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Abstract The resistive or non-resistive nature of the
extracellular space in the brain is still debated, and is
an important issue for correctly modeling extracellular
potentials. Here, we first show theoretically that if the
medium is resistive, the frequency scaling should be
the same for electroencephalogram (EEG) and mag-
netoencephalogram (MEG) signals at low frequencies
(<10 Hz). To test this prediction, we analyzed the
spectrum of simultaneous EEG and MEG measure-
ments in four human subjects. The frequency scaling of
EEG displays coherent variations across the brain, in
general between 1/ f and 1/ f 2, and tends to be smaller
in parietal/temporal regions. In a given region, although
the variability of the frequency scaling exponent was
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higher for MEG compared to EEG, both signals con-
sistently scale with a different exponent. In some cases,
the scaling was similar, but only when the signal-to-
noise ratio of the MEG was low. Several methods of
noise correction for environmental and instrumental
noise were tested, and they all increased the difference
between EEG and MEG scaling. In conclusion, there
is a significant difference in frequency scaling between
EEG and MEG, which can be explained if the extra-
cellular medium (including other layers such as dura
matter and skull) is globally non-resistive.

Keywords EEG · MEG · Local field potentials ·
Extracellular resistivity · Maxwell equations ·
Power-law

1 Introduction

An issue central to modeling local field potentials is
whether the extracellular space around neurons can be
considered as a resistive medium. A resistive medium
is equivalent to replacing the medium by a simple
resistance, which considerably simplifies the computa-
tion of local field potentials, as the equations to cal-
culate extracellular fields are very simple and based
on Coulomb’s law (Rall and Shepherd 1968; Nunez
and Srinivasan 2005). Forward models of the EEG and
inverse solution/source localization methods also as-
sume that the medium is resistive (Sarvas 1987; Wolters
and de Munck 2007; Ramirez 2008). However, if the
medium is non-resistive, the equations governing the
extracellular potential can be considerably more com-
plex because the quasi-static approximation of Maxwell
equations cannot be made (Bédard et al. 2004).

http://dx.doi.org/10.1007/s10827-010-0263-2
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Experimental characterizations of extracellular re-
sistivity are contradictory. Some experiments reported
that the conductivity is strongly frequency dependent,
and thus that the medium is non-resistive (Ranck 1963;
Gabriel et al. 1996a, b, c). Other experiments reported
that the medium was essentially resistive (Logothetis
et al. 2007). However, both types of measurements
used current intensities far larger than physiological
currents, which can mask the filtering properties of the
tissue by preventing phenomena such as ionic diffusion
(Bédard and Destexhe 2009). Unfortunately, the issue
is still open because there exists no measurements to
date using (weak) current intensities that would be
more compatible with biological current sources.

In the present paper, we propose an indirect method
to estimate if extracellular space can be considered
as a purely resistive medium. We start from Maxwell
equations and show that if the medium was resistive,
the frequency-scaling of electroencephalogram (EEG)
and magnetoencephalogram (MEG) recordings should
be the same. We then test this scaling on simultaneous
EEG and MEG measurements in humans.

2 Methods

2.1 Participants and MEG/EEG recordings

We recorded the electromagnetic field of the brain
during quiet wakefulness (with alpha rhythm occasion-
ally present) from four healthy adults (4 males ages
20–35). Participants had no neurological problems in-
cluding sleep disorders, epilepsy, or substance depen-
dence, were taking no medications and did not consume
caffeine or alcohol on the day of the recording. We used
a whole-head MEG scanner (Neuromag Elekta) within
a magnetically shielded room (IMEDCO, Hagendorf,
Switzerland) and recorded simultaneously with 60
channels of EEG and 306 MEG channels (Nenonen
et al. 2004). MEG SQUID (super conducting quantum
interference device) sensors are arranged as triplets
at 102 locations; each location contains one “magne-
tometer” and two orthogonal planar “gradiometers”
(GRAD1, GRAD2). Unless otherwise noted, MEG
will be used here to refer to the magnetometer record-
ings. Locations of the EEG electrodes on the scalp of
individual subjects were recorded using a 3D digitizer
(Polhemus FastTrack). HPI (head position index) coils
were used to measure the spatial relationship between
the head and scanner. Electrode arrangements were
constructed from the projection of 3D position of elec-
trodes to a 2D plane in order to map the frequency
scaling exponent in a topographical manner. All EEG

recordings were monopolar with a common reference.
Sampling rate was 1,000 Hz.

For all subjects, four types of consecutive recordings
were obtained, in the following order: (1) Empty-room
recording; (2) Awake “idle” recording where subjects
were asked to stay comfortable, without movements in
the scanner, and not to focus on anything specific; (3)
a visual task; (4) sleep recordings. All idle recordings
used here were made in awake subjects with eyes open,
where the EEG was desynchronized. A few minutes of
such idle time was recorded in the scanner. For each
subject, three awake segments with duration of 60 s
were selected from the idle recordings (see example
signals in Fig. 1).

As electrocardiogram (ECG) noise often contami-
nates MEG recordings, Independent component analy-
sis (ICA) algorithm was used to remove such conta-
mination; either Infomax (Bell and Sejnowski 1995)
or the “Jade algorithm” from the EEGLAB toolbox
(Delorme and Makeig 2004) was used to achieve proper
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Fig. 1 Simultaneous EEG and MEG recordings in an awake
human subject. This example shows a sample of channels from
MEG/EEG after ECG noise removal. Labels refer to ROIs as
defined in Section 2 (also see Fig. 4). FR frontal, VX vertex and
PT Parietotemporal. These sample channels were selected to rep-
resent both right and left hemispheres in a symmetrical fashion.
Inset magnification of the MEG (red) and “empty-room” (green)
signals superimposed from four sample channels. All traces are
before any noise correction, but after ECG decontamination
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decontamination. In all recordings, the ECG compo-
nent stood out very robustly. In order not to impose
any change in the frequency content of the signal, we
did not use the ICA to filter the data on any prominent
independent oscillatory component and it was solely
used to decontaminate the ECG noise. We verified
that the removal of ECG did not change the scaling
exponent (not shown).

In each recording session, just prior to brain record-
ings, we recorded a few minutes of the electromagnetic
field present within the dewar in the magnetic shielded
room. Similar to wake epochs, three segments of 60 s.
duration were selected for each of the four recordings.
This will be referred to “empty room” recordings and
will be used in noise correction of the awake recordings.

In each subject, the power spectral density (PSD)
was calculated by first computing the Fast Fourier
transform (FFT) of three awake epochs, then aver-
aging their respective PSDs (square modulus of the
FFT). This averaged PSD was computed for all EEG
and MEG channels in order to reduce the effects of
spurious peaks due to random fluctuations. The same
procedure was also followed for empty-room signals.

2.2 Noise correction methods

Because the environmental and instrumental sources of
noise are potentially high in MEG recordings, we took
advantage of the availability of empty-room recordings
to correct for the presence of noise in the signal. We
used five different methods for noise correction, based
on different assumptions about the nature of the noise.
We describe below these different correction meth-
ods, while all the details are given in Supplementary
Methods.

A first procedure for noise correction, exponent sub-
traction (ES), assumes that the noise is intrinsic to the
SQUID sensors. This is justified by the fact that the
frequency scaling of some of the channels is identical to
that of the corresponding empty-room recording (see
Sections 4.2 and 4.3). In such a case, the scaling is
assumed to entirely result from the “filtering” of the
sensor, and thus the correction amounts to subtract the
scaling exponents.

A second class of noise subtraction methods assume
that the noise is of ambient nature and is uncorrelated
with the signal. This characteristics, warrants the use
of spectral subtraction (where one subtracts the PSD
of the empty-room from that of the MEG record-
ings), prior to the calculation of the scaling exponent.
The simplest form of spectral subtraction, linear multi-
band spectral subtraction (LMSS), treats the sensors
individually and does not use any spatial/frequency-

based statistics in its methodology (Boll 1979). An
improved version, nonlinear multiband spectral sub-
traction (NMSS), takes into account the signal-to-noise
ratio (SNR) and its spatial and frequency characteris-
tics (Kamath and Loizou 2002; Loizou 2007). A third
type, Wiener filtering (WF), uses a similar approach
as the latter, but obtain an estimate of the noiseless
signal from that of the noisy measurement through
minimizing the Mean Square Error (MSE) between the
desired and the measured signal (Lim and Oppenheim
1979; Abd El-Fattah et al. 2008).

A third type of noise subtraction, partial least
squares (PLS) regression, combines Principal compo-
nent analysis (PCA) methods with multiple linear re-
gression (Abdi 2010; Garthwaite 1994). This methods
finds the spectral patterns that are common in the MEG
and the empty-room noise, and removes these patterns
from the PSD.

2.3 Frequency scaling exponent estimation

The method to estimate the frequency scaling exponent
was composed of steps: First, applying a spline to obtain
a smooth FFT without losing the resolution (as can
happen by using other spectral estimation methods);
Second, using a simple polynomial fit to obtain the
scaling exponent. To improve the slope estimation,
we approximated the PSD data points using a spline,
which is a series of piecewise polynomials with smooth
transitions and where the break points (“knots”) are
specified. We used the so-called “B-spline” (see details
in de Boor 2001).

The knots were first defined as linearly related to
logarithm of the frequency, which naturally gives more
resolution to low frequencies, to which our theory ap-
plies. Next, in each frequency window (between con-
secutive knots), we find the closest PSD value to the
mean PSD of that window. Then we use the corre-
sponding frequency as the optimized knot in that fre-
quency range, leading the final values of the knots.
The resulting knots stay close to the initial distribution
of frequency knots but are modified based on each
sensor’s PSD data to provide the optimal knot points
for that given sensor (Fig. 2(a)). We also use additional
knots at the outer edges of the signal to avoid boundary
effects (Eilers and Marx 1996). The applied method
provides a reliable and automated approach that uses
our enforced initial frequency segments with a high
emphasis in low frequency and it optimizes itself based
on the data. After obtaining a smooth B-spline curve,
a simple 1st degree polynomial fit was used to estimate
the slope of the curve between 0.1–10 Hz (the fit was
limited to this frequency band in order to avoid the
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Fig. 2 (a) Log-log scale of the PSD vs frequency of a sam-
ple MEG sensor along with the corresponding log(PSD) values
(shown as circles) at optimized knots in log-scale. (b) 1st degree
polynomial fit on B-spline curve effectively captures properties
of the signal better than simple polynomial fit and avoids the
10 Hz peak. The fit was limited between 0.1–10 Hz excluding the
boundaries. This limits the fit approximation to the next limiting
optimized knots (between 0.1 and 0.2 to between 9–10 Hz) to
avoid the peaks at alpha and low frequencies (shown by vertical
dotted lines)

possible effects of the visible peak at 10 Hz on the esti-
mated exponent). Using this method provides a reliable
and robust estimate of the slope of the PSD in logarith-
mic scale, as shown in Fig. 2(b). For more details on
the issue of automatic non-parametric fitting, and the
rationale behind combining the polynomial with spline
basis functions, we refer the reader to Magee (1998)
as well as Royston and Altman (1994) and Katkovnik
et al. (2006).

This procedure was realized on all channels automat-
ically (102 channels for MEG, 60 channels for EEG,

for each patient). Every single fit was further visually
confirmed. In the case of MEG, noise correction is
essential to validate the results. For doing so, we used
different methods (as described above) to reduce the
noise. Next, all the mentioned steps of frequency scal-
ing exponents were carried out on the corrected PSD.
Results are shown in Fig. 4.

2.4 Region of Interest (ROI)

Three ROIs were selected for statistical comparisons
of the topographic plots. As shown in Fig. 4(f), FR
(Frontal) ROI refers to the frontal ellipsoid, VX
(Vertex) ROI refers to the central disk located on vertex
and PT (Parietotemporal) refers to the horseshoe ROI.

3 Theory

We start from first principles (Maxwell equations)
and derive equations to describe EEG and MEG
signals. Note that the formalism we present here is
different than the one usually given (as in Plonsey 1969;
Gulrajani 1998), because the linking equations are here
considered in their most general expression (convo-
lution integrals), in the case of a linear medium (see
Eq. 77.4 in Landau and Lifchitz 1984). This generality
is essential for the problem we treat here, because our
aim is to compare EEG and MEG signals with the
predictions from the theory, and thus the theory must
be as general as possible.

3.1 General formalism

Maxwell equations can be written as

∇ · D = ρfree ∇ · B = 0

∇ × E = −∂B
∂t

∇ × H = j + ∂D
∂t

(1)

If we suppose that the brain is linear in the electromag-
netic sense (which is most likely), then we have the two
following linking equations. The first equation links the
electric displacement with the electric field:

D =
∫ +∞

−∞
ε(τ )E(t − τ)dτ (2)

where ε is a symmetric second-order tensor.
A second equation links magnetic induction and the

magnetic field:

B =
∫ +∞

−∞
μ(τ)H(t − τ)dτ (3)

where μ is a symmetric second-order tensor.
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If we neglect non-resistive effects such as diffusion
(Bédard and Destexhe 2009), as well as any other non-
linear effects,1 then we can assume that the medium is
linear. In this case, we can write:

j =
∫ +∞

−∞
σ(τ)E(t − τ)dτ (4)

where σ is a symmetric second-order tensor.2 Because
the effect of electric induction (Faraday’s law) is negli-
gible, we can write:

∇ · D = ρfree ∇ · B = 0

∇ × E = 0 ∇ × H = j + ∂D
∂t

(5)

This system is much simpler compared to above,
because electric field and magnetic induction are
decoupled.

By taking the Fourier transform of Maxwell equa-
tions (Eq. (1)) and of the linking equations (Eqs. (2)–
(4)), we obtain:

∇ · D f = ρfree
f ∇ · B f = 0

∇ × E f = 0 ∇ × H f = j f + iωD f
(6)

where ω = 2π f and

D f = ε f E f

B f = μ f H f

j f = jp
f + σ f E f (7)

where the relation σ f E f in Eq. (7) is the current density
produced by the (primary) current sources in the ex-
tracellular medium. Note that in this formulation, the
electromagnetic parameters ε f , μ f and σ f depend on
frequency.3 This generalization is essential if we want

1Examples of nonlinear effects are variations of the macroscopic
conductivity σ f with the magnitude of electric field E. Such varia-
tions could appear due to ephaptic (electric-field) interactions for
example. In addition, any type of linear reactivity of the medium
to the electric field or magnetic induction can lead to frequency-
dependent electric parameters σ, ε, μ (for a detailed discussion of
such effects, see Bédard and Destexhe 2009).
2Note that in textbooks, these linking equations (Eqs. (2)–(4))
are often algebraic and independent of time (for example, see
Eqs. 5.2-6, 5.2-7 and 5.2-8 in Gulrajani 1998). The present formu-
lation is more general, more in the line of Landau and Lifchitz
(1984).
3In textbooks, the electric parameters are sometimes considered
as complex numbers, for example with the notion of phasor (see
Section 5.3 in Gulrajani 1998), but they are usually considered
frequency independent.

the formalism to be valid for media that are linear
but non-resistive, which can expressed with frequency-
dependent electric parameters. It is also consistent with
the Kramers–Kronig relations (see Landau and Lifchitz
1984; Foster and Schwan 1989).

jp
f is the current density of these sources in Fourier

frequency space. This current density is composed of
the axial current in dendrites and axons, as well as the
transmembrane current. Of course, this expression is
such that at any given point, there is only one of these
two terms which is non-zero. This is a way of preserving
the linearity of Maxwell equations. Such a procedure is
legitimate because the sources are not affected by the
field they produce.4

3.2 Expression for the electric field

From Eq. (6) (Faraday’s law in Fourier space), we can
write:

E f = −∇V f . (8)

From Eq. (6) (Ampère–Maxwell’s law in Fourier
space), we can write:

∇ · (∇ × H f ) = ∇ · j f + iω∇ · (ε f E f )

= ∇ · jp
f − ∇ · ((σ f + iωε f )∇V f ) = 0 (9)

Setting γ f = σ f + iωε f , one obtains:

∇ · (γ f ∇V f ) = ∇ · jp
f (10)

where ∇ · jp
f is a source term and γ f is a symmetric

second-order tensor (3 × 3). Note that this tensor de-
pends on position and frequency in general, and cannot
be factorized. We will call this expression (Eq. (10)) the
“first fundamental equation” of the problem.

3.3 Expression for magnetic induction

From the mathematical identity

∇ × ∇ × X = −∇2X + ∇(∇ · X) (11)

it is clear that this is sufficient to know the divergence
and the curl of a field X, because the solution of ∇2 X is
unique with adequate boundary conditions.

As in the case of magnetic induction, the divergence
is necessarily zero, it is sufficient to give an explicit
expression of the curl as a function of the sources.

4If it was not the case, then the source terms would be a function
of the produced field, which would result in more complicated
equations.
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Supposing that μ = μoδ(t) is a scalar (tensor where
all directions are eigenvectors), and taking the curl of
Eq. (6) (D), multiplied by the inverse of γ f , we obtain
the following equality:

∇ × (γ inv
f ∇ × B f ) = μo∇ × (γ inv

f jp
f ) (12)

because ∇ × E f = 0. This expression (Eq. (12)) will be
named the “second fundamental equation”.

3.4 Boundary conditions

We consider the following boundary conditions:

1. on the skull, we assume that V f (r) is differentiable
in space, which is equivalent to assume that the
electric field is finite.

2. on the skull, we assume that n̂ · γ f ∇V f is also con-
tinuous, which is equivalent to assume that the flow
of current is continuous. Thus, we are interested in
solutions where the electric field is continuous.

3. because the current is zero outside of the head, the
current perpendicular to the surface of cortex must
be zero as well. Thus, the projection of the current
on the vector n̂ normal to the skull’s surface, must
also be zero.

n̂(x) · γ f ∇V f (x) = 0 (13)

The latter expression can be proven by calculating the
total current and apply the divergence theorem (not
shown).

3.5 Quasi-static approximation to calculate magnetic
induction

The “second fundamental equation” above implies in-
verting γ f , which is not possible in general, because
it would require prior knowledge of both conductivity
and permittivity in each point outside of the sources.
If the medium is purely resistive (γ f = γ where γ is
independent of space and frequency), one can evaluate
the electric field first, and next integrate B f using the
quasi-static approximation (Ampère–Maxwell’s law).
Because for low frequencies, we have necessarily j f >>

iωD f , we obtain

∇ × B f = μoj f ,

which is also known as Ampère’s law in Fourier space.
Thus, for low frequencies, one can skip the second

fundamental equation. Note that in case this quasi-

static approximation cannot be made (such as for high
frequencies), then one needs to solve the full system
using both fundamental equations. Such high frequen-
cies are, however, well beyond the physiological range,
so for EEG and MEG signals, the quasi-static approx-
imation holds if the extracellular medium is resistive,
or more generally if the medium satisfies ∇ × E f =
−iωB f � 0 (see Eqs. (5) and (6)).

According to the quasi-static approximation, and
using the linking equation between current density and
(Eq. (7)), we can write:

∇ × B f = μo(j
p
f − γ∇V f ) (14)

Because the divergence of magnetic induction is zero,
we have from Eq. (11):

∇ × ∇ × B f = −∇2B f = −μo∇ × (jp
f − γ∇V f ) (15)

This equation can be easily integrated using Poisson
integral (“Poisson equation” for each component in
Cartesian coordinates) In Fourier space, this integral is
given by the following expression

B f (r) = μo

4π

∫∫∫

head

∇ × (jp
f (r

′) − γ∇V f (r′))
‖r − r′‖ dv′ (16)

3.6 Consequences

If the medium is purely resistive (“ohmic”), then γ does
not depend on the spatial position (see Bédard et al.
2004; Bédard and Destexhe 2009) nor on frequency, so
that the solution for the magnetic induction is given by:

B f (r) = μo

4π

∫∫∫

head

∇ × jp
f (r)

‖r − r′‖ dv′ (17)

and does not depend on the nature of the medium.
For the electric potential, from Eq. (10), we obtain

the solution:

V f (x) = − 1
4πγ

∫∫∫

head

∇ · jp
f

|x − x′|dv′ (18)

Thus, when the two source terms ∇ × jp
f and ∇ · jp

f are
white noise, the magnetic induction and electric field
must have the same frequency dependence. Moreover,
because the spatial dimensions of the sources are very
small (see Appendices), we can suppose that the cur-
rent density jp

f (x) is given by a function of the form:

jp
f (x) = jpe(x)F( f ) (19)
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such that ∇ × jp
f and ∇ · jp

f have the same frequency
dependence for low frequencies. Equation (19) consti-
tutes the main assumption of this formalism.

In Appendix A, we provide a more detailed jus-
tification of this assumption, based on the differential
expressions of the electric field and magnetic induc-
tion in a dendritic cable. Note that this assumption is
most likely valid for states with low correlation such
as desynchronized-EEG states or high-conductance
states, and for low-frequencies, as we analyze here (see
details in the Appendices).

Thus, the main prediction of this formalism is that
if the extracellular medium is resistive, then the PSD
of the magnetic induction and of the electric potential
must have the same frequency dependence. In the next
section, we will examine if this is the case for simulta-
neously recorded MEG and EEG signals.

4 Test on experimental data

A total of four subjects were used for the analysis.
Figure 1 shows sample MEG and EEG channels from
one of the subjects, during quiet wakefulness. Although
the subjects had eyes open, a low-amplitude alpha
rhythm was occasionally present (as visible in Fig. 1).
There were also oscillations present in the empty-room
signal, but these oscillations are evidently different
from the alpha rhythm because of their low amplitude
and the fact that they do not appear in gradiometers
(see Supplementary Fig. S1).

In the next sections, we start by briefly presenting the
method that was used to estimate the frequency scaling
of the PSDs. Then we report the scaling exponents
for 0.1–10 Hz frequency bands and their differences in
EEG and MEG recordings.

4.1 Frequency scaling exponent estimation

Because of the large number of signals in the EEG and
MEG recordings, we used an automatic non-parametric
procedure to estimate the frequency scaling (see
Section 2). We used a B-spline approximation by in-
terpolation with boundary conditions to find a curve
which best represents the data (see Section 2). A high
density of knots was given to the low-frequency band
(0.1–10 Hz), to have an accurate representation of the
PSD in this band, and calculate the frequency scaling.
An example of optimized knots to an individual sensor
is shown in Fig. 2(a); note that this distribution of
knots is specific to this particular sensor. The resulting
B-spline curves were used to estimate the frequency
scaling exponent using a 1st degree polynomial fit.

Figure 2(b) shows the result of the B-spline analysis
with optimized knots (in green) capturing the essence
of the data better than the usual approximation of the
slope using polynomials (in red). The goodness of fit
showed a robust estimation of the slope using B-spline
method. Residuals were −0.01 ± 0.6 for empty-room,
0.2 ± 0.65 for MEG awake, 0.05 ± 0.6 for LMSS, 0.005
± 0.64 for NMSS, 0.08 ± 0.5 for WF,0.001 ± 0.02 for
PLS, and −0.02 ± 0.28 for EEG B-spline (all numbers
to be multiplied by 10−14).

4.2 MEG and EEG have different frequency scaling
exponents

Figure 3 shows the results of the B-spline curve fits
to the log-log PSD vs frequency for all sensors of all
subjects. In this figure, and only for the ease of visual
comparison, these curves were normalized to the value
of the log(PSD) of the highest frequency. As can be
appreciated, all MEG sensors (in red) show a different
slope than that of the EEG sensors (in blue). The fre-
quency scaling exponent of the EEG is close to 1 (1/ f
scaling), while MEG seems to scale differently. Thus,
this representation already shows clear differences of
scaling between EEG and MEG signals.

However, MEG signals may be affected by ambient
or instrumental noise. To check for this, we have ana-
lyzed the empty-room signals using the same represen-
tation and techniques as for MEG, amd the results are
represented in Fig. 3 (insets). Empty-room recordings
always scale very closely to the MEG signal, and thus
the scaling observed in MEG may be due in part to
environmental noise or noise intrinsic to the detectors.
This emphasizes that it is essential to use empty-room
recordings made during the same experiment to correct
the frequency scaling exponent of MEG recordings.

To correct for this bias, we have used five different
procedures (see Section 2). The first class of proce-
dure (ES) considers that the scaling of the MEG is
entirely due to filtering by the sensors, which would
explain the similar scaling between MEG and empty-
room recordings. In this case, however, nearly all the
scaling would be abolished, and the corrected MEG
signal would be similar to white noise (scaling expo-
nent close to zero). Because the similar scaling may be
coincidental, we have used two other classes of noise
correction procedures to comply with different assump-
tions about the nature of the noise. The second class, is
composed of spectral subtraction (LMSS and NMSS)
or Wiener filtering (see Section 2). These methods are
well-established in other fields such as acoustics. The
third class, uses statistical patterns of noise to enhance
PSD (PLS method, for details see Section 2).
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Fig. 3 B-spline fits of EEG
awake and MEG awake
(prior to noise correction)
recordings from all four
subjects. Each line refers to
the fit of one sensor in
log(PSD)-log(frequency)
scale. For the ease of visual
comparison of the frequency
scaling exponent, log(PSD)
values are normalized to their
value at the maximum
frequency. Each panel
represents the data related to
one of our four subjects.
These plots show a clear
distinction between the
frequency scaling of EEG
and MEG. Insets show the
comparison between MEG
awake (prior to noise
correction) and MEG
empty-room recordings (not
normalized). Note that the
empty-room scales the same
as the MEG signal, but in
general EEG and MEG scale
differently
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4.3 Spatial variability of the frequency scaling
exponent

We applied the above methods to all channels and
represented the scaling exponents in topographic plots
in Fig. 4. This figure portrays that both MEG and EEG
do not show a homogenous pattern of the scaling expo-
nent, confirming the differences of scaling seen in Fig. 3.
The EEG (Fig. 4(a)) shows that areas in the midline
have values closer to one, while those at the margin
can deviate from 1/ f scaling. MEG on the other hand
shows higher values of the exponent in the frontal area
and a horseshoe pattern of low value exponents in pari-
etotemporal regions (Fig. 4(b)). As anticipated above,
empty-room recordings scale more or less uniformly
with values close to 1/ f (Fig. 4(c)), thus necessitating
the correction for this phenomena to estimate the cor-
rect MEG frequency scaling exponent. Different meth-
ods for noise reduction are shown in Fig. 4: spectral
subtraction methods, such as LMSS (Fig. 4(d)), NMSS
(Fig. 4(e)), WF enhancement (Fig. 4(f)). These correc-
tions preserve the pattern seen in Fig. 4(b), but tend to
increase the difference with EEG scaling: one method
(LMSS) yields minimal correction while the other two
(NMSS and WF) use band-specific SNR information in
order to cancel the effects of background colored-noise
(see Supplementary Fig. S2), and achieve higher degree
of correction (see Supplementary Methods for details).

Figure 4(g) portrays the use of PLS to obtain a noiseless
signal based on the noise measurements. The degree of
correction achieved by this method is higher than what
is achieved by spectral subtraction and WF methods.
Exponent subtraction is shown in Fig. 4(h). This correc-
tion supposes that the scaling is due to the frequency
response of the sensors, and nearly abolishes all the
frequency scaling (see also Supplementary Fig. S3 for a
comparison of different methods of noise subtraction).

4.4 Statistical comparison of EEG and MEG
frequency scaling

Based on the patterns in Fig. 4, we created three ROIs
covering Vertex (FR), Vertex (VX) and the horseshoe
pattern (PT). These masks are shown in Fig. 4(i).

Figure 5(a) represents the overall pattern providing
evidence on the general difference and the wider vari-
ability in MEG recordings. The next three panels relate
to the individual ROIs. Of the spectral subtraction
methods, NMSS achieves a higher degree of correc-
tion in comparison with LMSS (see Fig 4(c), (d) as
well as Supplementary Fig. S3). Because NMSS takes
into account the effects of the background colored-
noise (Supplementary Fig. S2), it is certainly more rele-
vant to the type of signals analyzed here. The results
of NMSS and WF are almost identical and confirm
one another (see Fig. 4(e), as well as Supplementary
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Fig. 4 Topographical representation of frequency scaling expo-
nent averaged across four subjects. (a) EEG awake. (b) MEG
awake. (c) MEG empty-room. (d), (e). MEG after spectral
subtraction of the empty-room noise using linear (LMSS) and
non-linear (NMSS) methods respectively. (f) MEG spectral en-
hancement using Wiener filtering (WF). (g) MEG, partial least
square (PLS) approximation of non-noisy spectrum. (h) Expo-
nent subtraction (the exponent represented is the value of the fre-
quency scaling exponent calculated for MEG signals, subtracted
from the scaling exponent calculated from the corresponding
emptyroom signals). (i) Spatial location of ROI masks (shown in
yellow). FR covers the Frontal, VX covers Vertex and PT spans
Parietotemporal. Dots show spatial arrangement of 102 MEG
SQUID sensor triplets. The background gray-scale figure is same
as the one in panel (b). Note that panels (a) through (h) use the
same color scaling

Fig. S3). Therefore, of this family of noise correction,
only NMSS is portrayed here. Of the methods dealing
with different assumptions about the nature of the
noise, the “Exponent subtraction” almost abolishes the
frequency scaling (Also see in Fig. 4(h), as well as
Supplementary Fig. S3). Applying PLS yields values
in between “Exponent subtraction” and that of NMSS
and is portrayed in Fig. 5.

In the Frontal region (Fig. 5(b)), the EEG scaling ex-
ponents show higher variance by comparison to MEG.
Also, EEG shows some overlaps with the distribution

(A) All areas

(B) Frontal (FR) ROI

(C) Vertex (VX) ROI

(D) Parietotemporal (PT) ROI
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Fig. 5 Statistical comparison of EEG vs. MEG frequency scaling
exponent for all regions (a) and different ROI masks ((b), (c) and
(d)). In each panel, a box-plot on top is accompanied by a non-
parametric distribution function in the bottom. In the top graph,
the box has lines at the lower quartile, median (red), and upper
quartile values. Smallest and biggest non-outlier observations
(1.5 times the interquartile range IRQ) are shown as whiskers.
Outliers are data with values beyond the ends of the whiskers
and are displayed with a red + sign. In the bottom graph, a non-
parametric density function shows the distribution of EEG, MEG
and empty-room-corrected MEG frequency scaling exponents
(note that LMSS and WF are not shown here; see the text for
description.). Thick and thin vertical lines show the mean and
mean ± std for each probability density function (pdf)
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curve of non-corrected MEG; this overlap becomes
limited to the tail end of the NMSS correction and
is abolished in the case of PLS correction. As can be
appreciated, VX (Fig. 5(c)) shows both similar values
and similar distribution for EEG and non-corrected
MEG. These similarities, in terms of regional overall
values and distribution curve, are further enhanced
after NMSS correction. It is to be noted that, in con-
trast to these similarities, the one-to-one correlation of
NMSS and EEG at VX ROI are very low (see below,
Table 1(B), (C)). The values of PLS noise correction
are very different from that of EEG and have a simi-
lar, but narrower, distribution curve shape. Two other
ROIs show distinctively different values and distribu-
tion in comparing EEG and MEG. Both NMSS and
PLS agree on this with PLS showing more extreme
cases. Figure 5(d) reveals a bimodal distribution of
MEG exponents in the parietotemporal region (PT
ROI). This region has also the highest variance (in
MEG scaling exponents) compared to other ROIS. The
distinction between EEG and MEG is enhanced in PLS
estimates; however, the variance of PT is reduced in
comparison to NMSS while the bimodality is still pre-
served but weakened. The values of mean and standard

deviation for these ROIs’ exponents are provided in
Table 1(A) (mean ± standard deviation).

The box-plots of Fig. 5-plots further show the
difference between the medians, lower/upper quartile
and interquartile range. The overall difference is that
the uncorrected MEG has much wider variance com-
pared to EEG and corrected MEG (in case of PLS
correction); the absolute value of the median of MEG
(uncorrected, or corrected with either NMSS or PLS) is
always smaller than that of EEG. The VX region is an
exception to the above rules; interestingly, the one-to-
one correlation of VX happens to be the lowest of all
(see below). In the case of NMSS-corrected MEG, the
shape of the pdf is preserved. However, PLS narrows
the distribution curve of MEG but further enhances
the differences between MEG and EEG. Therefore,
median and lower/upper quartiles will have different
value than that of EEG.

Correlation values (Table 1(B) (C)) show that, al-
though VX ROI has the closest similarity in terms
of its central tendency and probability distribution, it
provides the lowest correlation in a pairwise fashion.
P-values (for testing the hypothesis of no correlation
against the alternative that there is a nonzero correla-

Table 1 ROI statistical
comparison

A mean and std of frequency
scale exponent for all regions
and individual ROI. B
numerical values of linear
Pearson correlation. C
rank-based Kendall
correlation. D
non-parametric test of
analysis of variance
(KruskalWallis). Corrected
MEG refers to spectral
subtraction using NMSS. The
full table is provided in
Supplementary information

A. Mean and standard deviation
EEG MEG (awake) NMSS

All −1.33 ± 0.19 −1.24 ± 0.26 −1.06 ± 0.29
FR ROI −1.36 ± 0.25 −0.97 ± 0.10 −0.76 ± 0.09
VX ROI −1.21 ± 0.13 −1.36 ± 0.10 −1.14 ± 0.11
PT ROI −1.36 ± 0.12 −1.30 ± 0.29 −1.16 ± 0.32

B. Pearson correlation
EEG vs. MEG EEG vs. Corrected MEG (NMSS)

All 0.29 0.32
FR ROI 0.41 0.32
VX ROI −0.17 −0.15
PT ROI 0.35 0.38

C. Kendall Rank Corr
EEG vs. MEG EEG vs Corrected MEG (NMSS)

All 0.21 0.24
FR ROI 0.29 0.21
VX ROI −0.03 −0.04
PT ROI 0.23 0.26

D. KruskalWallis
p value Chi-square df Error

All <10−15 1.53 103 34,838
All noise-corrected <10−15 8.03 103 34,838
FR ROI <10−15 3.30 103 5,008
FR ROI noise-corrected <10−15 3.72 103 5,008
VX ROI <10−15 1.72 103 5,452
VX ROI noise-corrected <10−15 0.23 103 5,452
PT ROI <10−15 0.21 103 13,010
PT ROI noise-corrected <10−15 1.18 103 13,010
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tion) for Pearson’s correlation were calculated using a
Student’s t-distribution for a transformation of the cor-
relation and they were all significant (less than 10−15 for
α = 0.05). Similarly, a non-parametric statistic Kendall
tau rank correlation was used to measure the degree
of correspondence between two rankings and assessing
the significance of this correspondence between MEG
and EEG in the selected ROIs (Table 1(C)). P-values
for Kendall’s tau and Spearman’s rho calculate using
the exact permutation distributions were all significant
(less than 10−15 for α = 0.05). Kendall tau shows that
the rank correlation for all areas considered together
as well as for PT, show a lesser correlation than that
is shown by Pearson linear correlation. Furthermore,
we carried out a Kruskal-Wallis nonparametric version
of one-way analysis of variance. We used this test to
avoid bias in ANOVA (KruskalWallis assumes that the
measurements come from a continuous distribution,
but not necessarily a normal distribution as is assumed
in ANOVA). KruskalWallis uses analysis of variance
on the ranks of the data values, not the data values
themselves and therefore is an appropriate test for
comparison of the homogeneity of pattern between
ROIs of two image as well as their statistical median.
As shown in Table 1(D), all p-values were significant
emphasizing the difference between the spatial aspect
of the spectral nature of MEG and EEG. Note that the
difference of scaling exponent of EEG and MEG was
also confirmed by nonlinear spatial kendall correlation
analysis, independently of the ROIs classification (not
shown).

4.5 Relation of scaling exponent to signal-to-noise
ratio

Noise correction does not affect all the sensors in a
same fashion. As presented in Supplementary Fig. S3,
the simple linear spectral subtraction (LMSS) may lead
to an increment or decrement of the scaling exponent.
In any case, the correction achieved by this method is
minimal. This is due to the fact that LMSS ignores the
complex non-linear patterns of the SNR in different
channels (Supplementary Fig. S2). We show that for all
subjects, as the frequency goes up, the SNR goes down.
It is also noticable that in each defined frequency band,
i.e. 0–10 Hz (Slow, Delta and Theta), 11–30 Hz (Beta),
30–80 Hz (Gamma), 80–200 Hz (Fast oscillation), 200–
500 Hz (Ultra-fast oscillation), there is an observable
sensor-to-sensor SNR variability. This variability is at
its maximum in the band with the highest SNR (i.e. 1–10
Hz). All together, the non-linear nature of MEG SNR
shows that a linear spectral subtraction could behave
non-optimally, leading to minimal correction. This also

conveys that the optimal spectral correction can be
achieved only by non-linear methods that explicitly
take into account the SNR information of the data.
Therefore the correction achieved by NMSS and WF
have higher validity, in agreement with the fact that
both methods yield similar results in terms of values
and spatial distribution (Fig. 4(e), (f)).

5 Discussion

In this paper, we have used a combination of theoretical
and experimental analyses to investigate the spectral
structure of EEG and MEG signals. In the first part
of the paper, we presented a theoretical investigation
showing that if the extracellular medium is purely re-
sistive, the equations of the frequency dependence of
electric field and magnetic induction take a simple
form, because the admittance tensor does not depend
on spatial coordinates. Thus, the macroscopic magnetic
induction does not depend on the electric field outside
the neuronal sources, but only depends on currents
inside neurons. In this case, the frequency scaling of the
PSD should be the same for EEG and MEG signals.
This conclusion is only valid in the linear regime, and
for low frequencies.

An assumption behind this formalism is that the spa-
tial and frequency dependence of the current density
factorize (Eq. (19)). We have shown in the Appendices
that this is equivalent to consider the different current
sources as independent. Thus, the formalism will best
apply to states where the activity of synapses is in-
tense and of very low correlation. This is the case for
desynchronized-EEG states or more generally “high-
conductance states”, in which the activity of neurons is
intense, of low correlation, and the neuronal membrane
is dominated by synaptic conductances (Destexhe et al.
2003). In such conditions, the dendrites are bombarded
by intense synaptic inputs which are essentially uncor-
related, and one can consider the current sources as
independent (Bédard et al. 2010). In the present paper,
we analyzed EEG and MEG recordings in such desyn-
chronized states, where this formalism best applies.

Note that the above reasoning neglects the possi-
ble effect of abrupt variations of impedances between
different media (e.g., between dura matter and cere-
brospinal fluid). However, there is evidence that this
may not be influential. First, our previous modeling
work (Bédard et al. 2004) showed that abrupt variations
of impedance have a negligible effect on low frequen-
cies, suggesting that even in the presence of such abrupt
variations should not play a role at low frequencies.
Second, in the frequency range considered here, the
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skull and the skin are very close to be resistive at low
frequencies (Gabriel et al. 1996b), so it is very unlikely
that they play a role in the frequency scaling in EEG
and MEG power spectra even at high frequencies.

In the second part of the paper, we have analyzed
simultaneous EEG and MEG signals recorded in four
healthy human subjects while awake and eyes open
(with desynchronized EEG). Because of the large num-
ber of channels involved, we used an automatic pro-
cedure (B-splines analysis) to calculate the frequency
scaling. As found in previous studies (Pritchard 1992;
Freeman et al. 2000; Bédard et al. 2006a), we confirm
here that the EEG displays frequency scaling close to
1/ f at low frequencies.5 However, this 1/ f scaling was
most typical of the midline channels, while temporal
and frontal leads tended to scale with slightly larger
exponents, up to 1/ f 2 (see Fig. 4(a)). The same pattern
was observed in all four patients.

This approach differs from previous studies in two
aspects. First, in contrast to prior studies (such as
Novikov et al. 1997; Linkenkaer-Hansen et al. 2001), we
calculated the frequency scaling of all the sensors and
did not confine our analysis to a specific region. Second,
unlike other investigators (such as Hwa and Ferree
2002a, b), we did not limit our evaluations to either
EEG or MEG alone, but rather analyzed the scaling
of both type of signals simultaneously. Such a strategy
enables us to provide an extended spatial analysis of the
frequency scaling. It also provides a chance to compare
the scaling properties of these signals in relation to their
physical differences.

For the MEG recordings, the frequency scaling at
low frequencies was significantly lower compared to
the EEG (see Fig. 3). This difference in frequency
scaling was also accompanied by spatial variability pat-
terns (see Fig. 4) showing three distinct regions:(1)
a frontal area where the exponents had their highest
values in the case of MEG; (2) a central area where
the values of exponents of EEG and MEG get closer to
each other and (3) a parietotemporal horseshoe region
showing the lowest exponents for MEG with bimodal
characteristics (Fig. 5). In some cases, the scaling of
the uncorrected and corrected MEG signal was also
close to 1/ f , as reported previously (Novikov et al.
1997). In the frontal area (FR mask), the scaling ex-
ponent of the EEG was generally larger. At Vertex
(VX mask), EEG and MEG had similar values and at

5Note that to compare scaling exponents between studies one
must take into account that the electrode montage may influence
the scaling. For example, in bipolar (differential) EEG record-
ings, if two leads are scaling as 1/(A + f ) and 1/(B + f ), the
difference will have regions scaling as 1/ f 2.

the Parietotemporal region (PT mask), MEG showed a
bimodal property with a much broader range of scaling
exponent in comparison to EEG (see Fig. 4). Note that
to avoid the effect of spurious peaks, Novikov et al.
used the spectrum of signal differences and argued for
the existence of a local similarity regime in brain activ-
ity. This approach fundamentally changes the spectral
characteristics of Magnetometers (which measure the
absolute magnitude of the magnetic induction) into
a measure that only for the neighboring sensors ap-
proximates the behavior of the gradiometers (which
measures the gradient of the magnetic induction). So
it is not clear how to relate their values to the ones
obtained here.

To make sure that the differences of frequency scal-
ing between EEG and MEG were not due to envi-
ronmental or instrumental noise, we have used five
different methods to remove the effect of noise. These
methods are based on different assumptions about the
nature and effect of the noise. A first possibility is to
correct for the noise induced by the MEG sensors. It is
known that the SQUID detectors used in MEG record-
ings are very sensitive to environmental noise and they
can produce 1/ f noise (Hämäläinen et al. 1993). Under
this assumption, part of the scaling of the MEG could
be due to “filtering” by the sensors themselves, which
justifies a simple subtraction of scaling exponents to
remove the effects of this filtering. Note that such
empty-room recordings were not possible for the EEG,
although the noise from the recording setup could be
estimated (see Miller et al. 2009 for example). Because
in some cases both MEG and emptyroom signals have
similar scaling, a simple correction by subtracting the
exponents would almost entirely abolish the frequency
scaling while in other cases it may even revert the sign
of the scaling exponent (see Fig. 4(h), Supplementary
Fig. S3).

However, if noise is not due to the sensors but is of
additive uncorrelated nature, then another method for
noise correction must be used. For this reason, we have
used a second class of well-established methods consist-
ing of spectral subtraction (Boll 1979; Sim et al. 1998).
Using three of such methods (LMSS, NMSS and WF)
changed the scaling exponent, without fundamentally
changing its spatial pattern (Fig. 4(d)–(f)). The largest
correction was obtained by non-linear methods which
take into account the SNR information in the MEG
signal. We also applied another class of method which
uses the collective characteristics of all frequencies in
noise correction (PLS). Similar to exponent subtrac-
tion, this method nearly abolished all the scaling of
the MEG (Fig. 4(g)). In conclusion, although different
methods for noise subtraction give rise to different
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predictions about frequency scaling, all of the used
methods enhanced the difference between EEG and
MEG scaling. Thus, we conclude that the difference of
EEG and MEG scaling cannot be attributed to noise,
but is significant, therefore reinforcing the conclusion
that the medium must be non-resistive.

An alternative method to investigate this is the “De-
trended Fluctuation Analysis” (DFA; see Kantelhardt
et al. 2001; Linkenkaer-Hansen et al. 2001; Hwa and
Ferree 2002a, b). Like many nonlinear approaches,
DFA results are very vulnerable to the selection of
certain parameters. Different filters severely affect the
scaling properties of the electromagnetic signals to
different extents, and therefore the parameters esti-
mated through the DFA analysis could be false or
lead to distorted interpretations of real phenomena
(Valencia et al. 2008), and these effects are especially
prominent for lower frequencies, which are precisely
our focus of investigation here. One of the fields for
which DFA can provide robust results is to analyze
surrogate data with known characteristics. Although
the use of DFA to evaluate the scaling exponents of
EEG was vigorously criticized (Valencia et al. 2008), a
previous analysis (Hwa and Ferree 2002a, b) reported
two different regions, a central and a more frontal,
which somehow correlate with the FR and VX regions
identified in our analysis. Similarly, a study by Buiatti
et al. (Buiatti et al. (2007)) using DFA provided ev-
idence for topographical differences in scaling expo-
nents of EEG recordings. They report that scaling
exponents were homogeneous over the posterior half
of the scalp and became more pronounced toward the
frontal areas. In contrast to Linkenkaer-Hansen et al.
(2001) (where envelope of alpha oscillations was used
for DFA estimation), this study uses the raw signal in its
DFA analysis and yields values closer to those reported
here.

Both uncorrected signals and empty-room correction
show that there is a fundamentally different frequency
scaling between EEG and MEG signals, with near-
1/ f scaling in EEG, while MEG shows a wider range
at low frequencies. Although it is possible that non-
neuronal sources affect the lower end (<1Hz) of the
evaluated frequency domain (Voipio et al. 1989), the
solution to avoid these possible effects remain limited
to invasive methods such as inserting the electrode
into the scalp (Ferree et al. 2001) or using intracranial
EEG recordings (similar to Miller et al. 2009). This
approach would render wide range spatial recording as
well as simultaneous invasive EEG and MEG record-
ings technically demanding or impractical. However, if
technically feasible, such methods could provide a way
to bypass non-neuronal effects at very low frequency.

It could also provide a chance to evaluate the effects of
spatial correlation on spectral structure at a multiscale
level.

The power spectral structure we observe here is
consistent with a scenario proposed previously (Bédard
et al. 2006a): the 1/ f structure of the EEG and LFP
signals is essentially due to a frequency-filtering effect
of the signal through extracellular space; this type of
scaling can be explained by ionic diffusion and its asso-
ciated Warburg impedance6 (see Bédard and Destexhe
2009). It is also consistent with the matching of LFPs
with multi-unit extracellular recordings, which can be
reconciled only assuming a 1/ f filter (Bédard et al.
2006a). Finally, it is also consistent with the recent
evidence from the transfer function calculated from
intracellular and LFP recordings, which also showed
that the extracellular medium is well described by a
Warburg impedance (Bédard et al. 2010, , submitted to
this issue). If this non-resistive aspect of extracellular
media is confirmed, it may influence the results of
models of source localization, which may need to be
reformulated by including more realistic extracellular
impedances.

In conclusion, the present theoretical and experi-
mental analysis suggests that the scaling of EEG and
MEG signals cannot be reconciled using a resistive
extracellular medium. The 1/ f structure of EEG with
smaller scaling exponents for MEG is consistent with
non-resistive extracellular impedances, such as capaci-
tive media or diffusion (Warburg) impedances. Includ-
ing such impedances in the formalism is non trivial
because these impedances are strongly frequency de-
pendent. The Poisson integral (the solution of Poisson’s
law ∇ · D = −∇ · ε∇V = ρ) would not apply anymore
(see Bédard et al. 2004; Bédard and Destexhe 2009).
Work is under way to generalize the formalism and
include frequency-dependent impedances.

Finally, it is arguable that the scaling could also be
influenced by the cancellation and the extent of spatial
averaging of microscopic signals, which are different
in EEG and MEG (for more details on cancellation
see Ahlfors et al. 2010; for details on spatial sensitivity
profile see Cuffin and Cohen 1979). Such a possible role
of the complex geometrical arrangement of underlying
current sources should be investigated by 3D models
which could test specific assumptions about the geome-
try of the current sources and dipoles, and their possible
effect on frequency scaling. Such a scenario constitutes
another possible extension of the present study.

6Ionic diffusion can create an impedance known as the “Warburg
impedance”, which scales as 1/

√
ω, giving 1/ f scaling in the

power spectra (Taylor and Gileadi 1995; Diard et al. 1999).
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Appendix A: Frequency dependence of electric field
and magnetic induction

To compare the frequency dependence of magnetic
induction and electric field, we evaluate them in a den-
dritic cable, expressed differentially. For a differential
element of dendrite, in Fourier space, the current pro-
duced by a magnetic field (Ampère–Laplace law) is
given by the following expression (see Appendix B):

δB f (r) = μo

4π
jp

f (r
′) × r − r′

‖r − r′‖3 δv′ (20)

when the extracellular medium is resistive. Note that
the source of magnetic induction is essentially given
by the component of jp

f along the axial direction ( jif )
within each differential element of dendrite because the
perpendicular (membrane) current does not participate
to producing the magnetic induction if we assume a
cylindrical symmetry.

For the electric potential, we have the following
differential expression for a resistive medium (see
Appendix C):

δV f (r) = 1
4πγ

δI⊥
f (r′)

‖r − r′‖ = 1
4πγ

jmf (r′)
‖r − r′‖δS′ (21)

where jmf is the transmembrane current per unit of
surface.

If we consider the differential expressions for the
magnetic induction (Eq. (20)) and electric potential
(Eq. (21)), one can see that the frequency dependence
of the ratio of their modulus is completely determined
by the frequency dependence of the ratio of current
density jmf and jif . In Appendix D, we show that this
ratio is quasi-independent of frequency for a resistive
medium, for low frequencies (smaller that ∼10 Hz), and
if the current sources are of very low correlation.

Thus, magnetic induction and electric potential can
be very well approximated by:

V f (r) = N < V >= N <
N∑

l=1
δVl

f >

B f (r) = N < B >= N <
N∑

l=1
δBl

f >

(22)

for sufficiently small differential dendritic elements
(N/ l large).

Because the functions of spatial and frequency are
statistically independent, we can write the following
expressions for the square modulus of the fields (see
Eqs. (20) and (21)):

|V f (r)|2 = N2|<
N∑

l=1
Vl(r)Gm

l ( f )> |2 = |V(r)|2|G( f )|2

‖B f (r)‖2 = N2‖<
N∑

i=1
Bi(r)Gm

l ( f )>‖2 =‖W(r)‖2|G( f )|2

(23)

where G( f )=<Gm
l ( f )>, Vl(r)=<Vl(r)> and W(r)=

< Bl(r) >. Thus, the scaling of the PSDs of the electric
potential and magnetic induction must be the same for
low frequencies (smaller than ∼10 Hz) if the medium
is resistive and when the current sources have very low
correlation.

Appendix B: Differential expression for the magnetic
induction

According to Maxwell equations, the magnetic induc-
tion is given by:

B f (r) = μo

4π

∫∫∫

head

∇′ × jp
f (r

′)
‖r − r′‖ dv′ (24)

where dv′ = dx
′1dx

′2dx
′3 and

∇′
(

1
‖r − r′‖

)
= r − r′

‖r − r′‖3

for a perfectly resistive medium.
We now show that this expression is equivalent to

Ampere-Laplace law.

http://cns.iaf.cnrs-gif.fr
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From the identity ∇′×(gA)=g(∇′×A) + ∇′g × A,
where ∇′ = êx

∂
∂x′ + êy

∂
∂y′ + êz

∂
∂z′ , we can write:

B f (r) = μo

4π

∫∫∫

head

[
∇′ ×

(
jp

f (r
′)

‖r − r′‖

)

+ μ

4π
jp

f (r
′) × ∇′ 1

‖r − r′‖
]

dv′ (25)

Moreover, we also have the following identity

∫∫∫

head

∇′ ×
(

jp
f (r

′)
‖r − r′‖

)
dv′ = −

∫∫

∂head

jp
f (r

′)
‖r − r′‖ × n̂ dS′

(26)

where n̂ is a unitary vector perpendicular to the inte-
gration surface and going outwards from that surface.
Extending the volume integral outside the head, the
surface integral is certainly zero because the current is
zero outside of the head. It follows that:

B f (r) = μo

4π

∫∫∫

head

jp
f (r

′) × r − r′

‖r − r′‖3 dv′ (27)

where dv′ = dx
′1dx

′2dx
′3 because

∇′
(

1
‖r − r′‖

)
= r − r′

‖r − r′‖3

Equation (27) is called the Ampère–Laplace law (see
Eq. 13 in Hämäläinen et al. 1993). It is important to
note that this expression for the magnetic induction is
not valid when the medium is not resistive.

Finally, from the last expression, the magnetic induc-
tion for a differential element of dendrite can be written
as:

δB f (r) = μo

4π
jp

f (r
′) × r − r′

‖r − r′‖3 δv′ (28)

Appendix C: Differential expression of the electric
field and electric potential

In this appendix, we derive the differential expression
for the electric field. Starting from Eq. (10), we obtain
the solution for the electric potential:

V f (r) = − 1
4πγ f

∫∫∫

head

∇ · jp
f (r

′)
‖r − r′‖ dv′ (29)

It follows that the electric field produced by the
ensemble of sources can be expressed as:

E f (r) = −∇V f (r) = 1
4πγ f

∫∫∫

head

∇ · jp
f (r

′) · r − r′

‖r − r′‖3 dv′

(30)

such that every differential element of dendrite pro-
duces the following electric field:

δE f (r) = ∇ · jp
f (r

′)
4πγ f

· r − r′

‖r − r′‖3 δv′ (31)

The transmembrane current δI⊥
f obeys δI⊥

f =
iωρ f (r′)δv′ because we are in a quasi-stationary regime
in a differential dendritic element. Taking into account
the differential law of charge conservation ∇ · j f (r′) =
−iωρ f (r′), we have:

δE f (r) = δI⊥
f (r′)

4πγ f

r − r′

‖r − r′‖3 = jmf (r′)
4πγ f

r − r′

‖r − r′‖3 δS′ (32)

where jmf is the density of transmembrane current
per unit surface and δS′ is the surface area of a
differential dendritic element. This approximation is
certainly valid for frequencies lower than 1,000 Hz
because the Maxwell-Wagner time (see Bédard et al.
2006b) of the cytoplasm (τ cyto

mw = ε/σ ∼ 10−10 s.) is
much smaller than the typical membrane time constant
of a neuron (τm ∼ 5–20 ms).

Finally the contribution of a differential element
of dendrite to the electric potential at position r is
given by

δV f (r) = 1
4πγ f

δI⊥
f (r′)

‖r − r′‖ = 1
4πγ f

jmf (r′)
‖r − r′‖δS′ (33)

We note that the expressions for the electric field and
potential produced by each differential element of den-
drite have the same frequency dependence because it is

directly proportional to
jmf
γ f

for the two expressions. Also
note that if the medium is resistive, then γ f = γ and the
frequency dependence of the electric field and potential
are solely determined by that of the transmembrane
current jmf .

Appendix D: Frequency dependence of the ratio
ji

f (x)/ jm
f (x)

For each differential element of dendrite, we consider
the standard cable model, in which the impedance of
the medium is usually neglected (it is usually considered
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negligible compared to the membrane impedance). In
this case, we have:
⎧⎪⎨
⎪⎩

jmf = Vm
f

rm
+ iωcmVm

f

jif = −σ
∂Vm

f

∂x = − 1
ri

∂Vm
f

∂x

(34)

where Vm
f , jif , jmf , cm, rm et ri are respectively the

membrane potential, the current density in the axial di-
rection, the transmembrane current density, the specific
capacitance (F/m2), the specific membrane resistance
(�.m2) and the cytoplasm resistivity (�.m).

It follows that

jif (x)

jmf (x)
= rm

ri(1 + iωτm)
· ∂

∂x
[ln(Vm

f (x)] (35)

where τm = rmcm.
Under in vivo–like conditions, the activity of neurons

is intense and of very low correlation. This is the case
for desynchronized-EEG states, such as awake eyes-
open conditions, where the activity of neurons is char-
acterized by very low levels of correlations. There is
also evidence that in such conditions, neurons are in
“high-conductance states” (Destexhe et al. 2003), in
which the synaptic activity dominates the conductance
of the membrane and primes over intrinsic currents. In
such conditions, we can assume that the synaptic cur-
rent sources are essentially uncorrelated and dominant,
such that the deterministic link between current sources
will be small and can be neglected (see Bédard et al.
2010). Further assuming that the electric properties
of extracellular medium are homogeneous, then each
differential element of dendrite can be considered as
independent and the voltages Vm have similar power
spectra.

In such conditions, we have:

Vm
f (x) = Fm(x)Gm( f ) (36)

Note that this expression implies that we have in gen-
eral for each differential element of dendrite:⎧⎪⎨
⎪⎩

jmf (x) = Fm(x)( 1+iωτm
rm

)Gm( f )

jif (x) = − 1
ri

∂ Fm(x)

∂x Gm( f ) = Fi(x)Gm( f )
(37)

according to Eq. (34).
It follows that

jif (x)

jmf (x)
= rm

ri(1 + iωτm)
· ∂

∂x
[ln(F(x))]≈ rm

ri
· ∂

∂x
[ln(F(x))]

(38)

Thus, for frequencies smaller than 1/(ωτm) (about

10 to 30 Hz for τm of 5-20 ms), the ratio
jif (x)

jmf (x)
will

be frequency independent, and for each differential
element of dendrite, we have:

{
jmf (x) = Fm(x)Gm( f )
jif (x) = Fi(x)Gm( f )

(39)

for frequencies smaller than ∼10 Hz.

References

Abd El-Fattah, M. A., Dessouky, M. I., Diab, S. M., & Abd El-
samie, F. E. (2008). Speech enhancement using an adaptive
Wiener filtering approach. Progress in Electromagnetics Re-
search, 4, 167–184.

Abdi, H. (2010). Partial least square regression, projection on
latent structure regression, PLS-Regression. Computational
Statistics, 2, 97–106.

Ahlfors, S. P., Han, J., Lin, F. H., Witzel, T., Belliveau, J. W.,
Hämäläinen, M. S., et al. (2010). Cancellation of EEG and
MEG signals generated by extended and distributed sources.
Human Brain Mapping, 31, 140–149.

Bédard, C., & Destexhe, A. (2009). Macroscopic models of local
field potentials and the apparent 1/ f noise in brain activity.
Biophysical Journal, 96, 2589–2603.

Bédard, C., Kröger, H., & Destexhe, A. (2004). Modeling
extracellular field potentials and the frequency-filtering
properties of extracellular space. Biophysical Journal, 86,
1829–1842.

Bédard, C., Kröger, H., & Destexhe, A. (2006a). Does the 1/ f
frequency-scaling of brain signals reflect self-organized crit-
ical states? Physical Review Letters, 97, 118102.

Bédard, C., Kröger, H., & Destexhe, A. (2006b). Model of low-
pass filtering of local field potentials in brain tissue. Physical
Review E, 73, 051911.

Bédard, C., Rodrigues, S., Roy, N., Contreras, D., & Destexhe,
A. (2010). Evidence for frequency-dependent extracellular
impedance from the transfer function between extracellular
and intracellular potentials. Journal of Computational Neu-
roscience. doi:10.1007/s10827-010-0250-7.

Bell, A. J., & Sejnowski, T. J. (1995). An information maximisa-
tion approach to blind separation and blind deconvolution.
Neural Computation, 7, 1129–1159.

Boll, S. F. (1979). Suppression of acoustic noise in speech us-
ing spectral subtraction. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 27, 113–120.

Buiatti, M., Papo, D., Baudonnière, P. M., & van Vreeswijk, C.
(2007). Feedback modulates the temporal scale-free dynam-
ics of brain electrical activity in a hypothesis testing task.
Neuroscience, 146, 1400–1412.

Cuffin, B. N., & Cohen, D. (1979). Comparison of the magne-
toencephalogram and electroencephalogram. EEG Clinical
Neurophysiology, 47, 132–146.

de Boor, C. (2001). A practical guide to splines (revised ed., 2001).
New York: Springer.

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source
toolbox for analysis of single-trial EEG dynamics including
independent component analysis. Journal of Neuroscience
Methods, 134, 9–21.

http://dx.doi.org/10.1007/s10827-010-0250-7


J Comput Neurosci (2010) 29:405–421 421

Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-
conductance state of neocortical neurons in vivo. Nature re-
views. Neuroscience, 4, 739–751.

Diard, J.-P., Le Gorrec, B., & Montella, C. (1999). Linear
diffusion impedance. General expression and applications.
Journal of Electroanalytical Chemistry, 471, 126–131.

Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with
B-splines and penalties. Statistical Science, 11, 89–121.

Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001).
Scalp electrode impedance, infection risk, and EEG data
quality. Clinical Neurophysiology, 112, 536–544.

Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of
tissues and biological materials: A critical review. Critical
Reviews in Biomedical Engineering, 17, 25–104.

Freeman, W. J., Rogers, L. J., Holmes, M. D., & Silbergeld,
D. L. (2000). Spatial spectral analysis of human electrocor-
ticograms including the alpha and gamma bands. Journal of
Neuroscience Methods, 95, 111–121.

Gabriel, S., Lau, R. W., & Gabriel, C. (1996a). The dielectric
properties of biological tissues: I. Literature survey. Physics
in Medicine & Biology, 41, 2231–2249.

Gabriel, S., Lau, R. W., & Gabriel, C. (1996b). The dielectric
properties of biological tissues: II. Measurements in the fre-
quency range 10 Hz–20 GHz. Physics in Medicine & Biology,
41, 2251–2269.

Gabriel, S., Lau, R. W., & Gabriel, C. (1996c). The dielectric
properties of biological tissues: III. Parametric models for
the dielectric spectrum tissues. Physics in Medicine & Biol-
ogy, 41, 2271–2293.

Garthwaite, P. (1994). An interpretation of partial least squares.
Journal of the American Statistical Association, 89, 122–127.

Gulrajani, R. M. (1998). Bioelectricity and biomagnetism. New
York: Wiley.

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J.,
& Lounasmaa, O. V. (1993). Magnetoencephalography—
theory, instrumentation, and applications to noninvasive
studies of the working human brain. Reviews of Modern
Physics, 65, 413–497.

Hwa, R. C., & Ferree, T. C. (2002a). Scaling properties of
fluctuations in the human electroencephalogram. Physical
Review E, 66, 021901.

Hwa, R. C., & Ferree, T. C. (2002b). Fluctuation analysis of hu-
man electroencephalogram. Nonlinear Phenomena in Com-
plex Systems, 5, 302–307.

Kamath, S., & Loizou, P. (2002). A multi-band spectral sub-
traction method for enhancing speech corrupted by colored
noise. In Proceedings of ICASSP 2002 (pp. 4160–4164).

Kantelhardt, J., Koscielny-Bunde, E., Rego, H., Havlin, S., &
Bunde, A. (2001). Detecting long-range correlations with
detrended fluctuation analysis. Physica A, 295, 441–454.

Katkovnik, V., Egiazarian, K., & Astola, J. (2006). Local approx-
imation in signal and image processing. SPIE.

Landau, L., & Lifchitz, E. (1984). Electrodynamics of continuous
media. Moskow: MIR.

Lim, J. S., & Oppenheim, A. V. (1979). Enhancement and band
width compression of noisy speech. Proceedings of the IEEE,
67, 1586–1604.

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., &
Ilmoniemi, R. J. (2001). Long-range temporal correlations

and scaling behavior in human brain oscillations. Journal of
Neuroscience, 21, 1370–1377.

Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007).
In vivo measurement of cortical impedance spectrum in
monkeys: Implications for signal propagation. Neuron, 55,
809–823.

Loizou, P. C. (2007). Speech enhancement: Theory and practice.
Boca Raton: CRC.

Magee, L. (1998). Nonlocal behavior in polynomical regression.
The American Statistican, 52, 20–22.

Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M.
(2009). Power-law scaling in the brain surface electric poten-
tial. PLoS Computational Biology, 5, e1000609.

Nenonen, J., Kajola, M., Simola, J., & Ahonen, A. (2004). To-
tal information of multichannel MEG sensor arrays. In
Halgren, E., Ahlfors, A., Hamalainen, M., & Cohen, D.
(Eds.), Proceedings of the 14th international conference on
biomagnetism (Biomag2004) (pp. 630–631). Boston, MA.

Novikov, E., Novikov, A., Shannahoff-Khalsa, D., Schwartz, B.,
& Wright, J. (1997). Scale-similar activity in the brain. Phys-
ical Review E, 56, R2387–R2389.

Nunez, P. L., & Srinivasan, R. (2005). Electric f ields of the brain.
The neurophysics of EEG (2nd ed.). Oxford: Oxford Univer-
sity Press.

Plonsey, R. (1969). Bioelectric phenomena. New York: McGraw
Hill.

Pritchard, W. S. (1992). The brain in fractal time: 1/ f -like power
spectrum scaling of the human electroencephalogram. Inter-
national Journal of Neuroscience, 66, 119–129.

Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruc-
tion of field potentials and dendrodendritic synaptic inter-
actions in olfactory bulb. Journal of Neurophysiology, 31,
884–915.

Ramirez, R. R. (2008). Source localization. Scholarpedia, 3,
1733.

Ranck, J. B. Jr. (1963). Specific impedance of rabbit cerebral
cortex. Experimental Neurology, 7, 144–152.

Royston, P., & Altman, D. (1994). Regression using fractional
polynomials of continuous covariates: Parsimonious para-
metric modelling. Applied Statistician, 43, 429–467.

Sarvas, L. (1987). Basic mathematical and electromagnetic con-
cepts of the biomagnetic inverse problem. Physics in Medi-
cine & Biology, 32, 11–22.

Sim, B. L., Tong, Y. C., Chang, J. C., & Tan, C. T. (1998). A para-
metric formulation of the generalized spectral subtraction
method. IEEE Transactions on Speech and Audio Process-
ing, 6, 328–337.

Taylor, S. R., & Gileadi, E. (1995). The physical interpretation of
the Warburg impedance. Corrosion, 51, 664–671.

Valencia, M., Artieda, J., Alegre, M., & Maza, D. (2008).
Influence of filters in the detrended fluctuation analysis
of digital electroencephalographic data. Journal of Neuro-
science Methods, 170, 310–316.

Voipio, J., Tallgren, P., Heinonen, E., Vanhatalo, S., & Kaila, K.
(1989). Millivolt-scale DC shifts in the human scalp EEG:
Evidence for a nonneuronal generator. Journal of Neuro-
physiology, 89, 2208–2214.

Wolters, C., & de Munck, J. C. (2007). Volume conduction.
Scholarpedia, 2, 1738.


	Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media
	Abstract
	Introduction
	Methods
	Participants and MEG/EEG recordings
	Noise correction methods
	Frequency scaling exponent estimation
	Region of Interest (ROI)

	Theory
	General formalism
	Expression for the electric field
	Expression for magnetic induction
	Boundary conditions
	Quasi-static approximation to calculate magnetic induction
	Consequences

	Test on experimental data
	Frequency scaling exponent estimation
	MEG and EEG have different frequency scaling exponents
	Spatial variability of the frequency scaling exponent
	Statistical comparison of EEG and MEG frequency scaling
	Relation of scaling exponent to signal-to-noise ratio

	Discussion
	Frequency dependence of electric field and magnetic induction
	Differential expression for the magnetic induction
	Differential expression of the electric field and electric potential
	Frequency dependence of the ratio   jfi(x) / jfm(x)
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


