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Special Issue

Automated Methods for Surveillance
of Surgical Site Infections

Richard Platt,*t Deborah S. Yokoe,T Kenneth E. Sands, and the CDC Eastern
Massachusetts Prevention Epicenter Investigators?
*Harvard Medical School and Harvard Pilgrim Health Care, Boston, Massachusetts, USA; fHarvard
Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA; and $Harvard
Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

Automated data, especially from pharmacy and administrative claims, are available for much of the
U.S. population and might substantially improve both inpatient and postdischarge surveillance for surgical
site infections complicating selected procedures, while reducing the resources required. Potential
improvements include better sensitivity, less susceptibility to interobserver variation, more uniform availability
of data, more precise estimates of infection rates, and better adjustment for patients’ coexisting illness.

The Centers for Disease Control and Prevention (CDC)
recommends routine surveillance for surgical site infections
(1); accrediting agencies such as the Joint Commission for
Accreditation of Healthcare Organizations require it.
Surveillance identifies clusters of infection, establishes
baseline risks for infection, provides comparisons between
institutions or surgical specialties, identifies risk factors, and
permits evaluation of control measures (2). Achieving these
goals requires health-care systems to have access to different
information types (Table 1).

An ideal surveillance system should have several
attributes, including meaningful definitions of infection,
consistent interpretation of classification criteria, applicabil-
ity to procedures performed in both inpatient and ambulatory
facilities, ability to detect events after discharge, sufficient
precision to distinguish small absolute differences in attack
rates, ability to adjust for different distribution of severity of
illness across populations, and reasonable cost. Most current
systems lack at least one of these attributes; for example, the
system recommended by CDC’s Hospital Infection Control
Practices Advisory Committee (HICPAC) (3) is excellent for
clinical decision-making, but some elements are difficult to
apply for surveillance purposes. Information required to
apply some of its criteria may not be available for all cases; for
example, the criterion of recovery of microbial growth from a
normally sterile site may be affected by variation in obtaining
specimens for culture. Some elements of CDC’s National
Nosocomial Infections (NNIS) System definition require
substantial judgment or interpretation. An example is
determining whether purulent drainage is present: An
attending physician’s diagnosis is sufficient, although the
way physicians record or confirm their diagnoses may differ.
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Table 1. Goals and needs of surgical site infection surveillance (2)
Goal Principal needs

Control of clusters

Identify clusters of infection. Real-time detection of events.
Attack rates and case-mix
adjustment are not a high priority.

Should include all patients.

Support of quality
improvement programs
Establish baseline infection
rates.

Sufficient precision to identify
absolute differences of a few
percent.
Typically includes all patients.
Comparison of institutions or Case-mix-adjusted attack rates.
surgical specialities. Identical detection methods that
are applied and interpreted
identically across sites. Sufficient
precision.
Comparably ascertained rates
of over time.

Evaluate control measures
(in the usual situation
no randomized trial).

Research on epidemiology of
infection

Identify risk factors. Detailed data on many attributes
of patients and procedures.
Population can be small, but must

be representative.

For these reasons, case ascertainment is affected by
considerable interobserver variability (4).

Although most surgical site infections become manifest
after the patient is discharged from the hospital (5-12), there
is no accepted method for detecting them (13). The most
widely described method of conducting postdischarge
surveillance is questionnaire reporting by surgeons. This
method has been shown to have poor sensitivity (15%) and
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positive predictive value (28%), even when surgeons are
compliant in returning the questionnaires (5). Moreover, a
questionnaire-based surveillance system requires substan-
tial resources. Reporting by patients via questionnaires also
has poor sensitivity (28%) because many patients do not
return questionnaires mailed to them a month after surgery.
Telephone questionnaires have been used effectively but are
too resource intensive for routine use.

Many procedures must be monitored to allow confident
conclusions that relatively small differences in observed
attack rates donot reflect chance variations. Identifying these
small differences, understanding their cause, and undertak-
ing quality improvement programs to reduce their occurrence
would have large consequences when applied to the >45
million surgical procedures performed annually in the United
States (14). Reducing the overall infection rate by a quarter of
a percent would prevent >100,000 infections per year. For
coronary artery bypass surgery alone, a one percentage point
decrease in the risk for infection would prevent >3,500
infections per year in the United States (15). Because of the
need to observe large numbers of procedures, conducting
surveillance for the entire surgical population is desirable.
However, to conserve scarce resources, some programs survey
only a fraction of their procedures or rotate surveillance
among different procedure types.

Determining whether relatively small differences in
infection rates result from differences in care rather than in
patients’ susceptibility to infection requires robust risk-
adjustment methods that can take into account different case-
mixes in different institutions. Available methods do not have
optimal resolution and depend in part on the Anesthesia
Society of America (ASA) score (3,16). The ASA score, a
subjective assessment of the patient’s overall health status,
may reflect interobserver variability (17) that can adversely
affect stratification of risk for surgical infection (18).

Automated methods to augment current surveillance
methods should improve the quality of surveillance for
surgical site infections and reduce the resources required. To
achieve these goals, surveillance should be based on the
growing body of data that health-care systems, including
hospitals, physicians’ offices, health maintenance organiza-
tions (HMOs), and insurance companies, routinely collect
during care delivery. Many types of automated data are now
or will soon become widely available, including information
about patients, surgical procedures, and patients’ postopera-
tive courses (Table 2). Three ways to use these data to support
surveillance programs are inpatient surveillance,
postdischarge surveillance, and case-mix adjustment.

Inpatient Surveillance for Surgical Site Infections

One of the most widely available types of automated data
useful for inpatient surveillance is antibiotic exposure data
from pharmacy dispensing records. Studies have indicated
that antibiotic exposure is a sensitive indicator of infection
(19,20), since relatively few serious infections are managed
without antibiotics. Poor specificity (too many false positives)
has been a major problem, however, because antibiotics are so
widely used after surgery for extended prophylaxis, empiric
therapy of suspected infection, and treatment of infections
other than surgical site infections.

One way to improve the usefulness of postoperative
antibiotic exposure as a marker of infection is to consider the
timing and duration of administration, rather than just its
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Table 2. Automated health-care data potentially useful for surgical site
infection surveillance

Availability of this
information in specific locations
Automated
medical
records in  Payors
Type of physicians’ (HMOs,
information Hospitals? offices insurers)
Demographic/
personal information
Sex Usually Usually Usually
Age Usually Usually Usually
Smoking status Rarely Sometimes Rarely
Body mass index Rarely Sometimes Rarely
Preoperative health status
Diagnoses Sometimes Usually Usually
Procedures Rarely Sometimes Usually
Drug therapy Sometimes Sometimes Usually
ASA score Sometimes Rarely Rarely
Procedure data
Type (ICD-9, CPT) Usually Sometimes Usually
Duration Sometimes Rarely Rarely
Inpatient postoperative care
Diagnoses Usually Sometimes Usually
Reoperation Usually Rarely Usually
Incision and drainage Usually Rarely Sometimes
Microbiology data Usually Rarely Rarely
Antibiotic therapy Usually Rarely Rarely
Postdischarge care
Diagnoses Rarely Usually Usually
Reoperation in another Rarely Sometimes Usually
hospital
Incision and drainage Rarely Usually Usually
Microbiology data Rarely Usually Sometimes
Antibiotic therapy Rarely Sometimes Usually

aExcludes hospital-based physicians’ offices.

occurrence. Quantitative antibiotic exposure is a measure
that reduces the number of false positives by excluding
patients who receive a brief course; however, there is a trade-
off between sensitivity and specificity. Constructing receiver-
operating characteristic curves helps to identify the amount
of treatment with the best combination of sensitivity and
specificity. For example, acceptable identification of
infections after cesarean section was achieved by requiring a
criterion of at least 2 days of parenteral antibiotic
administration (21). In that study, the sensitivity was 81%
and the specificity was 95% compared with infections
identified by NNIS surveillance.

Quantitative inpatient antibiotic exposure is useful for
identifying infections in coronary artery bypass surgery
patients (22). Receiver-operating characteristic curves were
used to demonstrate that patients with infections were best
identified as those who received postoperative antibiotics for
at least 9 days, excluding the first postoperative day. This
criterion included both oral and parenteral antibiotics and
ignored gaps in administration. This approach has two
important implications for surveillance systems: It allows
this mechanism to identify patients readmitted for treatment

Emerging Infectious Diseases



Special Issue

of infection within 30 days of surgery, and automated
programs to identify patients who meet this threshold are
substantially easier to implement. The 9-day exposure cutoff
resulted in greater sensitivity (approximately 90%) for
identifying surgical site infections than conventional
prospective surveillance (approximately 60%) conducted in
the same hospitals. A disadvantage of the antibiotic threshold
criterion is that it identifies events that are not surgical site
infections, including problematic wounds that do not meet the
HICPAC criteria for infection, other types of hospital
infections, and other long durations of antibiotic use.

Studies under way will determine the utility of this
approach in a larger number of hospitals. Preliminary data
from nine hospitals suggest that surveillance for antibiotic
use provides useful information. For cesarean section,
prospective comparison of a quantitative antibiotic exposure
threshold to conventional prospective NNIS surveillance and
International Classification of Diseases, 9th Revision (ICD-
9), discharge diagnosis codes indicates that antibiotic
surveillance has considerably better sensitivity (89%) than
either NNIS surveillance (32%) or coded discharge diagnoses
(47%). This difference was consistent across hospitals (23).

Quantitative thresholds for antibiotic exposure should be
chosen individually for specific surgical procedures, since the
value for cesarean section (2 days) differs from that for
coronary artery bypass grafting (9 days) and there may be no
useful threshold for some procedures. These values may also
need to be reassessed as medical practice evolves. It will be
important to understand the discrepancies between the
results of formal NNIS surveillance and antibiotic
surveillance. In some cases, patients who receive more than
the threshold duration of antibiotic therapy appear to have
clinically relevant infectious illness, such as fever and
incisional cellulitis with no drainage.

Postdischarge Surveillance for
Surgical Site Infection

Because most infections become manifest after discharge
and many patients with infections never return to the
hospital where the surgery was performed (5), traditional
inpatient surveillance methods are not sufficient. In addition,
conventional methods for postdischarge surveillance, includ-
ing surgeon questionnaires, are highly inaccurate, with both
low sensitivity and specificity.

Information about postdischarge care is available in
office-based electronic medical records of coded diagnoses,
procedures, tests, and treatments from the automated billing
and pharmacy dispensing data maintained by most HMOs
and many insurers. Pharmacy dispensing information is
typically available for insured patients who have a pharmacy
benefit. Together, these automated data elements identified
>99% of postdischarge infections that occurred after a mixed
group of nonobstetric surgical procedures (5). This high
sensitivity came at the cost of low specificity (many false
positives requiring manual review of medical records).

Recursive partitioning, logistic regression modeling, and
bootstrap methods have made it possible to preserve good
sensitivity while improving specificity by combining
automated data from inpatient and ambulatory sources. The
resulting algorithms use these automated data to assign to
each patient an estimated probability for postoperative
infection. These probabilities of infection, based on
postoperative events that indicate infection has occurred,
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must be distinguished from predictions based on personal
risk factors such as diabetes or obesity or on characteristics of
the procedures such as the duration of surgery.

Choosing a lower probability threshold results in higher
sensitivity and lower specificity, whereas a higher threshold
improves specificity at the expense of sensitivity. For
example, using automated data from both HMOs and
ambulatory medical records permitted a sensitivity of 74%
and a specificity of 98%, for a predictive value positive of 48%.
A higher sensitivity, 92%, was achieved at the expense of
lowering the specificity to 92%, for a predictive value positive
of 21% (Figure) (24).

This work has been extended to surveillance for inpatient
and postdischarge surgical site infections following coronary
artery bypass surgery in five hospitals (25). That study found
that HMO data alone identified 73% of 168 infections and
hospital data alone identified 49% of the same infections.
Separate algorithms have been developed to identify
postpartum infections occurring after discharge (26).

The utility of automated data sources might be improved
in several ways: 1) A procedure-specific algorithm will likely
perform better than a general one. 2) Algorithms can be
improved to further reduce the number of false positives (e.g.,
by excluding codes for infection that occur on the same day as
a surgical procedure or for antibiotics dispensed before the
second postoperative day). 3) These algorithms should be
made robust enough for general use by including all ICD-9
and Current Procedural Terminology codes that might be
used for surgical site infections.

1 p—— -
09 et
08 =" "
=== All Data Sources
07
W All sources, high cost
> 08
3 Y A All sources, low cost
£ 05
" / — -Hospital Data + Outpatient Abx
8oaf X . .
7 & Hospital Data + Outpatient Abx
03 4y = = Hospital Data
0.2 o X Hospital Data
0.1 ® Patient Survey
o O Surgeon Survey —
0 01 0.2 03 04 05 06 07 08 05 1
1- Specificity
Figure. Performance of various methods for detection of

postdischarge surgical site infections for 4,086 nonobstetric surgical
procedures with no inpatient infection. Lines represent fitted
receiver operating characteristic (ROC) curves for three logistic
regression models, which differ by data sources available for
generating probabilities. Points represent performance of four
different recursive partitioning models and data from patient and
physician surveys. For analyses limited to hospital data and
outpatient antibiotic (Abx) dispensing data, the logistic regression
model had equivalent performance to classification trees at the points
shown. The fitted ROC curve falls below this point because most
procedures clustered around a few discrete probabilities and limited
data points cause approximation of the ROC curve to be less accurate.
The recursive partitioning high-cost model accepts 15 false-positives
at the margin to capture one true infection; the low-cost model
accepts 5 false positives at the margin (24). (Figure originally published
in Sands et al. Journal of Infectious Diseases 1999;179:434. Copyright 1999,
University of Chicago Press. Reprinted with permission.)
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Improved Case-Mix Adjustment Methods

As quality improvement and patient safety programs
evolve, there are likely to be many more opportunities and
incentives for comparing infection rates within and across
institutions. However, such comparisons will require case-
mix adjustment that accounts for coexisting illnesses, to avoid
penalizing hospitals that care for patients at higher risk. As
discussed, the NNIS risk index is based on the ASA score,
which has several undesirable features. Although the ASA
score has five possible values, the NNIS index collapses them
into two levels so that all information about coexisting illness
is summarized, in effect, as high or low. There is often little
heterogeneity of ASA score in patients within a surgical
procedure class, for instance, cesarean sections. In addition,
the ASA score is subject to considerable interobserver
variation, is not available for many ambulatory procedures, is
usually not captured in automated form by hospital
databases, and is not available in administrative or claims
data systems.

As an alternative to the ASA score, the chronic disease
score has been proposed to adjust data for coexisting illness in
surgical patients. This score is based on the premise that
dispensed drugs are markers for chronic coexisting illness; for
example, dispensing of hypoglycemic agents strongly
suggests the presence of diabetes. Approximately 24
conditions are represented in the chronic disease score, which
is computed from ambulatory pharmacy dispensing informa-
tion and can predict death and overall resource use (27-30).
The chronic disease score has theoretical advantages over the
ASA score: it can be computed automatically for the
approximately 90% of the population that has prescription
drug coverage, and it is completely objective. In its first
application to a mixed group of surgical procedures, the
chronic disease score performed at least as well as the ASA
score (30). In addition, a modified chronic disease score, based
on data for drugs dispensed on hospital admission, performed
with substantially better sensitivity and specificity than the
ASA score. The chronic disease score, based on admission
medications, can also be computed by health-care facilities
without the need for ambulatory drug-dispensing data.

The chronic disease score might be considered as a
substitute when the ASA score is not available or as a
supplement to the ASA score to provide better risk
stratification. In addition, the chronic disease score might be
modified to optimize its prediction of surgical site infections,
rather than all causes of death and resource utilization. For
example, data on psychotropic drugs, which are important
contributors to the overall chronic disease score, might
detract from the prediction of infection. Improved scoring
systems will need to be developed through formal modeling
programs applied to large, heterogeneous datasets.

Potential Uses of Electronic Data
for Surgical Site Infection Surveillance

Electronic data have the potential to provide better
information about infections while reducing the effort
required to conduct surveillance. The outcome measures (e.g.,
quantitative antibiotic exposure or combinations of coded
diagnoses) are meaningful, although they differ from the
NNIS definition. The medical profession must decide whether
a surveillance definition of surgical site infection might
coexist with a clinical definition, with the understanding that
the two serve related but different purposes (for example, the
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surveillance definition for influenza epidemics depends on
hospitalizations with a coded diagnosis of pneumonia or
influenza rather than virologically confirmed infections or
specific clinical signs and symptoms).

Implementation of systems that use these data requires
consensus on the part of the medical profession about outcome
definitions, surveillance algorithms, and reporting stan-
dards. Even if consensus is reached, impediments will remain
to the widespread adoption of electronic surveillance systems.
The disparity in the electronic systems currently in use is one
of these. While more sophisticated systems will permit better
surveillance, most of the results described above depend on
data elements such as drug dispensing information or
financial claims data that are already available or are among
the first to become automated. Thus, it will not be necessary
to wait for fully automated medical records or more advanced
hospital information systems. Although the costs of
developing and validating systems based on electronic data
are substantial, much of the development can be centralized,
and validation need only be conducted in a few sites to
establish generalizability. These reporting systems require a
moderate investment by hospitals, HMOs, and insurers, most
of which is the fixed cost for creating automated reporting
functions. While some of this cost can be defrayed through the
use of standard, shared computer code, this code usually must
be customized to make it compatible with existing automated
systems. Organizations that have electronic data typically
create similar reports for other purposes and will not need
new skills. In addition, the costs of maintaining and using the
periodic reports that will constitute a new surveillance
system are negligible.

Data sharing between hospitals, HMOs, and insurers is
important, since very few single entities possess enough
information to implement a self-sufficient surveillance
system. Furthermore, in many locales, hospitals contract
with several HMOs and insurers. In that case, HMOs and
insurers must share information among themselves as well as
with the hospitals, since no one hospital is likely to have
enough patients to achieve the necessary precision. Data
sharing will require development of systems that protect both
patients’ confidentiality and the organizations’ proprietary
interests.

If such surveillance becomes widely available, two types
of uses might coexist. One would be to improve traditional
prospective surveillance; for example, sensitivity of inpatient
surveillance could be maintained with greatly reduced effort
by restricting traditional (NNIS) review to the <10% of
records that meet the quantitative screening criterion for
antibiotic exposure. Similarly, for the postdischarge
surveillance system, one could review as little as 2% of records
(including ambulatory records in physicians’ offices) while
greatly increasing the sensitivity of detection.

A second way to use these surveillance systems is to apply
them to the entire surgical population, including patients or
procedures that are not being evaluated because of resource
constraints. Tracking the proportion of inpatients who exceed
the antibiotic threshold or the number of patients who exceed
a prespecified computed probability of surgical site infection
after discharge might be sufficient, as long as that proportion
is within agreed-upon limits. When the rates are below this
limit, no further evaluation would be needed, since important
problems in the delivery system are unlikely to have escaped
detection. However, when the proportion or number exceeds
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the prespecified limit, more rigorous examination of the data
would be triggered.

Electronically assisted surveillance for infections could
be performed at modest expense by many organizations that
have administrative claims and pharmacy data. These groups
include the providers of care for most of the U.S. population,
including essentially all HMO members, many of those with
traditional indemnity insurance, Medicaid recipients, and
most Medicare beneficiaries who have pharmacy benefits.

Supported in part by cooperative agreement UR8/CCU115079
from CDC.
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