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Abstract 

Skeletal biomineralisation by microbial eukaryotes significantly affects the global 

biogeochemical cycles of carbon, silicon and calcium. Non-skeletal biomineralisation by 

eukaryotic cells, with precipitates retained within the cell interior, can duplicate some of the 

functions of skeletal minerals, e.g. increased cell density, but not the mechanical and 

antibiophage functions of extracellular biominerals.  However, skeletal biomineralisation does 

not duplicate many of the functions of non-skeletal biominerals. These functions include 

magnetotaxis (magnetite), gravity sensing (intracellular barite, bassanite, celestite and gypsum), 

buffering and storage of elements in an osmotically inactive form (calcium as carbonate, oxalate 
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polyphosphate and sulfate; phosphate as polyphosphate) and acid-base regulation, disposing of 

excess hydroxyl ions via an osmotically inactive product (calcium carbonate, calcium oxalate). 

While polyphosphate has a wide phylogenetic distribution among microbial eukaryotes, other 

non-skeletal minerals have more restricted distributions, and as yet there seems to be no 

definitive evidence that the alkaline earth components (Ba and Sr) of barite and celestite are 

essential for completion of the life cycle in organisms that produce these minerals. 

 

 

Keywords: Ballast, Barite, Bassanite, Calcium carbonate, Calcium oxalate, Celestite, Gypsum, 

Magnetite, Magnetotaxis, Polyphosphate, Statoliths 
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INTRODUCTION 

 Biomineralization is commonly discussed in terms of the contrast between two distinct 

processes, biologically-induced mineralization, associated principally with bacterial metabolism, 

and biologically-controlled mineralization, epitomized by skeleton formation in eukaryotic 

organisms.  There is, however, another type of biologically-controlled mineralization that occurs 

across life’s three domains: non-skeletal mineral precipitation within cells. These precipitates 

form within intracellular vesicles under tight enzymatic control, and, like skeletons, they have 

specific functions that contribute to overall fitness.  Indeed, skeletal mineralization in protists 

and sponges has much in common with non-skeletal mineralization within cells, taking place 

inside intracellular compartments bounded by membranes and characterized by local expression 

of genes for the enzymes and templating molecules that guide precipitation.  In a very real sense, 

then, the skeletal precipitation of silica by radiolaria, diatoms, and many other protists (e.g., 

Knoll 2003; Raven & Giordano 2009) and the formation of calcitic scales by coccolithophorid 

algae (e.g., Young & Henriksen 2003) may be particular examples of a broader phenomenon.  

Here, we examine the greater breadth of controlled biomineralization by eukaryotic 

microorganisms: the magnetosomes, statoliths, calcium oxalate raphides, and polyphosphate 

bodies found in diverse protists, with additional reference where appropriate to their occurrence 

in plants and animals. 

 

MAGNETITE AND MAGNETOTAXIS 

 Magnetite (Fe3O4) has two roles in biology. One exploits its hardness: magnetite in the 

radulae of polyplacophoran mollusks (chitons) facilitates the scraping of food from rock 

surfaces. The other role makes use of its magnetic properties: magnetite plays a role in metazoan 

 3
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navigation and in magnetotaxis by some motile bacteria and unicellular eukaryotes. In protists 

that display magnetotaxis, small magnetite crystals occur, as in magnetotactic bacteria, within 

magnetosomes. These magnetosomes appear to be intracellular vesicles with a surrounding lipid 

bilayer membrane; however, detailed electron cryotomographic studies of bacterial 

magnetosomes show that the magnetosomes are invaginations of the cell membrane, so that the  

that magnetite crystals are topologically in the periplasm (Komeili 2007). No comparable data 

are available for the magnetosomes of protists.  This has been observed in a colourless 

phagotrophic euglenoid from brackish sediment in a Brazilian mangel (Torres de Araujo et al. 

1986) and in a colourless dinoflagellate, a ciliate and two cryptomonads, all non-photosynthetic 

phagotrophs, in chemically stratified coastal saline pools (Bazylinski et al. 2000). 

 Magnetotaxis is distributed widely, if sporadically, in eukaryotic phylogeny, having been 

documented in alveolates (ciliates and dinoflagellates), early branching chromalveolates (two 

cryptomonads), and an excavate/discicristate (euglenoid), not to mention magnetite precipitation 

within the Metaoza.  This distribution has been interpreted as an indication that biologically-

controlled magnetite precipitation is a fundamental feature of eukaryotic biology, present in the 

last common ancestor of extant Eucarya (Vali & Kirschvink 1991).  Such speculation is 

consistent with geological evidence that places early eukaryotic diversification within oceans 

that commonly developed subsurface anoxia beneath moderately oxic surface waters (e.g., Anbar 

& Knoll 2002).  Confidence in broad evolutionary conclusions, however, is undermined by 

uncertainties concerning the biosynthetic origin of magnetite in magnetotactic protists. Known 

magnetotactic protists are phagotrophic and co-occur with magnetotactic bacteria (Torres de 

Araujo et al. 1986; Bazylinski et al. 2000). This raises the possibility that the magnetosomes in 

the eukaryotes are obtained from ingested bacteria, although no ingestion of the abundant 
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magnetotactic bacteria in the environment has been observed (Bazylinski et al. 2000, 2007), and 

iron could also be obtained by phagotrophy of non-magnetotactic bacteria or colloidal iron, an 

option not open to magnetotactic bacteria (Maranger et al. 1998; Nodwell & Price 2001). 

Magnetosomes certainly increase the amount of iron required by cells significantly. From the 

percentage of the cell volume of a colourless euglenoid occupied by magnetite (Torres de Araujo 

et al. 1986), the density of magnetite, and the assumption that the dry matter is 45% carbon and 

is one-third of the fresh weight, the Fe in magnetite per total cell C is 6500 µmol per mol. This is 

two orders of magnitude greater than the 60 µmol Fe per mol C in 15 species of non-

magnetotactic eukaryotic marine phytoplankton from nutrient-sufficient cultures (Ho et al. 

2003).   

           The “kleptomagnetosome” suggestion is consistent with similarities in structure of 

magnetite crystals in some magnetotactic protists and in co-occurring bacteria (Bazylinski et al. 

2000, 2007), although it could also be argued that there are few structure-function options for 

magnetosome morphology in unicellular organisms.  Magnetosome morphology in 

magnetotactic euglenoids, however, is distinctly more complex than that found in bacteria or in 

other unicellular eukaryotes, favoring in situ biosynthesis (Torres de Arranjo et al. 1986; 

Bazylinski et al. 2007). Magnetosomes in both bacteria and eukaryotes occur in intracellular 

vesicles; there is no indication from available electron micrographs that the eukaryote 

magnetosomes occur within a bacterial endosymbiont (Bazylinski et al. 2000). Iron and oxygen 

isotope signatures of biogenic magnetite in phagotrophic protists and co-occurring bacteria 

(Mandernak et al. 1999) would be illuminating, although the test is one-sided.  Isotopic 

differences would support arguments for distinct eukaryotic and bacterial biosyntheses, whereas 

similar isotopic abundances could be interpreted either in terms of ingestion or independent 
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precipitation from a common water body.  Without question, some eukaryotes (for example, 

pigeons, honey bees, and chitons) precipitate magnetite, but differentiation between hypotheses 

that call for early origin and polyphyletic loss of magnetite biosynthesis versus polphyletic 

origins on various branches of the eukaryotic tree awaits careful research on the possibility of 

magnetosome derivation from food items. 

 Biogenic magnetite is characterized by crystollographically oriented chains of chemically 

pure crystals, commonly elongated along the [111] axis (Thomas-Keprta et al. 2000, Faivre and 

Schüler 2008), so in sediments it can be differentiated from magnetite of magmatic origin.  

(Telling biogenic from abiogenic magnetite has proven more controversial in martian meteorites, 

where it now appears that elongated single domain crystals may have formed during meteoritic 

impact; Golden et al. 2004).  Because biogenic magnetite can be identified in sediments, these 

crystals have the potential to preserve in the geologic record; indeed, fossils of biogenic 

magnetite are relatively abundant and go back to the Middle Archaean (Chang et al. 1989).  

Geochemical data indicating that Archean oceans were neutral to reducing, with little or no free 

oxygen, require that anaerobic processes must have been used to oxidize 2 Fe(II) to 2 Fe(III) for 

each Fe as Fe(II) in magnetite. In sedimentary rocks deposited after global atmospheric 

oxygenation 2.4 billion years ago and after the origin of eukaryotes (in place by 1.8 billion years 

ago), there is the possibility of a eukaryotic origin for some magnetofossils, although allocating 

these later biogenic magnetites to Eukarya or Bacteria is rarely attempted. While Schumann et al. 

(2008) suggest a eukaryotic origin for the large (up to 4 μm long) spearhead or spindle-shaped 

magnetite found in marine sediments from the Paleocene-Eocene Thermal Maximum (~ 55.6 

million years ago), Lippert (2008) suggests that the large magnetofossils could alternatively have 
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come from very large bacteria comparable to those found in some high-productivity shelf 

environments today. 

 As for the possible selective advantage of magnetotaxis in unicellular eukaryotes, all five 

known examples occur in two saline coastal habitats characterised by physical and chemical 

stratification, with oxygenated surface waters lying atop a hypoxic or anoxic water mass (Torres 

de Araujo et al. 1986; Bazylinski et al. 2000, 2007). Torres de Araujo et al. (1986) point out that 

the Brazilian mangel is within 4o of the equator, so magnetotaxis there would lead to horizontal 

swimming, perhaps also following a zone of specific chemical composition such as oxygen 

concentration at the oxic/anoxic transition zone. Such tracking of this transition zone has also 

been suggested for high latitude magnetotactic organisms (Frankel et al. 1997), although the 

obvious magnetotactic response would not yield near vertical rather than horizontal movement. 

Bazylinski et al. (2000) cite work showing that some microaerophilic ciliates use gravitaxis as 

part of a broader behavioral mechanism for aerotaxis. While magnetite particles have a higher 

density than the general cell contents (Table 1), a role in graviperception is unlikely in view of 

the unavoidable force exerted on them by the Earth’s magnetic field. By increasing overall cell 

density magnetosomes increase the energy cost of upward movement at a given speed and 

decrease that of downward movement. Graviperception in the ciliates involves Müller bodies, 

biomineralized microconcretions that contain either strontium or barium as celestite and barite, 

respectively (Hemmersbach & Häder 1999; Bazylinski et al. 2000; Hemmersbach et al. 2005). 

These two elements also occur as the biominerals barite (BaSO4) and celestite (SrSO4) in 

charophycean algae such as desmids and Charales, with a known gravitropic role for barite 

particles in the rhizoids of the Charales (see below). In this case there is no known connection to 

aerotropism, although the Charales often grow with their rhizoids in hypoxic or anoxic 
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sediments. The role of barite and celestite in eukaryotic microbes is considered in more detail 

below. 

 The use of magnetotaxis or gravitaxis by protists to maintain position in relation to the 

oxic/anoxic transition cannot entirely substitute for a chemotactic response that detects oxygen 

directly (e.g., via a receptor such as haemoglobin), or through detection of an oxidation-

reduction surrogate of oxygen (e.g., ferritin binding of iron). Thus far, the ecological distribution 

of magnetotaxis in protists is restricted to two chemically-stratified coastal marine habitats. They 

could perhaps also occur in inland waters, deeper marine sediments, and in such offshore 

pelagial marine habitats as the central Black Sea that have appropriate oxyclines. 

 A final evolutionary point is whether the occurrence of magnetite in magnetosomes in 

eukaryotes evolved in relation to magnetotaxis, or was co-opted from a function unrelated to 

magnetoperception.  

 

BARITE, CELESTITE AND GRAVIPERCEPTION 

 Just as magnetite’s magnetic properties enable magnetotaxis, the specific gravities of 

barite and celestite facilitate gravitaxis. Barite (BaSO4) and celestite (SrSO4) have densities well 

in excess of other cell constituents, including other common mineralized components (Table 1). 

Two clades of charophyte green algae are known to precipitate barite:  barite (or celestite) 

particles occur in vesicles at the tips (poles) of the two hemicells of placoderm desmids and in 

some other members of the Zygnematales-Desmidales clade, while barite, usually with some 

celestite, occurs in the tips of rhizoids in some Charales (Raven & Giordano 2009; see also 

Kreger & Boere 1969; Sievers and Schmitz 1982). The latter particles act as statocytes in 

graviperception, guiding positively gravitropic growth of the rhizoids.  

 8
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           Celestite, with a small fraction of barite (Ba/Sr ~ 0.003), is the inorganic component of 

skeletons and cysts made by Acantharia (Bernstein & Byrne 2004; De Decker 2004), members 

of the Rhizaria that are sister to the silica secreting polycystine radiolarians (Kunimoto et al. 

2006). Celestite occurs as crystals in the cytoplasm of the flagellate swarmers of some colonial 

radiolarians/acatharians (Hughes et al. 1989; Anderson et al. 1990). Some ciliates (Alveolata) 

have Müller bodies containing celestite or barite that act as statocytes in graviperception of these 

gravitactic organisms (Hemmersbach & Häder 1999; Hemmersbach et al. 2005). Finally, barite 

particles occur in at least two plankonic flagellate species within the Chromista (phylum 

Haptophyta; class Prymnesiophyceae, order Pavlovales; Fresnel et al. 1979, Gayal and Fresnel 

1979). Function is uncertain for these flagellates, but might enable graviperception. Like 

magnetite, then, barite and celestite occur broadly but sporadically in eukaryotic phylogeny, 

arguing in this case for a polyphyletic origin of Ba/SrSO4 precipitation.  

              As far as we can determine there has been no published attempt to determine whether 

Ba and Sr are essential elements for barite- and celestite-producing organisms, in the sense of 

inability to complete their life cycle under axenic culture conditions in as near complete absence 

of the element under investigation as can be obtained. Of course, even if Ba and Sr turned out to 

be non-essential by this definition, these elements could still have significant roles in increasing 

fitness in the field. 

              CaSO4 is much less common in eukaryotic microbes, though it is deposited as the main 

mineral in some desmids (Brook 1981) and is a minor component of the statoliths in some 

characeans (Schroter et al. 1975; Sievers & Schmitz 1982). It is not certain what mineral form of 

CaSO4 is deposited in the eukaryotic microbes. In scyphozona and cubozoan medusae (Phylum 

Cnidaria) statoliths are formed of bassanite, ie. (CaSO4)2·H2O (Tiemann et al. 2002, 2006). 
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Bassanite is not the morph that is most readily precipitated from solution, but it has a 

significantly higher density than gypsum (CaSO4.2H2O), to which bassanite spontaneously 

transforms when placed in contact with water (Tiemann et al. 2002, 2006; Zhang & Sekine 

2007). 

 Expanding on the occurrence of barite or celestite in graviperception, all charalean 

species have barite statocytes that are known to function in positive graviperception. By contrast, 

barite or celestite statocytes (or any other statocytes) are relatively rare in gravitropic ciliates and 

flagellates (Hemmersbach & Häder 1999; Hemmersbach et al. 2005). Graviperception in the 

absence of statocytes is apparently a result of gravity on the cytoplasmic contents acting on 

stretch-sensitive ion channels in what, for the moment, is the lower part of the plasmalemma. 

Such a mechanism does not require a particular spatial arrangement of denser components of the 

cytoplasm. If denser components of the cell are at one peripheral part of the cell then this part of 

the cell will orient at the bottom; this can cause positive gravitaxis if the placement of the ballast 

relative to the flagella and their direction of functioning causes downward swimming, or vice 

versa for negative gravitaxis (Hemmersbach & Häder 1999; Hemmersbach et al. 2005). This 

passive orientation does not involve movement of the denser components relative to the 

intracellular components of the cell, thereby differing from the statocyte mechanism. As does 

magnetite in magnetotactic protists, statocytes in swimming cells increase overall cell density, 

increasing the energy needed to swim upward at a given speed; conversely less energy is 

required for downward swimming. The function of barite crystals in the polar vacuoles of 

placoderm desmids is unclear. 

 There are well-preserved fossils both of desmids with a morphology resembling that of 

extant Closterium (Baschnagel 1966; Waggoner 1994) and of rhizoid-bearing of Charales 
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(Kelman et al. 2004), but neither contain barite or celestite particles, perhaps reflecting 

dissolution during diagenesis.  

 It is hard to discuss gravitaxis and sulphate biomineralization without considering the 

celestite-precipitating Acantharia.  Acantharians are abundant members of the marine 

microplankton.  They commonly outnumber planktonic foraminifera and radiolarians, but 

because they do not fossilize well, they are less well known.  Acantharians leave few fossils 

because at all depths the ocean is significantly undersaturated with respect to celestite, causing 

their skeletons to dissolve (De Decker 2004).  The cost of biomineralization for any mineral 

relates to saturation levels in ambient fluids.  Given the marked undersaturation of seawater with 

respect to celestite, celestite precipitation within cells must require active transport of ions into 

the cytoplasm.  Barite forms a solid substitution series with celestite, and the presence of Ba with 

a Ba/Sr of 3±0.8·10-3 (Bernstein et al., 1998) lessens the saturation problem somewhat.  

However, in past oceans, undersaturation would have been stronger, as sulfate abundance in the 

oceans is higher than it has been for the great majority of Earth history (Gill et al 2007 and 

references therein).  Why celestite, then?   

 Perhaps celestite precipitation in acantharians is of Cenozoic origin, post-dating both the 

increase of marine [SO4
2-] to near modern values and the widespread depletion of silica from 

surface waters by diatoms.  Functionally, the radially oriented spines of acantharian skeletons 

support axopods, much as silica rods do in radiolarians, but the density of celestite presents a 

potential problem – unless gravitaxis or orientation is part of skeletal function.  One might 

speculate that acantharians’ use of celestite in skeleton formation might represent the cooptation 

of a pre-existing mineralization pathway that originally evolved for gravity perception.  

Certainly, this would explain the otherwise puzzling use of this mineral. Unlike the case for 
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celestite, seawater is saturated with respect to barite (Rushdi et al. 2000), raising the question of 

why barite has not been used for skeleton formation.  While this would less the physiological 

cost of precipitation, barite might be too readily precipitated, necessitating inhibitory molecules 

to shape skeletal elements. 

             As a final point about the occurrence of dense alkaline earth sulfate crystals in 

eukaryotic microbial cells, we underscore the obvious point that they unavoidably increase the 

density of the cells. This is of particular relevance for holoplanktonic cells, and meroplanktonic 

dispersal stages of benthic organisms (Raven & Waite 2004; Beardall et al. 2009). This ballast 

effect is most often considered for plankton with external silica (e.g. diatoms, parmophyceans, 

radiolarians, silicoflagellates, synurophytes) or calcium carbonate (e.g. coccolithophores, 

foraminiferans) structures.  A point of relevance to this article is that the minerals are deposited 

internally in all of these cases (except in those foraminiferans that mineralize by agglutination of 

pre-existing external mineral particles: Table 2), and that the increase in density occurs as soon 

as the mineral is formed within the cells. Raven and Waite (2004) suggest that ontogeny may 

reflect evolution: the ballast effects of intracellular silica and calcium carbonate increased fitness 

before externalisation evolved and added skeletal and other functions that require external 

minerals. Such a fitness increase would be most obvious if, for example, diatoms and 

foraminifera evolved silicification as planktonic organisms rather than in the benthos (Raven & 

Waite 2004; Sims et al. 2006; Darling et al. 2009); however, in foraminifera, at least, carbonate 

skeletons appear to have evolved within benthic taxa, long before forams invaded the pelagic 

realm (Ross & Ross 1991).   

 

PHOSPHATE MINERALS: POLYPHOSPHATE BODIES AND ACIDOCALCISOMES 
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Distribution in eukaryotic microbes 

 Apatite (actually carbonated hydroxyapatite, or dahllite; Weiner and Dove 2003) is 

conspicuously apparent as a biomineral in the skeletons of vertebrate animals.  It also occurs in 

the shells of lingulid brachiopods and several other now extinct clades of Cambrian animals 

(summarized by Knoll 2003).  Nonetheless, animal clades with skeletons of calcium carbonate 

greatly outnumber those that form phosphatic bones or shells, and, among algae and protozoans, 

phosphatic skeletons are essentially unknown.  A single paper documents calcium and phosphate 

enrichment in surficial scales of the prasinophycean sensu lato (actually a basal charophycean) 

green alga Mesostigma viride (Domozych et al. 1991), but whether the observed elemental 

enrichment records apatite precipitation or cell wall polyphosphates is unclear (see below).   

 On the other hand, many eukaryotic microbes produce non-skeletal polyphosphate 

granules, with tens or hundreds of orthophosphate residues in a chain.  Hooley et al. (2008) claim 

that “it (polyphosphate) has been shown to be present in all cells of all species studied”, and Rao 

et al. (2009) state that polyphosphate is “found abundant (sic) in every cell in nature”, though we 

adopt a more conservative stance and cite references for polyphosphate occurrence in higher taxa 

of eukaryotic microbes, while admitting that inability to detect polyphosphate in a given cell may 

be a problem of technique (below, and Table 2). The negative charge on the phosphate residues 

in these granules is balanced by (usually) divalent cations, such as Ca2+, Mg2+ or Zn2+. The 

granules are generally intracellular, often surrounded by a lipoprotein membrane.   These 

intracellular, membrane-bounded polyphosphate granules overlap with, but may not be entirely 

subsumed by, the more recently discovered acidocalcisomes, first characterised in apicomplexan 

(Alveolata) parasites (Docampo & Moreno 1999; Docampo et al. 2005). Polyphosphates can also 
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occur in the cell wall of the chlorophycean green alga Chlamydomonas reinhardtii (Werner et al. 

2007), possibly related to the exocytosis of polyphosphate granules in this organism (Komine et 

al. 2000). Polyphosphate granules in the broad sense are also been reported from the 

Opisthokonta (many fungi), non-thecate amoebae (Amoebozoa), Plantae/Archaeoplastida (red 

algae, charophycean, chlorophycean, trebouxiophycean and ulvophycean green algae), Rhizaria, 

Alveolata (apicomplexans, dinoflagellates), Chromista: Ochrista (diatoms, 

chloromonads/raphidophyceans. tribophyceana), Chromista: Haptophyta (coccolithophore) and 

Excavata/Discicristata (euglenoids): see Table 2.   

 

Function of polyphosphates 

 Polyphosphate granules do not serve a biomechanical function similar to that of dahllite 

skeletons in animals or the carbonate and silica skeletons found in other protists. It could be 

argued that phosphate is too scarce in nature to be used skeletally, at least in primary producers, 

as phosphorus availability should ultimately limit primary productivity.  Constraints on nitrogen 

fixation mean that combined nitrogen (i.e. not N2) is commonly the element that proximally 

limits primary production (Vitousek et al. 2002; Raven et al. 2005b; Menge et al. 2008); 

nonetheless, phosphate storage may enable primary producers to maximize production in water 

bodies characterized by patchy distribution, and therefore episodic availability, of both 

phosphate and fixed nitrogen.     

 Polyphosphate provides a biochemically accessible form of phosphorus in a form that is, 

in essence, an osmotically inactive form.  Interestingly, Docampo and Moreno (1999) do not list 

phosphate storage among the possible functions of acidocalcisomes, presumably because of their 

perspective as parasitologists who focus on apicomplexan parasites of metazoans, where 
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phosphate limitation of growth is relatively unlikely.  A storage role is consistent with observed 

changes in polyphosphate with variations in phosphorus supply, e.g., for green algae (Eixler et 

al. 2006; Nishikawa et al. 2006).   

 Raven (1987) and Raven et al. (2005a) have considered the costs and benefits of the use 

of polyphosphate rather than accumulation of inorganic orthophosphate in non-acidocalcisome-

like vacuoles. There is at least a ten-fold saving in the volume within a cell if a certain amount of 

phosphate is stored as polyphosphate with chains containing hundreds of phosphate monomers 

rather than as dissolved monomeric orthophosphate with osmotic constraints on the possible 

concentration (Raven et al. 2005a). This is important for picoplankton where the cell volume is 

close to the minimum that is consistent with free-living existence (Raven et al. 2005a), and could 

also have significance for larger cells (Raven 1987).  When considering polyphosphates as 

storage bodies, we do well to remember that while the total polyphosphate pool changes with 

phosphate availability in the manner expected of a storage material, phosphorus-limited algae 

invariably retain some polyphosphate (see also Rao et al. 2009).  

 At the expense of minimizing the volume associated with phosphate storage, 

polyphosphate depolymerisation and re-polymerisation might also help cells adjust to changes in 

external osmolarity. Leitao et al. (1995) showed that the marine diatom Phaeodactylum 

tricornutum responded to transfer from seawater to a medium of higher salinity by increasing the 

chain length of polyphosphates and a reduction in extractable polyphosphate, while transfer to a 

medium of low salinity increased the number of short-chain polyphosphates and total 

polyphosphate content.  It is not clear, however, if the observed changes actually act in 

osmoregulation.  

 15
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 While the phosphate anhydride bonds in the polyphosphate have a high in vivo free 

energy of hydrolysis and so could potentially act as an energy store (Docampo and Moreno 

1999), it can be readily calculated that even a polyphosphate content per cell equal to the 

phosphate required for a cell doubling would only last for a few minutes of providing all of the 

ATP needed for growth.  

 A further, unavoidable, outcome of storage of polyphosphate is to increase the density of 

the cell (Table 1), as indicated by Romans et al. (1994) for the marine diazotrophic 

cyanobacterium Trichodesmium tenue.  In this species, polyphosphates provide, on average, 

about 20% of the ballast effect of stored polysaccharides, while nitrogen storage as cyanophycin 

also makes a contribution. Eukaryotic microorganisms do not synthesize cyanophycin, although 

storage proteins could act as an analogue, with a higher energy cost of synthesis.  For phosphate, 

eukaryotes have the option of storage as orthophosphate in conventional vacuoles as well in the 

form of polyphosphate in granules.  

 Is the ballast effect of storage of phosphorus as orthophosphate the same as that of 

storage as polyphosphate? This was addressed using calculations similar to those used by Raven 

et al. (2005a) to determine the relative volumes of storage of a given quantity of phosphate as 

polyphosphate and as orthophosphate, but including values of the density of polyphosphate 

granules (Jacobsen et al. 1982) and of solutions of phosphate salts (Boyd and Gradmann 2002). 

In this case the phosphate stored as 1000 mol orthophosphate per cubic metre with a density of 

1060 kg per cubic metre occupies seven times the volume of the same quantity of phosphate as 

polyphosphate with a density of 1950 kg per cubic metre. Ignoring the increment of cell volume 

in the orthophosphate case, the excess density (over water = 1000 kg per cubic metre) for 

orthophosphate is 420/950 or 44% of that of polyphosphate. The overall ballast effect in causing 
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sinking of cells or colonies is clearly greater if a given amount of phosphate is stored as 

polyphosphate than of orthophosphate.  

 These arguments are relevant to planktonic photosynthetic eukaryotes that undergo 

vertical migration over diel or longer time intervals in stratified waters.  The rationale is that the 

surface waters have photosynthetically active radiation but have been stripped of nutrients 

(phosphorus; combined nitrogen for organisms that cannot fix nitrogen) required for the growth 

of primary producers, while deeper waters have limited light but higher nutrient concentrations.  

Acquisition of both light and nutrients can be achieved by vertical migration, employing flagellar 

activity (cryptomonads, dinoflagellates, raphidophytes, Volvox) or a balance of changes in solute 

composition of aqueous vacuoles and macromolecular ballast (large diatoms such as 

Ethmodiscus and Rhizosolenia, the latter frequently with diazotrophic Richelia symbionts; the 

large dinoflagellate Pyrocystis; phycoma stages of prasinophytes) rather than the balance of gas 

vesicles and macromolecular ballast as in cyanobacteria (Beardall et al. 2009).  Under these 

circumstances, upward movement is impeded by the ballast effect of polyphosphate or, to a 

lesser extent, dissolved orthophosphate. 

 

CALCIUM OXALATE WITHIN CELLS 

 Euhedral crystals of calcium oxalate have long been reported from vascular plants, where 

they occur within intracellular vesicles and appear to function in Ca-regulation, defense against 

predators, and, in some cases, a means of sequestering toxic cations, especially Al (Franceschi & 

Nakata 2005). A major function not mentioned by Franceschi and Nakata (2005) is that of acid-

base regulation related to nitrate assimilation in shoots, synthesizing oxalic acid from the neutral 

gaseous CO2. While calcium oxalate is produced in oxalate-precipitating plants grown on 
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ammonium, the calcium oxalate content is increased when the plants are grown on nitrate (Raven 

& Smith 1976). The oxalate anion produced in neutralizing excess hydroxyl ions from the 

assimilation of nitrate into organic matter is often in part precipitated as calcium oxalate, thus 

avoiding generation of excess osmolarity and turgor (Raven & Smith 1976; Raven 1977, 1985, 

1986; Raven & Farquhar 1990; Andrews et al. 2009). There are, of course, consequences for 

acid-base regulation of oxalate precipitation in ammonium-grown land plants. In roots the excess 

protons can be directly secreted to the rooting medium, while in shoots excess protons from 

oxalic acid synthesis and precipitation as calcium oxalate in ammonium-grown plants are 

neutralized by organic anions other than oxalate moved up the xylem and respired in the shoots 

with hydroxyl ion production; the excess protons generated in organic acid synthesis in the roots 

are excreted to the medium (Raven & Smith 1976). 

            It turns out, however, that calcium oxalate crystals occur more widely within the Plantae, 

occurring in a number of coenocytic green ulvophycean algae (Pueschel & West 2007a, and 

references therein) and florideophyte red algae (Pueschel 1995, Pueschel & West 2007b 2007c), 

as well as in the microscopic filamentous green (charophycean) algal filament Spirogyra 

hatillensis (Pueschel 2001).  Oxalic acid synthesis does not invariably involve calcium oxalate 

precipitation, since oxalate anions contributes about 20% to the vacuolar anionic charge in the 

giant-celled marine ulvophycean Acetabularia mediterranea (Saddler 1970) yet this organism 

has not been reported as precipitating calcium oxalate.. Little functional research has been done 

on calcium oxalates in algae, but the functions proposed for vascular plants by Franceschi and 

Nakati (2005) are at least plausible for other members of the Plantae. However, the absence of 

nitrate assimilation at a site remote from a medium that can act as a sink for excess hydroxyl ions 

in aquatic algae makes the stoichiometrically incontestable acid-base regulation role (Raven & 
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Smith 1976) less necessary, as well as being more costly of energy than hydroxyl ion excretion 

to the surrounding water (Raven 1985; Andrews et al. 2009).  There does not even seem to be 

information on whether the nitrogen source has the any effect on the calcium oxalate content of 

algae. 

 Calcium oxalate has also been reported as an intracellular structure in fungi (Arnott 

1995); once again its function is not well understood, but could include Ca-regulation and 

detoxification.  Ca-regulation may also explain reports of other Ca-bearing minerals within 

protists, including calcium carbonate in diverse protists (Fauré-Fremiet 1957) and as aragonite in 

Spirogyra (Mann et al. 1988), gypsum in desmids (Brook 1981; Lowenstam 1986) and both 

calcite and Ca-phosphate (described as apatite, but possibly Ca-polyphosphate bodies) in the 

ciliates Spirostomum ambiguum (Jones 1967) and Euplotes eurystomus (Ruffalo 1978; 

Hausmann and Walz 1979). The acid-base regulation role mentioned for intracellular calcium 

oxalate, i.e. removal of excess hydroxyl ions in an osmotically unthreatening manner, also 

applies to intracellular calcium carbonate (Raven & Smith 1976; Raven 1985), provided that the 

inorganic carbon source for the precipitated carbonate is endogenous (respiratory) carbon 

dioxide, carbon dioxide entering photosynthetic cells, or bicarbonate from the medium. 

 

DISCUSSION 

The evolution of eukaryotic biomineralization 

 In comparisons of biologically-induced mineralization by bacteria and skeletal 

biomineralization by eukaryotes, bacteria invariably seem the more diverse domain.  When 

eukaryotic biomineralization, however, is expanded to include non-skeletal minerals precipitated 

within cells, eukaryotes deposit nearly as many minerals as do bacteria (Lowenstam 1986).  Like 
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most skeletal biominerals, these intracellular precipitates form in enclosed, biologically defined 

spaces (vesicles), guided by enzymatic activity.  That is, they are at the less conspicuous end of a 

broad biomineralogical continuum that includes more familiar bones, shells, frustules and tests. 

 This being the case, it is instructive to ask why eukaryotes show only limited overlap in 

the minerals that they use for skeletons and other functions.  The preceding discussion suggests 

that precipitation of specific non-skeletal minerals evolved under natural selection, exploiting the 

magnetic properties of magnetite, the specific gravity of barite and celestite, and the exchangable 

storage capacity of polyphosphates.  One might equally ask why calcite, aragonite, dahllite and 

amorphous silica comprise the subset of eukaryotic biominerals involved in skeletal 

mineralization.  Once again, material properties contribute to the explanation: composite 

materials of interlayered organic sheets and calcite or aragonite are mechanically resistant to 

abiological forces (especially for benthic organisms) and to forces exerted by grazers; these are 

functional prerequisites for many skeletons.  Silica is not only rigid, resisting forces such as 

those that could be imposed by some grazers (Hamm et al. 2003; cf. Austin et al. 2005, who 

showed that diatom ingestion by foraminiferans resulted in fractured frustules, despite the 

absence of any obvious opposable rigid structures in these grazers), but can be fashioned into 

shapes of exquisite complexity within cells.  Of course, function is only part of the explanation.  

The calcium and carbonate ions required for calcite and aragonite formation are abundant 

(surface seawater is strongly oversaturated with respect to these minerals at the moment, though 

this is subject to modification with global environmental change) and easily incorporated by 

organisms – all cells have fundamental mechanisms for pumping Ca2+ and manipulating total 

CO2.   
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Considering in more detail intracellular mineralization in microbial eukaryotes, before the 

dramatic rise of diatoms to ecological prominence, surface oceans were saturated or nearly so 

with respect to amorphous silica, but abundances of silicified organisms was relatively low.  The 

low concentrations of silicic acid in surface oceans and freshwaters containing diatoms required 

that silicic acid be concentrated to supersaturation in some compartment if silica minerals are to 

form (Raven 1983), an argument that also applies to formation of celestite in today’s ocean. It is 

known that there was (polyphyletic) evolution of active transport mechanisms for silicic acid in 

all silicifiers (Raven & Giordano 2009): this capacity is also found in some non-silicifying 

prasinophycean green algae (Fuhrman et al. 1978; Nelson et al. 1984). This may help to explain 

the predominance of silica in intracellular skeletal biomineralization (see Table 2) but of calcium 

carbonate minerals in those macroscopic skeletons of invertebrate metazoans and coenocytic and 

multicellular algae which are precipitated extracellularly, albeit often in spaces with relatively 

restricted diffusive interaction with the bulk medium and so susceptible to chemical modification 

and enzyme activity. Of course, supersaturation of the medium with respect to the mineral form 

to be precipitated does not preclude intracellular mineralization, as shown by calcite formation in 

coccolithophores and many foraminiferans (Table 2). While bacteria can clearly form 

intracellular biominerals, e.g. polyphosphate, within lipoprotein membranes (e.g. Rao et al. 2009; 

cf. the probably periplasmic status of the apparently intracellular bacterial magnetosomes: 

Komeili 2007), the absence of an endomembrane system means that they do not have the 

possibility of exocytosis of minerals such as can occur in eukaryotes. 

 Perhaps only in the cases of celestite and calcium phosphate mineralization do the realms 

of eukaryotic non-skeletal and skeletal bimineralization overlap.  It must be noted that they 

overlap imperfectly, at least in the case of phosphates.  It is possible that biochemical pathways 
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originally evolved to control intracellular precipitation of polyphosphate bodies became co-opted 

for skeletal phosphate precipitation (see Rao et al. 2009). As noted above, the physiological cost 

of placing large amounts of phosphate in a non-exchangeable reservoir may help to explain why 

primary producers store polyphosphate but do not secrete phosphatic skeletons.  The celestite 

found in acantharian skeletons may, however, reflect the direct evolutionary cooptation of 

mineralization pathways originally used for gravitropism.  

   

Biogeochemical consequences of eukaryotic biomineralization 

 Skeletons have a well understood biogeochemical importance as the major means by 

which calcium carbonate and silica are deposited on the seafloor.  What, if any biogeochemical 

function(s) can be ascribed to nonskeletal biominerals, recognizing that any such functions are 

presumably emergent properties of natural selection favouring mineral formation at the cell 

level? 

 Diaz et al. (2008) provided evidence consistent with a significant role for polyphosphates 

produced by diatoms in the formation of calcium phosphate minerals in marine sediments. 

Sanigrahi and Ingall (2005) had previously emphasized the importance of polyphosphates in 

increasing P fluxes in marine sediments overlain by anoxic waters, and Hopfer et al. (2007) 

indicated the role of polyphosphate produced within sediments in phosphate dynamics, although 

they could not quantify the involvement of microorganisms from the Archaea, Bacteria and 

Eukarya. With these interactions in mind, Algeo and Ingall (2007) indicated several possible 

roles for polyphosphate bodies in the deposition and retention of mineral phosphate in sediments. 

Balancing this, increasing geochemical data implicate absorption onto ferric oxide particles as a 

major means of getting phosphate into sediments and keeping it there, so a biogeochemical role 
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for polyphosphates runs parallel to other processes at work in the marine phosphorus cycle (e.g., 

März et al. 2008).   

 A strong case can be made for the biogeochemical importance of celestite precipitation.  

In some parts of the ocean, e.g. the Indian Ocean just west of Australia, the rate of extraction of 

Sr by acantharians per unit volume of seawater is so great relative to the concentration of Sr in 

the top 400 m of the ocean that it very significantly exceeds the biological extraction rate of Ca 

relative to the Ca concentration. This results in significant decreases in Sr/Ca in the surface 

ocean; dissolution of the acantharian skeletons at greater depths restores the conservative Sr/Ca 

ratio (De Decker 2004). In laboratory experiments Bernstein and Byrne (2004) showed that the 

dissolution of acantharian celestite (Ba/Sr ~ 0.003) leads to the production of barite. Dissolution 

of the celestite in a microenvironment leads to barite oversaturation and the production of Sr-rich 

barite of the kind that is ubiquitous in the water column (Bernstein & Byrne 2004).   This shows 

that Ba-containing acantharian celestite can be an important source of Sr-containing barite in the 

deeper parts of the ocean, and that acantharian production in surface waters can impact 

materially the distribution of both Sr and Ba in the oceans.  Biologically influenced Sr 

abundances in surface oceans are of interest to paleoceanographers because Sr/Ca in carbonate 

skeletons has been used as a proxy for seawater temperature in ancient oceans (de Villiers 1999; 

de Deckker 2004). 

  

CONCLUSIONS 
 
             The diverse minerals considered here are united by being, for the most part, intracellular 

and non-skeletal.  All increase cell density, but otherwise have a diversity of functions, including 

magnetoperception, graviperception, phosphate storage, calcium storage, and acid-base 
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regulation. In addition, intercellular polyphosphate and celestite precipitation may be 

evolutionarily related to extracellular skeletal dahllite and celestite, and the relatively rare 

intracellular deposits of calcium carbonate and of silica (Table 2) may be analagous to early 

stages in the polyphyletic evolution of calcium carbonate and silica skeletons that are deposited 

internally and then exocytosed.  Research on the diversity, physiology, function, phylogenetic 

distribution, and geobiology on non-skeletal minerals in eukaryotic cells is still in its infancy, but 

continuing work has much to tell us about how eukaryotes reflect and influence their 

environments. 
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Table 1 
 
Density of cell components in kg m-3 
 
Magnetite                     5175 
 
Barite                           4500 
 
Celestite                      3960 
 
Dahllite                       3120 
 
Aragonite/Calcite      2710-2930 
 
Bassanite                    2750 
 
Gypsum                      2280 
 
Opal                           2170-2660 
 
Polyphosphate            1950 
 
Nucleic acids              1700 
 
Polyglycan                  1500 
 
Protein                        1300 
 
Triglyceride                 860 
 
1000 mol m-3 
solutions of 
intracellular 
solutes                    985-1156 
 
Seawater                  1030  
 
Air (as in 
Cyanobacterial 
gas vesicles)             1.2 
 
From  Weast (1979), Walsby & Reynolds (1980), Jacobsen et al. (1982), Boyd & Gradmann 
(2002), Zhang & Sekine (2007) and (for dahllite) 
http://.www.geology.neab.net/minerals/carbapat/sort.htm. 
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Table 2 
 
Non-skeletal minerals in eukaryotic microbes 
 
Based on Raven & Giordano (2009),: see also Zettler et al. (1997), Kunimoto et al. (2006). 
 
Higher Taxon Phylum Class Intracellular Minerals References 
Opisthokonta: 
Fungi  
 
Opisthokonta 
Choanoflagella-
ta 

  Ca oxalate 
Polyphosphate 
 
 
 
(SiO2 skeleton before exocytosis) 

Arnott (1995) 
Keck & Stich  
(1957);  
Jacobsen et al.  
(1982);  
Strulu et al. 1983. 
Bovee (1981) 

Amoebozoa   Polyphosphate 
 
 
 
 
(Skeletal SiO2 particles before 
exocytosis in some testate 
species) 

Keck & Stich  
(1957);  
Deslauriers 
et al. (1980) ;  
Anderson 
 (1987, 1994);  
Hooley et al.  
(2008) 

Plantae 
(Archaeo- 
plastida) 

Rhodophyta Cyanidiophyceae 
Bangiophyceae 
Floridiophyceae 

Polyphosphate 
Polyphosphate, SiO2 

Ca oxalate 
Polyphosphate 
 

Yagisawa et al. 
(2009); 
Peuschel (1995);  
Peuschel &  
West (2007a,b.c); 
Niemeyer (1976);  
Chopin et al.  
(1997, 2004) 

Plantae 
(Archaeo- 
plastida) 

Chlorophyta Charophyceae BaSO4/SrSO4 in intracellular 
vesicles in desmids and 
Zygnematales, statoliths in 
rhizoids apices of Charales. 
Occasional CaSO4 in desmids. 
CaCO3 (aragonite) and Ca 
oxalate in Zygnematales 
Polyphosphate 

Brook (1981);  
Lowenstam  
(1986); Schroter  
et al. (1975);  
Sievers and Schmitz  
(1982);Mann et al.  
(1988); Pueschel  
(2001)  
Keck & Stich 
(1057) 

Plantae 
(Archaeo-
plastida) 

Chlorophyta Chlorophyceae Polyphosphate Keck & Stich  
(1957);  
Siderius et al.  
(1996); 
Ruiz et al. (2001) 

Plantae Chlorophyta Prasinophyceae (SiO2 scales before exocytosis in Bovee (1981) 
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(Archaeo- 
plastida) 

a few) 
Polyphosphate 

Hooley et al.  
(2008) 

Plantae 
(Archaeo- 
plastida) 

Chrorophyta Trebouxiophyceae Polyphosphate Keck & Stich  
(1957);  
Bock et al. (1996);  
Eixler et al. (2006) 

Plantae 
(Archaeo-
plastida) 

Chlorophyta Ulvophyceae Polyphosphate 
 
 
Ca oxalate 

Keck & Stich  
(1957); Rubetsov  
& Kulaev 
(1977); Cobb 
 (1978) 
Pueschel &  
West (2007a) 

Rhizaria  Acantharia 
Radiolaria 

 SrSO4 in swarmers 
(Skeletal SrSO4 of Acantharia 
before exocytosis) 

Hughes et al.  
(1989);  
Anderson et al.  
(1990) 

Rhizaria  Foraminifera (Skeletal SiO2 in some) 
(Skeletal CaCO3 before 
exocytosis in many) 

Bovee (1981) 
Pawlowski et al.  
(2003); De Nooijer  
et al. (2009) 

Rhizaria  Euglyphida 
Thaumato- 
monadina 

(Skeletal SiO2 before exocytosis 
in many) 

Anderson (1994); 
Cavalier-Smith and  
Chao (2003) 

Alveolata Ciliata  Fe3O4 in a few 
BaSO4/SrSO4  
 
 
 
Polyphosphate? 
CaCO3 (calcite) 

Bazylinski et al. 
(2000) 
Rieder et al. (1981) 
Hemmersbach and 
Häder (1999);  
Hemmersbach et al.  
(2005);  
Jones (1967),  
Ruffalo (1978);  
Hausmann & 
Walz (1979) 

Alveolata Apicomplexa   Polyphosphate Scott et al (1998);  
Docampo &  
Moreno (1999);  
Docampo et al.  
(2005) 

Alveolata Dinophyta  Fe3O4 in a few 
Polyphosphate 
(Skeletal SiO2 before exocytosis) 

Bazylinski et al.  
(2000); Elgalish  
et al. (1980) 
Bovee (1981) 

Chromista Ochrista Bacillariophyceae 
 

(Skeletal SiO2 before exocytosis) 
 

Raven (1983);  
Raven & Waite  
(2004); Keck  
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Bicoseocida 

Polyphosphate 
 
 
(Skeletal SiO2 before exocytosis) 

& Stich  (1957);  
Leitao  et al. (1995);  
Oku and  
Kamatani  (1995);  
Bovee (1981) 

Chromista Ochrista Chromomonado- 
phyceae 

Polyphosphate Kimura et al. 
(1999) 

Chromista Ochrista Chrysophyceae (Skeletal SiO2 of cysts before 
exocytosis) 

Bovee (1981) 

Chromista Ochrista Palmophyceae (Skeletal SiO2 before exocytosis) Van den Hoek et al.  
(1996) 

Chromista Ochrista Phaeophyceae Polyphosphate Niemeyer (1976) 

Chromista Ochrista Silicoflagellata (Skeletal SiO2) Bovee (1981) 

Chromista Ochrista Synurophyceae (Skeletal SiO2 before exocytosis) Bovee (1981) 

Chromista Ochrista Tribophyceae Polyphosphate Keck and Stich  
(1957) 

Chromista Haptophyta Pavlovophyceae BaSO4/SrSO4 in a few Fresnel et al.  
(1979);  
Gayral & Fresnel  
(1979) 

Chromista Haptophyta Prymnesiophyceae (Skeletal CaCO3 before 
exocytosis in coccolithophores) 
 
(Skeletal SiO2 before exocytosis) 
Polyphosphate 

Young &  
Henriksen  
(2003); Raven  
& Waite (2004); 
Yoshida et al.  
(2006) Dyhrman  
et al. (2005) 

Chromista Cryptophyta  Fe3O4 in a few 
Polyphosphate 

Bazylinski et al. 
(2000) 
Heldal (1996) 

Excavata/ 
Discicristata 

Euglenophyta 
 
 
Bodonida 
Trypano-
somida 

 Fe3O4 in a few 
 
Polyphosphate 
(SiO2 scales before exocytosis) 
Polyphosphate 

Torres de Araujo  
et al. (1986); Keck  
& Stich (1957) 
Bovee (1981) 
Docampo &  
Moreno (1999) 
Docampo et al. 
(2005) 

 
 
 
 


