ = eimϕ−ihRτS(θ)F (ρ) , (5.1)

so that

L̄0Φ = hRΦ, Q0Φ = mΦ, (5.2)

the wave equation 2Φ = 0 separates into an angular piece

1

sin θ
∂θ(sin θ∂θS) +

(

K̄ℓ −
m2

sin2 θ
− m2

4
sin2 θ

)

S = 0 (5.3)

and a radial piece which may be written

[

hR(hR − 1) − L̄−1L̄1

]

F (ρ) = (K̄ℓ − 2m2)F (ρ) , (5.4)

where the global SL(2,R)R generators were given in (2.11). The separation constant K̄ℓ

used here is the same as that defined in (4.7). A highest weight mode is one which satisfies

the first order differential equation

L̄1Φ = 0. (5.5)
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In this case the second term on the left hand side of (5.4) can be omitted. The weight hR is

then found by solving a quadratic equation to be

hR =
1

2
±
√

K̄ℓ − 2m2 +
1

4
=

1

2
± β . (5.6)

Note that hR depends on m as well as ℓ. The explicit highest weight solutions are

F (ρ) = (1 + ρ2)−
hR
2 em tan−1 ρ , (5.7)

In summary for every massless scalar field Φ there is sequence of right primaries OΦ(ℓ,m)

in the dual CFT labeled by ℓ and m with weights hR. Similar results pertain to massive

scalars, higher spin fields and, in the real world, all the fields of the standard model.

5.2 Scattering

Now let’s consider the scattering of the scalar Φ off of the extreme Kerr black hole. Throwing

the scalar Φ at the black hole is dual to exciting the CFT by acting with the operator OΦ,

and reemission is represented by the action of the hermitian conjugate operator. Define the

two-point function

G(t+, t−) = 〈O†
Φ(t+, t−)OΦ(0)〉 , (5.8)

where t± are the coordinates of the 2d CFT. Then the CFT absorption cross section and

decay rate as a function of frequency follow from Fermi’s golden rule as in [11, 31]

σabs ∼
∫

dt+dt−e−iωRt
−−iωLt

+ [

G(t+ − iǫ, t− − iǫ) −G(t+ + iǫ, t− + iǫ)
]

, (5.9)

Γ ∼
∫

dt+dt−e−iωRt
−−iωLt

+

G(t+ − iǫ, t− − iǫ) ,

where the two different iǫ prescriptions correspond to absorption and emission. The use of

“∼” here and in the following indicates that we have not determined normalization factors

(for example of OΦ) which can depend on the labels e.g. ℓ of the operator but not on the

temperature.

The two-point function G(t+, t−) is determined by conformal invariance. An operator

of (left,right) dimensions (hL, hR), right charge qR, at temperature (TL, TR) and chemical

potential ΩR has two-point function

G ∼ (−1)hL+hR

(

πTL
sinh(πTLt+)

)2hL
(

πTR
sinh(πTRt−)

)2hR

eiqRΩRt
−

. (5.10)

Using the integral

∫

dxe−iωx(−1)∆

(

πT

sinh[πT (x± iǫ)]

)2∆

=
(2πT )2∆−1

Γ(2∆)
e±ω/2T |Γ(∆ + i

ω

2πT
)|2 , (5.11)
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the decay rate becomes

Γ ∼ T 2hL−1
L e−ωL/2TL |Γ(hL + i

ωL
2πTL

)|2T 2hR−1
R e−(ωR+qRΩR)/2TR |Γ(hR + i

ωR − qRΩR

2πTR
)|2. (5.12)

In order to apply this formula, we must specify the various arguments for the case of a

massless scalar in NHEK. We propose

hL = hR =
1

2
+ β, TL =

1

2π
, TR = TR, ωL = m, ωR = nR +mΩR, qR = m. (5.13)

The value hR = 1
2

+ β was computed in the previous section. Locality requires integral

hL − hR and taking hL = hR seems natural for a scalar. The value of TL = 1/2π was

derived from the Frolov-Thorne vacuum in [1]. The identifications of ωL,R are suggested by

comparing the (t, φ) phase dependence of (3.10),(3.11) with the (t−, t+) phase dependence

of the integrand of (5.9). qR is the angular momentum m. One may also identify ΩR = ΩH

but it does not affect the final answer. Using (5.9),(5.10),(5.6), we then find

Γ ∼ T 2β
R e−πñR−πm|Γ(

1

2
+ β + iñR)|2|Γ(

1

2
+ β + im)|2. (5.14)

σabs ∼ T 2β
R sinh(πñR + πm)|Γ(

1

2
+ β + iñR)|2|Γ(

1

2
+ β + im)|2. (5.15)

Noting that TR ∝ τH , this agrees, up to the undetermined normalization factors, with the

macroscopic gravity result (4.30) for the near-horizon contribution (4.34) to the cross section.

In the macroscopic computation, the full absorption cross section (4.29) was separated

into a near contribution (4.34) and a far contribution 1/m|C+|2. In the microscopic compu-

tation, the CFT reproduces the near-region contribution. The far region contribution, which

depends only on m, is accounted for by the m-dependence of the magnitude of source for the

CFT operator OΦ. This source is the scalar field Φ which couples to OΦ at the boundary of

the near and far region. Placing a finite cutoff for the near-horizon region at x = xC with

τH ≪ xC ≪ 1, the magnitude of the scalar field at the cutoff is

|Φ(xC)|2 =
2

m

1

|C+|2
x2β−1
C . (5.16)

Multiplying by this factor then correctly reproduces all the m-dependent gamma functions

in the final answer for the decay rate (4.29).

5.3 Imaginary β

The microscopic CFT derivation of σabs in the previous section applies only for real β. In

this section we consider the case of imaginary β (studied on NHEK in [24]). The qualitative

difference between the two cases can be understood by dimensionally reducing to the r, t
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plane, which maps the whole problem to that of charged particles (with charge m) in an

electric field on AdS2. Such particles have a modified Breitenlohner-Freedman bound, in

which the squared mass is shifted downward by the squared charge. When this bound is

violated, the particles behave like tachyons. The instability is just AdS2 Schwinger pair

production as studied in [33, 34]. Modes with imaginary β correspond in this picture to

those whose charges are so large relative to their mass that they are tachyonic on AdS2. In

this case, there is no time translationally-invariant vacuum and the instability to charged

pair production is not eliminated for TR → 0. This instability on the gravity side must be

matched in the dual CFT picture. Indeed we find the CFT manifestation of this instability

is that the corresponding operators have imaginary conformal weights.

At a technical level the case of imaginary β is complicated by interactions between the

near and far regions, and by the rapidly varying density of states resulting from a large num-

ber of bound states near the horizon. When β is real, to leading order in the dimensionless

parameter MTH , the scattering process can be simply described by one in which a wave

propagates from the far to the near region, scatters in the near region where its reflection is

suppressed by a real power of MTH , and then propagates back out through the far region.

This allows for the approximation of (4.27) by (4.28). When β is imaginary, the near region

reflected wave is an imaginary power of MTH and so is not suppressed. Therefore one must

stick with formula (4.27) which accounts for multiple interactions between the near and far

region.

It is nonetheless possible to verify that the gravity result (4.31) for imaginary β agrees

with the hypothesis that the near region is described by a conformal field theory. In the

macroscopic computation in Section 4, the only role of the near horizon region is to provide

the ratio B/A of ingoing to outgoing waves at the matching region, where the scalar wave

behaves as

R ∼ NAx−
1

2
+β +NBx−

1

2
−β . (5.17)

B and A are given in (4.23). Therefore in the dual picture, the role of the CFT is to provide

a boundary condition at the cutoff x = xC . Because B/A measures the response to an

incoming wave, it is proportional to a two-point function in the CFT. Our modes have a

boundary condition specified in the past (no outgoing flux from the past horizon), so the

relevant two-point function is the retarded Green’s function,11

GR(nR, m) ∼ B

A
= τ 2β

H

Γ(−2β)Γ(1
2

+ β − im)Γ(1
2

+ β − iñR)

Γ(2β)Γ(1
2
− β − im)Γ(1

2
− β − iñR)

. (5.18)

11This is not the same Green’s function used in Fermi’s golden rule; there, G was defined by Euclidean
time ordering, see [31] for a discussion. For real β, these are related by Im GR ∼ σabs.
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Let us check this expression against the CFT. First, it has the expected high frequency

behavior for a CFT correlator with hL = hR = 1
2

+ β,

GR(nR, m) ∼ m2βn2β
R as nR/TR, m/TL → ∞ . (5.19)

Second, it is analytic in the upper half of the complex frequency plane, and has poles at

m(k) = −i(1
2

+ β + k) (5.20)

ñ
(j)
R = −i(1

2
+ β + j) , (5.21)

with j, k ∈ Z. These are precisely the poles expected in the retarded correlator of the CFT

[35]. Finally, we can check GR by comparing to the momentum-space Euclidean Green’s

function. From (5.10), left-movers and right-movers each contribute

GE(ωE) = Ch

∫ 1/T

0

eiωEτ

(

πT

sin(πTτ)

)2h

, (5.22)

where τ is Euclidean time, ωE is the Euclidean frequency, and Ch is a constant that can

depend on the dimension. It is only defined at the discrete frequencies

ω
(k)
E = 2πkT (5.23)

with k an integer. The integral diverges but can be defined by analytic continuation from

Re h > 1
2
, giving

GE(ωE) = Ch
(πT )2h−222hπeiωE/2TΓ(1 − 2h)

Γ(1 − h + ωE

2πT
)Γ(1 − h− ωE

2πT
)
. (5.24)

The retarded correlator GR(nR, m) must satisfy

GR(iωR, iωL) = GE(ωR, ωL) (5.25)

at the allowed frequencies (5.23). Using (5.18) for GR, this relation is satisfied (up to the

normalization Ch), so indeed we find that GR ∼ B/A has the correct frequency dependence

for the Green’s function of a finite temperature conformal field theory. This argument holds

for β real or imaginary, although the agreement for real β was already guaranteed by the

results of the previous section.

In conclusion, the reaction of the NHEK region to an incoming wave is fully characterized

by the ratioA/B of incoming/outgoing waves with no flux out of the past horizon. Even when

β is imaginary, this ratio is microscopically reproduced by an appropriate finite-temperature

two-point function of the dual CFT. Once this ingredient is computed from the CFT, the

full Press-Teukolsky absorption probability for asymptotic plane waves (4.31) is correctly

reproduced by folding it into the general formula (4.27).

18



6 5D Black Holes

We now move to five dimensions and consider a general near-extreme rotating black hole

carrying up to three electric charges [36, 37, 38, 39, 40]. This solution has been studied

extensively in string theory and supergravity [41] as the first stringy example of AdS/CFT.

It is of interest to make contact between Kerr/CFT and these investigations. At some point

(but not in this paper!) one would like to understand the relation between the CFTs of

AdS/CFT and Kerr/CFT for these black holes.12 The three-charged version, often referred

to as the D1-D5-P black hole, has a microscopic construction in string theory and the exact

CFT is known. The supersymmetric rotating case is often referred to as the BMPV black

hole. The discussion of this section will in particular include the case of no charges which

is just pure 5D Kerr [36]. The general solution was recently considered in the context of

the Kerr/CFT correspondence in [43]. We will find certain simplifications occur in five

dimensions which clarify the structure of Kerr/CFT.

The low-energy, ω ∼ 0 greybody factors of the D1-D5-P black hole were computed in

[11, 40]. An especially clear and relevant paper for our purposes is [42]. Although there

are some similarities in the computations, these previously-studied low-energy modes do not

penetrate the 5D NHEK region. This region is probed by the near-superradiant modes with

ω ∼ mΩH which we consider here. In this section we show that the black hole decay rate

into these near-superradiant modes is precisely reproduced by the dual CFT.

6.1 Geometry

6.1.1 Full solution

We consider a black hole parameterized by one spin a, three charges Q1,5,p, and an additional

parameter M0. It is a solution of type IIB supergravity compactified on T 4 × S1. It is

mathematically convenient to view it as the KK reduction of a black string in six dimensions.

12A few comments can be made in this direction. These CFTs cannot be the same because they have
different central charges and a different relation between the mass and spin of a bulk field and its dual
operator. In the stringy AdS description, an extreme rotating black hole is a state with all right moving
fermions filled up to some Fermi energy related to the value of J . For the range of J considered here, this
Fermi energy is above the scale at which the CFT approximation to the D1-D5 gauge theory breaks down and
so AdS/CFT cannot be used. Previous analyses [11, 40, 42] considered low energy scattering which couples
to fermions at the bottom of the Fermi sea. In this paper we work near the superradiant bound which is
the top of the Fermi sea. It is possible that the CFT of this paper is the one governing long-wavelength
fluctuations of the surface of the Fermi sea.
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The 6D metric is

ds2 = −
(

1 −M0

c2p
f

)

dt̂2√
H1H5

+

(

1 +M0

s2
p

f

)

dŷ2

√
H1H5

(6.1)

−M0
sinh 2δp

f
√
H1H5

dt̂dŷ + f
√

H1H5

(

r̂2dr̂2

f 2 −M0r̂2
+ dθ̂2

)

f
√

H1H5(cos2 θ̂dψ̂2 + sin2 θ̂dφ̂2) +
M0a

2

f
√
H1H5

(cos2 θ̂dψ̂ + sin2 θ̂dφ̂)2

− 2M0a

f
√
H1H5

(

(c1c5cp − s1s5sp)dt̂+ (s1s5cp − c1c5sp)dŷ
)

(cos2 θ̂dψ̂ + sin2 θ̂dφ̂) ,

where ci = cosh δi, si = sinh δi,

Hi = 1 +M0
sinh2 δi
f

, f = r̂2 + a2 , (6.2)

and the boosts δ1,5,p are related to the charges,

M =
M0

2
(cosh 2δ1 + cosh 2δ5 + cosh 2δp) (6.3)

JR = Jφ + Jψ = 2aM0(c1c5cp − s1s5sp) (6.4)

Qi = M0sici (i = 1, 5, p) , (6.5)

and ŷ ∼ ŷ + 2π is the KK direction. There is a more general solution with two independent

angular momenta, but we have set the combination JL = Jφ−Jψ to zero. For this case there

is an extra SU(2) rotational symmetry which considerably simplifies matters.

The BPS limit is M0 → 0, a → 0 with the charges held fixed. This limit is the static

D1-D5-P, which has a BTZ factor in the near-horizon decoupling limit (ie, the usual limit

of AdS/CFT). We are interested in a different limit, which is a family of extremal, non-

supersymmetric black holes obtained by setting

M0 = 4a2 , (6.6)

and their near-extremal neighbors.

The surface gravities at the inner and outer horizons r2
± = 1

2
(M0−2a2)±1

2

√

M0(M0 − 4a2)

are
1

κ±
=

√
M0

2

(

c1c5cp + s1s5sp
√

1 − 4a2/M0

± (c1c5cp − s1s5sp)

)

. (6.7)

In terms of these the temperatures TR,L = 1/βR,L are defined as

βR,L = 2π

(

1

κ+
± 1

κ−

)

(6.8)
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which in turn are related to the Hawking temperature as T−1
H = βH = 1

2
(βL + βR). The

horizon angular velocities Ωψ and Ωφ give

ΩR = Ωφ + Ωψ =
4a

M0

[

(c1c5cp + s1s5sp) + (c1c5cp − s1s5sp)
√

1 − 4a2/M0

]−1

. (6.9)

The linear velocities of the inner and outer horizons are

V± =
(c1c5sp + s1s5cp) ± (c1c5sp − s1s5cp)

√

1 − 4a2/M0

(c1c5cp + s1s5sp) + (c1c5cp − s1s5sp)
√

1 − 4a2/M0

; (6.10)

below V+ is also referred to as VH . It is also useful to write the linear velocities as VR,L =

− βH

βR,L
(V+ ± V−).

6.1.2 Near-horizon limit

The near-horizon limit of the extremal 6D black string is similar to NHEK. It is a fiber over

AdS2, but in the 5D Jφ = Jψ case the fiber is simpler because the SU(2)L symmetry requires

homogeneity. It can be written as squashed S3 fibered over warped AdS3 with constant

squashing parameters.

To reach the near-horizon limit from (6.1) at M0 = 4a2, define

t =
ΩR

2a2
t̂ǫ , r =

r̂2 − a2

ǫ
, y = ŷ − VH t̂ ,

ψ = ψ̂ + φ̂− ΩRt̂ , φ = ψ̂ − φ̂ , θ = 2θ̂

Taking ǫ → 0 gives the near-horizon metric obtained in [42]. It is convenient to define the

shifted/rescaled coordinates

ỹ =
2y

Y
(6.11)

ψ̃ = ψ +
4Py

Y

where

Y =
a sinh 2δ1 sinh 2δ5
s1s5sp + c1c5cp

(6.12)

= Q1Q5
ΩR

4a2

and

P =
s1s5sp − c1c5cp

2(s1s5sp + c1c5cp)
. (6.13)
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Now we drop the tildes and work in these near-horizon coordinates for the rest of this section.

The near-horizon metric is13

4

K0
ds2 = −r2dt2 +

dr2

r2
+ γ(dy + rdt)2 + γ(dψ + cos θdφ)2 (6.14)

+2αγ(dy + rdt)(dψ + cos θdφ) + dθ2 + sin2 θdφ2

where the radius and deformation parameters are

K0 = 2a2
√

cosh(2δ1) cosh(2δ5) (6.15)

α =
cosh 2δ1 + cosh 2δ5

1 + cosh 2δ1 cosh 2δ5

γ = 1 +
1

cosh 2δ1 cosh 2δ5
.

In terms of the SL(2,R)R × SU(2)L invariant forms,

σ1 = cosψdθ + sin θ sinψdφ (6.16)

σ2 = − sinψdθ + sin θ cosψdφ

σ3 = dψ + cos θdφ

w± = −e∓yrdt∓ e∓ydr/r

w3 = dy + rdt ,

the metric can be written in the manifestly SL(2,R)R × SU(2)L -invariant form

4

K0
ds2 = −w+w− + γw2

3 + σ2
1 + σ2

2 + γσ2
3 + 2αγw3σ3 . (6.17)

In the decoupling limit δ1,5 → ∞,

α→ 0 , γ → 1 (6.18)

so we recover locally AdS3 × S3. This turns out to be equivalent to the limit considered in

most string theory discussions.

When JR = 0, the near-horizon local isometry group is SL(2,R)2 × SU(2)2 from the

AdS3 and S3 factors. The generators of SL(2,R)R × SL(2,R)L are

H̄n = −i[−(ǫn(t) +
1

2r2
ǫ′′n(t))∂t + rǫ′n(t)∂r +

1

r
ǫ′′n(t)∂y] (6.19)

ǫn = tn+1 , n = 0,±1

Hn = i[−ǫn(y)∂y + rǫ′n(y)∂r +
1

r
ǫ′′n(y)∂t] (6.20)

ǫn = e−ny , n = 0,±1

13One may also consider a 5D near-extreme near-horizon limit in precise analogy with the 4D near-NHEK
limit of section 3. The result is again globally the same geometry, but in “thermal coordinates” with the
radial variable shifted by the temperature as in (3.8).
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where unbarred quantities act on the left, so are right-invariant, and barred quantities act

on the right. The generators of SU(2)R are

J̄1 = −i(cosψ∂θ +
sinψ

sin θ
∂φ − sinψ cot θ∂ψ) (6.21)

J̄2 = −i(− sinψ∂θ +
cosψ

sin θ
∂φ − cosψ cot θ∂ψ)

J̄3 = −i∂ψ ,

and similarly for the generators J1,2,3 of SU(2)L, but with ψ ↔ φ. When JR 6= 0, the only

isometries that are preserved are

SL(2,R)R × SU(2)L × U(1)R × U(1)L . (6.22)

The coordinates (6.11) were chosen so that the metric is locally independent of δp (although

δp still enters the identification), and the surviving generators are always given by (6.19)-

(6.21) without any dependence on the charges. Although the generators of SL(2,R)L and

SU(2)R are generally not isometries, they commute with the isometries so they are useful

to define invariants. In terms of these generators, the SL(2,R)R×SU(2)L-invariant 1-forms

can be written

σ1,2 = i
4

K0

J̄1,2
µ dxµ (6.23)

σ3 = i
4

K0γ(1 − α2)

(

J̄3
µ − αH0µ

)

dxµ

w± = −i 4

K0

Hµ(±1)dx
µ

w3 = i
4

K0γ(1 − α2)

(

H0µ − αJ̄3
µ

)

dxµ,

and the metric is

ds2 =
4

K0

(

1

2
(H1H−1 +H−1H1) −

1

γ
(H0)

2 − 1

γ(1 − α2)
(J̄3 − αH0)

2 − (J̄1)2 − (J̄2)2

)

,

(6.24)

where here H1 denotes H1µdx
µ etc.

6.2 Macroscopic scattering

In this section we compute the massless scalar absorption cross section and greybody factors

for the five-dimensional black hole with near-superradiant frequencies (ω −mΩR − pVH) ≪
1/
√
M0. A massless scalar field may be expanded in modes as

Φ = e−iωt̂+ipŷ+im(ψ̂+φ̂)R(r)S(θ). (6.25)
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The angular part of the wave equation is

1

sin 2θ
∂θ (sin 2θS ′(θ)) +

[

Kℓ −
m2

cos2 θ
− m2

sin2 θ

]

S(θ) = 0 . (6.26)

The separation constant here is simply

Kℓ = ℓ(ℓ+ 2) . (6.27)

This differs qualitatively from the 4D case where Kℓ must be computed numerically and

depends on m. This simplification arises only for the Jψ = Jφ case considered here. In terms

of the radial variable

x =
r2 − 1

2
(r2

+ + r2
−)

r2
+ − r2

−

, (6.28)

the radial component of the wave equation is

∂x

[(

x2 − 1

4

)

∂xR

]

+
1

4

[

(ω2 − p2)σx+ U −Kℓ

]

R +
1

4

(

(ñL + ñR)2

(x− 1/2)
− (ñL − ñR)2

(x+ 1/2)

)

R = 0.

(6.29)

Here we have defined

σ = r2
+ − r2

− , (6.30)

ñL,R =
1

4πTL,R

(

ω + pVL,R − (m∓m)ΩL,R
TL,R
TH

)

, (6.31)

U = (ω2 − p2)

(

a2 +
1

2
(r2

+ + r2
−) +M0(s

2
1 + s2

5)

)

+ (ωcp − psp)
2M0 . (6.32)

We note that σ vanishes in the extremal limit.

This radial equation can be solved in near and far regions where it simplifies. The near

region is defined by

x≪ xnear ≡
1

σ(ω2 − p2)
. (6.33)

The far region is defined by

x ≫ xfar ≡ 4ñLñR (6.34)

In order to have a matching region we need xfar ≪ xnear. This will be the case for TR → 0

as long as we keep ñR fixed, i.e. we scale all the frequencies to the superradiant bound.14

14Near and far regions with a different structure also exist when ω is scaled to zero [11, 40].
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6.2.1 Far Region

When x takes values in the far region the terms inversely proportional to x in the radial

wave equation are negligible and one finds

∂2
x(xR) +

(

(ω2 − p2)σ

4x
+
U −Kℓ

4x2

)

(xR) = 0. (6.35)

This is solved by Bessel functions,

Rfar(x) = Nx−1/2



A
Γ(1 + 2β)J2β

(

√

(ω2 − p2)σx
)

(

σ
4
(ω2 − p2)

)β
+B

Γ(1 − 2β)J−2β

(

√

(ω2 − p2)σx
)

(

σ
4
(ω2 − p2)

)−β





(6.36)

where

β2 =
1

4
(Kℓ − U + 1). (6.37)

(In the 5D case we will only consider real β.) The far region solution again differs qualitatively

from the 4D case where the solutions are hypergeometric. For small
√

(ω2 − p2)σx,

Rfar(x) → N
[

Ax−
1

2
+β +Bx−

1

2
−β
]

. (6.38)

For large
√

(ω2 − p2)σx,

Rfar(x) → N(AC+ +BC−)x−3/4e−i
√

(ω2−p2)σx +N(AC∗
+ +BC∗

−)x−3/4ei
√

(ω2−p2)σx (6.39)

where

C± =
eiπ( 1

4
±β)Γ(1 ± 2β)

2
√
π
(

σ(ω2−p2)
4

)
1

4
±β

(6.40)

N =

(

σ(ω2 − p2)

4

)− 1

4

(AC+ +BC−)−1 (6.41)

6.2.2 Near Region

In the near region, the linear x term in (6.29) is negligible and the equation simplifies to

∂x

[

(x2 − 1

4
)∂xR

]

+
1

4

[

(U −Kℓ) +
(nL + nR)2

(x− 1/2)
− (nL − nR)2

(x+ 1/2)

]

R = 0. (6.42)

This is the wave equation in “thermal coordinates” in the near-horizon geometry (6.17).

Restricting to incoming waves at the horizon x→ 1/2 gives the near-region solution

Rnear = N

(

x− 1

2

)−i
ñL+ñR

2
(

x+
1

2

)− 1

2
−β+i

ñL+ñR
2

2F1

(

1

2
+ β − iñR,

1

2
+ β − iñL, 1 − i(ñL + ñR);

x− 1
2

x+ 1
2

)

. (6.43)
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Expanding the near region solution at large x,

Rnear → N

[

Γ(1 − iñL − iñR)Γ(−2β)

Γ(1
2

+ β − iñL)Γ(1
2

+ β − iñR)
x−

1

2
+β + (β ↔ −β)

]

. (6.44)

Matching this with the far region solution, we find

A =
Γ(1 − iñL − iñR)Γ(2β)

Γ(1
2

+ β − iñL)Γ(1
2

+ β − iñR)
, (6.45)

B =
Γ(1 − iñL − iñR)Γ(−2β)

Γ(1
2
− β − iñL)Γ(1

2
− β − iñR)

. (6.46)

6.2.3 Absorption Probability

We can compute the incoming radial flux as well as that absorbed at the horizon using the

radial flux

F =
1

2i

(

R∗g(r)

r
∂rR −R

g(r)

r
∂rR

∗

)

(6.47)

where g(r) = (r2 + a2)2 − M0r
2. The absorption probability is the ratio of absorbed to

incoming flux. For the ℓth partial wave,

σabs =
Fabs
Fin

= −(AB∗ − BA∗)(C∗
+C− − C∗

−C+)

|AC+ +BC−|2
. (6.48)

Again when β is real, B is much less than A, and can be ignored. Therefore the absorption

probability becomes

σabs = −(AB∗ −BA∗)(C∗
+C− − C∗

−C+)

|AC+|2

= 2π(ñL + ñR)

(

(ω2 − p2)σ

4

)2β

×
∣

∣

∣

∣

Γ(1
2

+ β − iñL)Γ(1
2

+ β − iñR)

Γ(1 + 2β)Γ(2β)Γ(1− i(ñL + ñR))

∣

∣

∣

∣

2

. (6.49)

The far region normalization factor is

4π

(

σ(ω2−p2)
4

)2β

Γ(1 + 2β)2
σ−2β+1 (6.50)

where the last factor σ−2β+1 comes from the coordinate rescaling (6.28). Therefore the near

region contribution is

σ2β−1

2πΓ(2β)2
sinh(πñL + πñR)

∣

∣

∣

∣

Γ(
1

2
+ β − iñL)Γ(

1

2
+ β − iñR)

∣

∣

∣

∣

2

. (6.51)

26



6.3 Microscopic scattering

6.3.1 Conformal weights

With the metric in the form (6.24), it is easy to analyze the wave equation in terms of

SL(2,R)R representations. Let L̄0, L̄± denote the SL(2,R)R generators in global coordinates.

We will use this approach to compute the L̄0 eigenvalue of a highest weight representation,

which is interpreted as the conformal dimension of a dual CFT operator.15 For a massless

scalar, the wave equation from (6.24) is

2Φ = − 4

K0

(

J̄2 − J̄2
3 +H2 −H2

0 +
(H0 + J̄3)

2

2γ(1 + α)
+

(H0 − J̄3)
2

2γ(1 − α)

)

Φ = 0 , (6.52)

where the Casimirs are

H2 = −1

2
(H1H−1 +H−1H1) +H2

0 (6.53)

J̄2 = J̄2
1 + J̄2

2 + J̄2
3 . (6.54)

This is given in terms of SL(2,R)L generators, but we are organizing solutions into repre-

sentations of the isometry SL(2,R)R, so we substitute H2 = H̄2 = −L̄2. For a mode

Φ = eimψ+inφ+ikyS(θ)F (t, r) , (6.55)

the angular piece is J̄2 = J2 = 1
4
Kℓ = ℓ(ℓ+2)

4
. Making these substitutions and using the

algebras,

K0

4
2 = −

(

L̄−1L̄1 − L̄0(L̄0 − 1) −H2
0 +

(H0 + J̄3)
2

2γ(1 + α)
+

(H0 − J̄3)
2

2γ(1 − α)
+
Kℓ

4
− J̄2

3

)

. (6.56)

From the coordinate transformation (6.11) and the generators (6.19)-(6.21), we have

J̄3 = m , H0 = k =

(

Y

2
p− 2Pm

)

, (6.57)

where P, Y were defined in (6.12, 6.13). Plugging this into (6.56), applying the highest

weight condition L̄1Φ = 0 and using (6.12), (6.13), (6.15) we find the conformal weight

h ≡ L̄0 =
1

2
+ β (6.58)

with

β2 =
1

4

(

1 +Kℓ − Ū
)

(6.59)

Ū = (ω̄2 − p2)
[

2a2 + 4a2(s2
1 + s2

5)
]

+ 4a2(ω̄cp − psp)
2

ω̄ = mΩR + pVH .

Here Ū is the U defined in (6.32) evaluated at extremality and at the superradiant bound.

15Alternately one may read off the conformal weight from the falloff of a scalar field solutions (6.43) near
the boundary of the near-horizon region.
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6.3.2 CFT greybody factors

Now we compute the scattering microscopically, using the finite-temperature CFT Green

function (5.10). Instead of the identification (5.13) we take

hL = hR =
1

2
+ β, TL,R = TL,R, ωL = 2πTLñL, ωR = 2πTRñR. (6.60)

In order to shorten the formulae we have here absorbed the chemical potential terms ap-

pearing in (5.9) by shifts in the definitions of ωL,R. Substituting into (5.10) and using (5.9),

we get

Γ ∼ (TLTR)2β

Γ(1 + 2β)2
e−πñR−πñL|Γ(

1

2
+ β + iñR)|2|Γ(

1

2
+ β + iñL)|2 (6.61)

σabs ∼
(TLTR)2β

Γ(1 + 2β)2
sinh(πñR + πñL)|Γ(

1

2
+ β + iñR)|2|Γ(

1

2
+ β + iñL)|2. (6.62)

Noting that TR ∝ σ, we precisely reproduce the macroscopic result (6.51), up to some

factors containing β.

6.4 5D extreme Kerr

In this subsection we specialize the results of the preceding subsections to the case when

all the 5D black hole charges vanish, but the angular momentum J remains nonzero. This

corresponds to δ1 = δ5 = δp = 0. We then have M = 3M0

2
= 6a2. The 6D metric collapses to

ds2 = −
(

1 − 4a2

f

)

dt̂2 + dŷ2 + f

(

r̂2dr̂2

f − 4a2r̂2
+ dθ̂2

)

+f(cos2 θ̂dψ̂2 + sin2 θ̂dφ̂2) +
4a4

f
(cos2 θ̂dψ̂ + sin2 θ̂dφ̂)2

−8a3

f
dt̂(cos2 θ̂dψ̂ + sin2 θ̂dφ̂) ,

where f = r̂2 +a2. This is the 5d Kerr solution [44] (times a trivial ŷ circle). The coordinate

transformation (6.11) degenerates, so we work in the unshifted coordinates (6.11). One finds

that

VH = 0, ΩR =
1

a
, K0 = 2a2. (6.63)

The near-horizon geometry is

2

a2
ds2 = −w+w− + σ2

1 + σ2
2 + 2(dψ + cos θdφ+ rdt)2 +

2

a2
dy2 , (6.64)
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where the forms are defined in (6.16). The CFT quantities are

hL = hR = h =
1

2
(1 +

√

(ℓ+ 1)2 − 6m2 + 2a2p2) , (6.65)

TL =
1

2π
, TR = TR , (6.66)

ωL =
ω

2
, ωR =

1

2
(ω −mΩR) , (6.67)

and the absorption probability for scalars with no KK momentum p becomes

σabs =
Fabs
Fin

=
(ω −mΩR)

TH

(

ω2σ

4

)2β

×
∣

∣

∣

∣

∣

Γ(h− i ω
4πTL

)Γ(h− i (ω−mΩR)
4πTR

)

Γ(2h)Γ(2h− 1)Γ(1 − i (ω−mΩR)
2πTH

)

∣

∣

∣

∣

∣

2

, (6.68)

which is just a simplified version of (6.49). A similar argument shows that the CFT calcu-

lation reproduces this result.
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