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Abstract

Background: GM1-gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of
acid b-galactosidase (bgal), which results in the accumulation of GM1-ganglioside and its asialo-form (GA1) primarily in the
CNS. Age of onset ranges from infancy to adulthood, and excessive ganglioside accumulation produces progressive
neurodegeneration and psychomotor retardation in humans. Currently, there are no effective therapies for the treatment of
GM1-gangliosidosis.

Methodology/Principal Findings: In this study we examined the effect of thalamic infusion of AAV2/1-bgal vector in adult
GM1 mice on enzyme distribution, activity, and GSL content in the CNS, motor behavior, and survival. Six to eight week-old
GM1 mice received bilateral injections of AAV vector in the thalamus, or thalamus and deep cerebellar nuclei (DCN) with
pre-determined endpoints at 1 and 4 months post-injection, and the humane endpoint, or 52 weeks of age. Enzyme activity
was elevated throughout the CNS of AAV-treated GM1 mice and GSL storage nearly normalized in most structures analyzed,
except in the spinal cord which showed ,50% reduction compared to age-matched untreated GM1 mice spinal cord.
Survival was significantly longer in AAV-treated GM1 mice (52 wks) than in untreated mice. However the motor
performance of AAV-treated GM1 mice declined over time at a rate similar to that observed in untreated GM1 mice.

Conclusions/Significance: Our studies show that the AAV-modified thalamus can be used as a ‘built-in’ central node
network for widespread distribution of lysosomal enzymes in the mouse cerebrum. In addition, this study indicates that
thalamic delivery of AAV vectors should be combined with additional targets to supply the cerebellum and spinal cord with
therapeutic levels of enzyme necessary to achieve complete correction of the neurological phenotype in GM1 mice.
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Introduction

GM1-gangliosidosis is a neurodegenerative lysosomal storage

disease caused by deficiency of acid b-galactosidase (bgal) [1]

leading to progressive accumulation of GM1-ganglioside in the

CNS [2]. Age of onset of the symptoms ranges from infancy to

adulthood and the severity of the clinical manifestations mostly

correlates with the levels of residual enzyme activity [3]. In the

most severe form of this disease (Infantile or Type I) biochemical

and neuropathological alterations have been documented in

utero [4,5]. Progressive neurologic deterioration, macular cherry

red spot, facial dysmorphism, hepatosplenomegaly, generalized

skeletal dysplasia and early death are common features of

the disease [3]. Currently there is no effective treatment for

GM1-gangliosidosis.

The available knockout mouse models replicate several clinical

and biochemical features of infantile GM1-gangliosidosis with low

levels of bgal activity (,4% of normal) and massive accumulation

of GM1-ganglioside and GA1 glycosphingolipid throughout the

CNS [6,7]. The bGal2/2 (GM1) mice used in this study

accumulate abnormal levels of GM1-ganglioside as early as post-

natal day 5 [8], and reach several fold above normal by 3 months

of age [6,9]. This feature is associated with a progressively severe

CNS condition characterized by tremor, ataxia, abnormal gait and

ultimately paralysis of the hind limbs [6]. Studies on this mouse

model identified previously unknown molecular pathways that are

induced by GM1 accumulation and result in neuronal apoptosis

and neurodegeneration [10,11]. Defective lysosomal degradation

of GM1 was found to provoke the redistribution of this ganglioside

at the ER membranes, where it induces depletion of ER Ca2+
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stores, and in turn activation of the unfolded protein response

(UPR) and UPR-mediated apoptosis [11]. More recently it was

shown that GM1 accumulates specifically in glycosphingolipid-

enriched fractions (GEMs) of the mitochondria-associated ER

membranes, the sites of apposition between ER and mitochondria.

GM1 at the GEMs favors Ca2+ flux between these organelles,

which results in mitochondrial Ca2+ overload and activation of the

mitochondrial leg of apoptosis [10]. Neuronal apoptosis is

accompanied by neuroinflammation with increased microglial

activation, production of inflammatory cytokines, chemokines, and

inflammatory cell infiltration [12,13].

Currently there is no effective treatment for GM1-gangliosidosis

in children, although numerous therapeutic modalities have been

implemented in GM1 mice with somewhat encouraging results

[13,14].

Direct infusion of adeno-associated virus (AAV) vectors

encoding lysosomal enzymes into the brain parenchyma has

emerged as a viable strategy to create an in situ source of normal

enzyme in the brain [15]. A major obstacle to translation of the

promising results obtained in animal models is the number of

injections that may be needed to achieve global distribution of

enzyme throughout the human brain. Based on studies in a-

mannosidosis cats, it has been estimated that 40–60 injections of

AAV vector may be necessary to obtain global distribution of

lysosomal enzymes in the infant brain [16]. This large number

of injections makes the treatment extremely invasive and with

obvious risks. Therefore, alternative strategies are needed.

Previously we have shown that infusion of an AAV vector

encoding bgal into the cerebral lateral ventricles of neonatal

GM1 mice led to complete enzymatic and neurochemical

correction of the brain in these animals [17]. Since most human

patients are only identified after birth and newborn mice are

developmentally equivalent to a human fetus, we set out to

investigate a therapeutic approach that would be more relevant

to the situation in humans. Lysosomal enzymes are distributed in

the CNS from vector-transduced cells by axonal transport

[18,19,20,21] (among other mechanisms). One approach that

takes advantage of this property is to target gene delivery to

specific structures axonally connected to many areas of the brain.

AAV-mediated gene delivery to the ventral tegmental area, one

such structure, leads to widespread distribution of therapeutic

levels of a lysosomal enzyme throughout the mouse brain [22].

The thalamus as the major information relay center in the brain

receives and processes sensory, motor, limbic and arousal input

from various regions of the CNS and relays the information to

multiple brain structures including the cerebral cortex. It is one of

the most interconnected structures in the brain, and thus an

appealing target for gene delivery to achieve widespread

distribution of lysosomal enzymes via axonal transport. Also

AAV-mediated gene transfer to deep cerebellar nuclei (DCN)

appears to be an effective approach to deliver lysosomal enzymes

and growth factors to cerebellum and spinal cord [23,24]. Here

GM1 mice received bilateral infusions of AAV vector encoding

mouse bgal into the thalamus or thalamus and deep cerebellar

nuclei at six to eight weeks of age and we analyzed the effects of

this treatment on neurochemistry, motor performance over time

and survival. Our results show that AAV-mediated gene delivery

in adult GM1 mice increased bgal activity and reduced GM1-

ganglioside levels to nearly normal in the brain, but only ,50%

in the spinal cord. Although the motor performance of AAV-

treated GM1 mice remained comparable to that of untreated

GM1 mice, their survival was significantly extended with mice

receiving bilateral injections in thalamus and DCN surviving until

12 months of age.

Materials and Methods

Mice
GM1-gangliosidosis (GM1) mice were obtained from Dr.

Alessandra d’Azzo (St. Jude Children’s Research Hospital,

Memphis, TN) and have been described previously [6].

AAV Vector Design and Preparation
The design and production of AAV2/1-CBA-bgal vector

carrying the mouse lysosomal acid beta-galactosidase (bgal) cDNA

under the CBA promoter, which is comprised of the CMV

immediate-early enhancer fused to the chicken beta-actin

promoter, was described previously [17]. The plasmid pAAV-

ApoE4hAAT-bgal-W was constructed by replacing the CBA

promoter in the plasmid pAAV-CBA-bgal-W [17] with the hybrid

ApoE4/hAAT liver specific promoter (human alpha-1 antitrypsin

promoter fused to 4 copies of the apolipoprotein A enhancer [25]

(kindly provided by Dr. Valder Arruda, The Children’s Hospital

of Philadelphia, Philadelphia, PA). The AAV2/rh8-ApoE4hAAT-

bgal vector was prepared as described [26]. All vectors used in this

study carry the woodchuck hepatitis virus post-transcriptional

regulatory element (WPRE).

Delivery of AAV vector to the brain
Six to eight week-old GM1 mice were anesthetized by

intraperitoneal injection of ketamine (125 mg/kg) and xylazine

(12.5 mg/kg) in 0.9% saline, and placed in a small animal

stereotaxic frame (Stoelting, Wood Dale, IL). An incision was

made over the skull, the periosteum removed and a burr hole was

made at the appropriate stereotaxic coordinates using a high-speed

drill (Dremel, Racine, WI). The noncompliant infusion system

used in these experiments for delivery of AAV vector was

assembled using a Harvard 22 syringe pump (Harvard Apparatus,

Holliston, MA) to drive a gas-tight Hamilton Syringe (Hamilton,

Reno, NV) attached to a 33-gauge steel needle (Hamilton) via 1/

16060.0200 ID PEEK tubing (Alltech, Deerfield, IL) and Luer

adapters (Amersham Biosciences). First the syringe and tubing

were filled with sterile mineral oil and then vector stock was

withdrawn into the needle and line. The needle assembly

(needle+Luer adapters) was fixed to the arm of the stereotaxic

frame. AAV2/1-CBA-bgal vector was infused (1 ml at 0.2 ml/min)

into the left thalamus (AP 22.0 mm, ML 21.5 mm relative to

bregma, and DV 22.5 mm from the brain surface). In subsequent

therapeutic efficacy experiments the AAV2/1-CBA-bgal vector

was infused (0.2 ml/min) bilaterally into the thalamus at two

depths (AP 22.0 mm, ML +/21.5 mm relative to bregma; and

23.5 and 22.5 mm from the brain surface; 1 ml per depth) (total

dose per mouse = 4.861010 gc), or bilaterally into the thalamus

(as above) and deep cerebellar nuclei (AP: 26.3 mm; ML:

+/21.5 mm; DV 22.0 mm; 1 ml per side) (total dose per

mouse = 7.261010 gc). In the PBS control group, age matched

GM1 mice received bilateral infusion of PBS into the thalamus

and deep cerebellar nuclei (same infusion rate and volume as

above). The needle was left in place for 2.5 min after the injection

was finished and then retracted halfway and left in place for an

additional 2.5 min before complete withdrawal. The incision was

closed with surgical staples, or colloidin, and the animal was

allowed to recover completely before being returned to the holding

room.

Behavioral Testing
Rotarod test. A rotarod apparatus, consisting of a knurled

dowel fixed 10 cm above bedding was used to measure motor

coordination and balance as previously described [27]. After a 3-

AAV Thalamic Gene Delivery

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13468



day pretrial training period, mice were assessed for motor behavior

at 1, 2.5, 4, and 6 months post injection. Mice were placed on the

rotating dowel at 20 rpm, indicating the start time for the trial. A

30-second interval was allowed between the two trials at the given

speed. The maximum time allowed on the bar for each trial was

60 seconds. The trial was terminated when the mouse fell off the

bar or at 60 seconds.

Open-field test. Locomotor activity and rearing events in the

mice were assessed using the SmartFrame Cage Rack System

(Kinder Scientific, San Diego, CA). Infrared beams along the

frame of the system track mouse movement in the cage with

respect to location, distance, and rearing capabilities. Mice were

placed in the center of the open-field apparatus and behavior was

measured for 15 minutes. The data was analyzed using the

MotorMonitor software (Kinder Scientific, San Diego, CA).

Locomotor activity was measured as the distance traveled (in

inches) and rearing events were measured as the number of times

the mouse stood on its hind legs. Comparisons were narrowed to

the first 5 minutes when we found significant differences between

untreated GM1 and HZ mice, as previously shown [13].

Visual evoked potentials
Visual evoked potentials (VEPs) were recorded in AAV-treated

GM1 mice (AAV-T and AAV-TC groups; n = 3 for each group) at

9–10 months of age. The VEPs were also recorded from untreated

heterozygote (n = 2) and GM1 (n = 4) mice at 10 months and 7–8

months of age, respectively, according to previously described

methods [28]. Briefly, the mice were dark-adapted overnight and

then anesthetized. The left pupil was dilated and responses were

elicited with 10-ms full-field flashes of white light presented every

second at 3.4 log ft.L. VEPs were monitored with subdermal

electrodes in the scalp over the visual cortex as the positive

electrode and over the frontal cortex as the reference. The

responses were collected as previously described [28]. The

consecutive waveforms were averaged (n = 100) after suppressing

the heart-beat artifact with an adjustable low-pass digital filter (cut-

off at 50–70 Hz) and rejecting waveforms containing movement

artifacts.

All animal experiments were carried out with ethical committee

approval in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care Committees at the

Massachusetts General Hospital (Approved Protocol #:

2003N000343/3) and Boston College (Approved Protocol #:

2009-014-01).

Tissue Preparation
Mice were killed by CO2 asphyxiation at 1 or 4 months post-

injection or at the humane endpoint defined by .20% loss in

maximal body weight. The brains were harvested at 1 and 4

months post injection and at the humane endpoint. The left

hemisphere of the brain was embedded in tissue freezing medium

(Triangle Biomedical Sciences, Durham, NC) and rapidly frozen

in a 2-methylbutane/dry-ice bath. Consecutive 20-mm thick

coronal cryosections were prepared and stored at 280uC. One

series of frozen sections representing the entire brain from AAV-

treated GM1 mouse, or control non-injected GM1 mice was fixed

for 10 min in 0.25% glutaraldehyde in phosphate buffered saline

(PBS) at room temperature followed by two washes in PBS.

Sections were stained for bgal using X-gal solution [5 mM

K4Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM MgCl2, 1 mg/ml 5-bromo-

4-chloro-3-indolyl-D-galactosidase (X-gal) in PBS, pH 5.0 as

described [17].

The right hemisphere of the brain was grossly dissected into

cortex, cerebellum, brainstem plus sub-cortical structures (Bs+ScS;

subcortical structures included midbrain, thalamus, hypothalamus,

hippocampus and striatum), and rapidly frozen on dry ice. The

right hemisphere was used for analysis of bgal enzymatic activity

and lipids. In addition, the spinal cord was divided into 0.5 cm

transverse sections. Alternating sections were collected and

analyzed for GSL storage. The values obtained in untreated and

PBS-treated GM1 mice were indistinguishable from each other

and as a result, were pooled together.

b-Galactosidase Assay
Total b-galactosidase activity was determined using 4-methy-

lumbelliferyl-b-D-galactopyranoside as the synthetic fluorogenic

substrate, specific for b-galactosidase as previously described [9].

Total b-galactosidase activity was determined by measuring the

release of 4-methylumbelliferone at excitation 360 nm, emission

460 nm on a SpectraMax M5 plate reader (Molecular Devices,

Sunnyvale, CA) and normalized to total protein concentration.

Isolation and Purification of Glycosphingolipids
Total Lipid Extraction. Total lipids were extracted as

previously described [29]. Briefly, frozen brain samples were

lyophilized and the dry weights were measured. Total lipids were

extracted from the lyophilized brain samples in a solution of

chloroform (CHCl3):methanol (CH3OH) and distilled water

(dH2O). The samples were placed on a magnetic stirrer at room

temperature for at least 8 hours and then centrifuged for

15 minutes at 1200 g. The supernatant was collected and the

pellet was washed with CHCl3:CH3OH (1:1 by volume) and

centrifuged as before. The combined supernatants were converted

to a CHCl3:CH3OH:dH2O ratio of 30:60:8 (solvent A).

Column Chromatography. Neutral and acidic lipids were

separated using DEAE-Sephadex (A-25, Pharmacia Biotech,

Upsala, Sweden) column chromatography as previously described

[30]. DEAE-Sephadex was prepared in bulk by washing the resin

three times with solvent B (CHCl3:CH3OH:0.8 M Na acetate,

30:60:8 by volume), equilibrating in solvent B overnight, followed

by washing three times with solvent A (CHCl3:CH3OH:dH20,

30:60:8 by volume) until neutral. The total lipid extract, suspended

in solvent A, was applied to a DEAE-Sephadex column. The

column was washed twice with solvent A and the entire neutral

lipid fraction, consisting of the initial eluent plus washes, was

collected. This fraction contained cholesterol, phosphatidylcholine,

phosphatidylethanolamine and plasmologens, sphingomyelin, and

neutral GSLs to include cerebrosides and asialo-GM2 (GA2). Next,

acidic lipids were eluted from the column with solvent B.

Ganglioside Purification. The acidic lipid fraction contain-

ing gangliosides was dried by rotary evaporation and transferred to

a 15 mL graduated conical glass tube. Water was added and the

mixture was inverted, vortexed, and centrifuged for about

15 minutes at 12006g to partition gangliosides into the upper

phase [31]. The upper aqueous phase was removed and the lower

organic phase was washed once with Folch ‘pure solvent upper

phase’ (CHCl3:CH3OH:dH20, 3:48:47 by volume).

Resorcinol Assay. An aliquot of the ganglioside fraction

(Folch upper phase) was evaporated and analyzed for sialic acid

content using a modified resorcinol assay [32]. N-acetylneuraminic

acid (Sigma # A9646, St. Louis, MO, USA) (1, 3, and 6 mg) was

used as an external standard. Samples were dissolved in 1 mL of

resorcinol reagent (40 mL concentrated HCl, 0.125 mL 0.1 M

copper sulfate, 5 mL 2% resorcinol stock, brought to 50 mL with

distilled water):dH2O (1:1 by volume), boiled for 17 minutes, and

then cooled in an ice bath. Butyl acetate:1-butanol (1.5 mL, 85:15

AAV Thalamic Gene Delivery
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by volume) was then added to each sample, and the samples were

vortexed and centrifuged at 12006g. The supernatant was then

carefully removed and analyzed in crystal cuvettes at 580 nm

in the Shimadzu UV-1601 UV-visible spectrophotometer

(Shimadzu, Kyoto, Japan).

Base Treatment and Desalting. After removing aliquots for

the resorcinol assay, the ganglioside fraction was evaporated under

a stream of nitrogen and treated with mild base (1 mL of 0.5 M

NaOH) in a shaking water bath at 37uC for 1.5 hours. Base and

salts were separated from the gangliosides using a modification of a

previously described method [33]. Briefly, the sample was applied

to a C18 reverse-phase Bond Elute column (Varian, Harbor City,

CA, USA) and then the column was washed with dH2O to remove

salts. Gangliosides were eluted from the column with CH3OH and

then followed CHCl3:CH3OH (1:1 by volume). Samples were

evaporated under nitrogen, re-susupended in CHCl3:CH3OH (1:1

by volume), and then stored at 4uC.

Acidic Phospholipid Purification - After the ganglioside fraction

(Folch upper phase) was transferred, the acidic phospholipid

fraction (Folch lower phase) was evaporated under a stream of

nitrogen and resuspended in CHCl3:CH3OH (1:1 by volume).

This fraction contained fatty acids, cardiolipin, phosphatidylserine,

phosphatidylinositol, sulfatides.

Neutral Lipid Purification. Neutral lipids were dried by

rotary evaporation and resuspended in CHCl3:CH3OH (2:1 by

volume). To further purify GA1, an aliquot of the neutral lipid

fraction was evaporated under a stream of nitrogen, base treated

with 1 N NaOH, and Folch partitioned as described previously

[8,30]. The Folch lower phase containing GA1 was evaporated

under a stream of nitrogen and re-suspended in CHCl3:CH3OH

(2:1 by volume).

Analysis of Glycosphingolipids by HPTLC
All lipids were analyzed qualitatively by high-performance thin-

layer chromatogram (HPTLC) according to previously described

methods [8,30]. To enhance precision, an internal standard (oleoyl

alcohol) was added to the neutral and acidic lipid standards and

samples as previously described. Purified lipid standards were

either purchased from Matreya Inc. (Pleasant Gap, PA, USA),

Sigma (St. Louis, MO, USA), or were a gift from Dr. Robert Yu

(Medical College of Georgia, Augusta, GA, USA). Lipids were

spotted on 10620 cm Silica gel 60 HPTLC plates (E. Merck,

Darmstadt, Germany) using a Camag Linomat V semi-automatic

TLC spotter (Camag Scientific Inc., Wilmington, NC, USA).

For gangliosides and GA1, the HPTLC plates were developed

by a single ascending run with CHCl3:CH3OH:dH2O (55:45:10

by volume for gangliosides and 65:35:8 by volume for GA2)

containing 0.02% CaCl22H2O. The plates were sprayed with

either resorcinol-HCl or orcinol-H2SO4 reagent and heated on an

aluminium block heater at 105uC for approximately 30 minutes to

visualize gangliosides or GA1, respectively [32].

For neutral and acidic phospholipids, the plates were developed

to a height of either 4.5 cm or 6 cm, respectively with chloroform:

methanol: acetic acid: formic acid: water (35:15:6:2:1 by volume),

and then both were developed to the top with hexanes: diisopropyl

ether: acetic acid (65:35:2 by volume) as previously described [34].

Neutral and acidic phospholipids were visualized by charring with

3% cupric acetate in 8% phosphoric acid solution, followed by

heating in an oven at 165uC for 7 minutes.

The percentage distribution and density of individual bands was

determined as previously described [8]. Briefly, the HPTLC plates

were scanned on a Personal Densitometer SI with ImageQuant

software (Molecular Dynamics) or on a ScanMaker 4800 with

ScanWizard5 V7.00 software (Microtek). The total brain gangli-

oside distribution was normalized to 100% and the percentage

distribution values were used to calculate sialic acid concentration

of individual gangliosides as we previously described [35]. The

density value for GA1 was fit to a standard curve of known lipid

concentration and used to calculate concentration. For the neutral

and the acidic phospholipids, each lipid was normalized to an

internal standard (oleoyl alcohol) and its concentration was

quantified using a standard curve of each respective lipid. All

Figure 1. Distribution of bgal in the brain after AAV1-mediated thalamic gene delivery. One ml of AAV2/1-CBA-mbgal vector (4.1261013

gc/ml) was injected into the left thalamus of 6–8 week-old GM1 mice. (A–F) One month later the brain was analyzed for bgal distribution by X-gal
histochemical staining. bgal staining was evident throughout the ipsilateral hemisphere. Arrowhead in (C) indicates the ipsilateral perirhinal and
piriform cortices where bgal staining is less intense than elsewhere in the cortex in the same coronal plane. (G–I) Detection of vector mRNA by
radioactive in situ hybridization. (G), (H), (I) show the signal detected in tissue sections adjacent to those stained for bgal activity with X-gal shown in
(C), (D), and (E), respectively. Arrowheads in (C), and (E) indicate the perirhinal, piriform and entorhinal cortices. Scale bars in (A–F) represent 1mm.
doi:10.1371/journal.pone.0013468.g001
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brain lipid concentrations are expressed as mg/100 mg dry

weight.

Real-Time PCR
RNA was isolated from cerebrum, cerebellum, brainstem plus

sub-cortical structures (Bs+ScS), and spinal cord using Trizol

reagent (Invitrogen, Carlsbad, CA), and first-strand cDNA synthesis

was performed using Omniscript reverse transcriptase (Qiagen,

Valencia, CA) according to manufacturers’ instructions. Real-time

PCR analysis of disease marker gene expression was performed

using Taqman Gene Expression Assays (Applied Biosystems, Foster

City, CA.) for TNFa, FAS, MIP-1a,, MHC class II, F4/80, and

GAPDH as housekeeping gene. PCR was performed on a 7500 Fast

Real-time PCR system (Applied Biosystems) in Fast Mode. Gene

expression levels were normalized to GAPDH (DCt) and then

compared to heterozygote (HZ) levels using the formula 2DDCt to

calculate fold over HZ level for each gene. Error associated with

fold change was calculated using the following formula [36]:

SEMfoldchange~
( ln 2)(stdevDDCt)(2

({DDCt))
ffiffiffi

n
p .

Statistical Analysis
Data were analyzed by one-way analysis of variance or

Student’s t-test to calculate statistical significance between

untreated GM1 mice, AAV-treated GM1 mice, and control HZ

mice using Statview 5.0, or Microsoft Excel software.

Results

Thalamic infusion of AAV vector in adult GM1 mice
results in widespread distribution of bgal in the brain

We injected 1 ml of AAV2/1-CBA-mbgal vector (4.1261013

gc/ml) into the left thalamus of 6–8 week-old GM1 mice and one

month later analyzed lysosomal acid beta-galactosidase distribu-

tion in the brain by X-gal histochemical staining of tissue sections

(Fig. 1). The highest staining intensity (dark blue) was observed in

dorsal and lateral thalamus, but intense bgal staining was observed

in retrosplenial, visual, somatosensory, and auditory cortices.

Interestingly there was a clear boundary of enzyme distribution in

the cortex with lower bgal staining in perirhinal, piriform and

entorhinal cortices (arrowheads in Fig. 1). In anterior regions of

the brain (Fig. 1A) we found that bgal staining declined from the

cingulate cortex to dorsolateral regions of the cortex (motor and

somatosensory). In the striatum the most intense bgal staining was

associated with the dorsal region (Fig. 1A). ISH analysis showed

that AAV-transduced cells were present in dorsal and lateral

thalamic nuclei only (Fig. 1G–I) and the signal intensity correlated

with areas in the brain (thalamus) that reacted most strongly with

Figure 2. b-galactosidase distribution in CNS of GM1-gangliosidosis mice after intraparenchymal infusion of AAV2/1-bgal vector. Six
to eight week-old GM1 mice received bilateral injections of AAV2/1-bgal vector (1.261013 gc/ml) into the thalamus (AAV-T; light gray bars), or
thalamus and deep cerebellar nuclei (AAV-TC; dark gray bars). Age matched heterozygote (white bars) and untreated GM1 mice (black bars) were
used as controls. Mice were sacrificed at 1, and 4 months post-infusion and at the humane endpoint (Endpoint). (A) The left brain hemisphere was
used for histological analysis of bgal distribution by X-gal staining at pH 5.0. Representative sections from an AAV-TC GM1 mouse sacrificed at 4
months post-injection are shown. Scale bar = 1 mm. bgal activity was determined by 4MU assay in (B) cortex, (C) cerebellum, (D)
brainstem+subcortical structures (Bs+ScS), and (E) spinal cord at 1 (1M) and 4 (4M) months post-injection, and at the humane endpoint (Endpoint).
Error bars correspond to standard error of the mean. n.d. – not determined.
doi:10.1371/journal.pone.0013468.g002
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the X-gal substrate (Fig. 1A–F). Some faint ISH signal was also

apparent in the ipsilateral cortex.

Intraparenchymal infusion of AAV vector in adult GM1
mice results in sustained bgal expression throughout the
CNS

Disease progression in the GM1 mouse model is associated with

microgliosis, production of inflammatory cytokines and chemo-

kines, up-regulation of inflammatory markers, and inflammatory

cell infiltration [12,13]. Beside the thalamus and hypothalamus,

these alterations are also detected prominently in the spinal cord

and cerebellum. As delivery of lysosomal enzymes to these

structures can be achieved by injection of AAV vectors into the

deep cerebellar nuclei [23], we included a group of GM1 mice

injected bilaterally in the thalamus and deep cerebellar nuclei.

Also since GM1 mice are bgal mRNA negative [6], we tested a

strategy previously used in the Niemann-Pick mouse to prevent

confounding effects of a potential immune response against AAV-

produced enzyme in the brain [37]. This approach consists of an

intravenous infusion of a second AAV vector encoding the

respective enzyme from a liver-specific promoter prior to

intracranial injection of the test AAV vector encoding the same

enzyme.

We injected 6–8 week-old GM1 mice intravenously (i.v.) with

361011 gc of AAV2/rh8-ApoE4hAAT-bgal vector via the tail

vein. Two weeks later we performed bilateral injections of AAV2/

1-CBA-bgal vector (1.261013 gc/mL) into the thalamus (AAV-T

group: n = 23; Total dose = 4.861010 gc); or bilateral injections

into the thalamus and deep cerebellar nuclei (AAV-TC group:

n = 22; Total dose = 7.261010 gc). As controls we included age

matched GM1 mice infused i.v. with AAV2/rh8-ApoE4hAAT-

bgal followed by intracranial injection of PBS in thalamus and

cerebellum (n = 22), age matched untreated GM1 (n = 22), and

HZ (n = 24) mice. Mice were sacrificed at 1 and 4 months post-

injection, or at the humane endpoint defined by .20% loss in

maximum body weight achieved by each mouse. bgal activity in

the serum of GM1 mice at one month after tail vein injection was

25% of the level measured in the serum of age-matched naı̈ve HZ

mice.

bgal enzymatic activity in the CNS of treated and control mice

was analyzed both qualitatively and quantitatively (Fig. 2). X-gal

staining of brain sections showed widespread bgal activity

throughout the brain in both groups of AAV-treated GM1 mice

(Fig. 2A). The bgal distribution pattern in the brain remained

essentially unchanged over time (data not shown). In the

cerebellum intense bgal staining was observed only in AAV-TC

GM1 mice (Fig. 2A). bgal activity against 4MU substrate was more

than 10-fold higher than the enzyme levels in HZ mice (white bars

in Fig. 2) in cortex and brainstem+sub-cortical structures (Bs+ScS)

from both groups of AAV-injected GM1 mice (gray bars in

Figs. 2B, C). bgal activity in the cerebellum of AAV-T GM1 mice

was restored to HZ values by 4 months post-injection and showed

a slight increase at the final endpoint (light gray bars, Fig. 2D). In

contrast, in the cerebellum of AAV-TC GM1 mice bgal activity

was .10-fold higher than in HZ cerebellum at 1 month post-

injection and remained elevated for the duration of the experiment

(dark gray bars, Fig. 2D). In AAV-T GM1 mice, bgal activity in

the spinal cord reached a maximum of 82% of HZ levels at 4

months post-injection and then declined to ,35% at the final

endpoint (light gray bars, Fig. 2E). In AAV-TC GM1 mice, bgal

activity in the spinal cord remained essentially stable after 4

months post-infusion at ,53% of HZ level (dark gray bars,

Fig. 2E). The bgal activity in the CNS of PBS-injected GM1 mice

was indistinguishable from that in age matched untreated GM1

controls (black bars, Fig. 2) at about 1–2% of HZ levels.

Sustained reduction in GM1-ganglioside content in the
CNS of AAV-treated GM1 mice

We next analyzed the same CNS regions from all groups of

mice and time points for the distribution of individual gangliosides

by high-performance thin layer chromatography (HPTLC) (Fig. 3).

The qualitative and quantitative distributions of individual

gangliosides in cortex, brain stem and subcortical structures

(Bs+ScS), cerebellum, and spinal cord at 4 months post-injection

are shown in Fig. 3A–H and Tables S1, S2, S3, S4, S5, S6, S7, S8,

S9, S10, S11. As expected, GM1-ganglioside content in untreated

or PBS-injected GM1 mice increased with age in all regions

analyzed (black bars in Fig. 3A, C, E, G – lane 2). In contrast,

GM1-ganglioside levels were dramatically reduced in both groups

of AAV-treated GM1 mice (light and dark gray bars in Fig. 3). In

AAV-T GM1 mice reductions in GM1-ganglioside content ranged

from a minimum of 31.6% (spinal cord at 1 month post-injection)

to a maximum of 86.4% (cerebral cortex at 4 months post-

injection) compared to the levels measured for the same structures

in age-matched untreated GM1 mice. In AAV-TC GM1 mice

GM1-ganglioside content was reduced from a minimum of 44%

(spinal cord at 1 month post-injection) to a maximum of 93.5%

(cerebellum at 4 months post-injection) relative to the levels

measured for the same structures in age-matched untreated GM1

mice. However, GM1-ganglioside levels in both groups of AAV-

treated mice remained consistently higher than levels in HZ mice,

with the exception of Bs+ScS at 4 months post-injection in both

groups, and the cerebellum in AAV-TC GM1 mice (Fig. 3F and

Tables S5, S7, and S8). By the humane (AAV-T) or experimental

(AAV-TC) endpoint the GM1-ganglioside content in all structures

analyzed was higher than normal levels in control HZ mice

(Fig. 3B, D, H – Endpoint light and dark gray bars). Additional

injection of AAV vector into the deep cerebellar nuclei had a

significant impact on the biochemical outcome in the cerebellum,

but only a marginal effect on the spinal cord GM1-ganglioside

content compared to thalamic injection alone.

An interesting observation was made when analyzing the

distribution of individual gangliosides following intracranial AAV

treatment. At 1 month post-injection, GM2- and GM3-ganglio-

sides were detected by HPTLC in all regions analyzed (Tables S1,

S4, S6, S9). However, at 4 months post-injection and at endpoint,

GM2- and GM3-gangliosides were no longer present.

Ganglioside GD3, a minor glycolipid in adult mouse CNS [38],

was absent in the cortex of all mice (Tables S1, S2, S3), but present

in Bs+ScS, cerebellum, and spinal cord (Tables S4, S5, S6, S7, S8,

Figure 3. Biochemical quantification of GM1-ganglioside content in the CNS of AAV-treated GM1 mice by HPTLC. Gangliosides were
isolated from (A, B) cortex, (B, C) cerebellum, (D, E) brainstem+subcortical structures (Bs+ScS), and (F, G) spinal cord of heterozygote (HZ, white
bars), untreated GM1 (1, black bars), PBS-treated GM1 (2), AAV-T GM1 (3, light gray bars), and AAV-TC GM1 (4, dark gray bars) mice. (A, C, E, G)
Representative chromatograms showing the qualitative distribution of gangliosides at 4 months post-injection. The amount of gangliosides spotted
per lane was approximately 1.5 mg sialic acid. The individual gangliosides were labeled according to the nomenclature system of Svennerholm (left
side of the chromatograms) [32]. (B, D, F, H) Mean concentration of GM1-ganglioside in each region of the CNS at 1 month (1M), 4 months (4M) post-
injection, and at the humane or experimental endpoint (Endpoint) are shown. Error bars represent 1 SEM. n.d. – not determined.
doi:10.1371/journal.pone.0013468.g003
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S9, S10, S11). This ganglioside was decreased in Bs+ScS,

cerebellum, and spinal cord of untreated GM1 mice compared

to age-matched naı̈ve HZ mice (Tables S4, S5, S6, S7, S8, S9,

S10, S11). In AAV-T and AAV-TC mice the ganglioside GD3

levels were increased over those in age-matched untreated GM1

mice (Tables S4, S5, S6, S7, S8, S9, S10, S11), and in some

instances close to levels found in HZ mice (e.g. Bs+ScS and

cerebellum 4 months – Tables S5 and S8).

Intracranial AAV treatment had no other major effect on the

distribution or content of the other individual gangliosides

analyzed.

Sustained reduction in GA1 glycosphingolipid in the CNS
of AAV-treated GM1 gangliosidosis mice

We analyzed the same regions of the CNS for all groups and

time points for GA1 content because of the concomitant

accumulation of this GSL in GM1 mice [6] (Fig. 4). As expected,

GA1 levels were significantly reduced in all CNS regions and time

points analyzed (p,0.01) for both groups of AAV-treated GM1

mice (light and dark gray bars in Fig. 4) compared to age matched

untreated GM1 mice (black bars in Fig. 4). In AAV-T GM1 mice the

lowest levels of GA1 were achieved at 4 months post-injection

(Fig. 4B, D, H–4M light gray bars), but at endpoint, the GA1 content

had increased to 1.260.52, 2.5661.24, and 1.8860.71 mg/100 mg

dry tissue weight in cortex, cerebellum, and spinal cord, respectively

(Fig. 4B, D, H – Endpoint light gray bars). Also in AAV-TC GM1

mice, the lowest levels of GA1 were achieved at 4 months post-

injection (Fig. 4B, D, H–4M; dark gray bars = 0), albeit it was present

in the spinal cord (Fig. 4H–4M; dark gray bar). At endpoint (52

weeks of age), GA1 remained undetectable in the cerebellum (Fig. 4C

– Endpoint; dark gray bar = 0), but had increased to 0.5960.01, and

1.4960.14 mg/100 mg dry tissue weight in both the cortex, and

spinal cord (Fig. 4B, G – Endpoint; dark gray bars). In untreated

GM1 mice at the humane endpoint, GA1 levels were 7.1560.47,

5.8460.39, 3.2360.21 mg/100 mg dry tissue weight in cortex,

cerebellum, and spinal cord, respectively (Fig. 4B, D, and H –

Endpoint; black bars).

Cerebrosides are partially restored in the cortex of AAV-
treated adult GM1 Mice

Cerebrosides are myelin-enriched lipids, and changes in their

content in the CNS correlate with relative amount of myelin

[39,40]. The concentration of cortical cerebrosides for all groups

at 1 and 4 months post-injection are shown in Table 1. In naı̈ve

and PBS-treated GM1 mice there was a statistically significant

decrease in concentration of cerebrosides for both time points

compared to HZ mice (p,0.05). This is consistent with previous

findings of reduced myelin in animal models and in patients with

GM1-gangliosidosis [41,42,43]. The concentration of cerebrosides

in both AAV-treated groups at 1 month post-injection was

comparable to that in naı̈ve and PBS-treated GM1 mice. At 180

days of age, or 4 months post-injection, the concentration of

cerebrosides was significantly greater in AAV-T GM1 mice than

in naı̈ve or PBS-treated GM1 mice. In AAV-TC GM1 mice the

concentration of cerebrosides remained stable between the two

time points, but below the levels in HZ control mice.

Effect of AAV treatment on disease marker gene
expression

Neurodegeneration in GM1 mice was shown to be the result of

GM1-mediated activation of both the UPR and the mitochondrial

apoptotic pathway [10,11]. Neuronal cell death elicits a neuroin-

flammatory process characterized by up-regulation of cytokines,

chemokines, inflammatory cell markers, and microglial activation

[12,13]. Thus we analyzed the mRNA expression levels of some

disease marker genes associated with inflammation, namely TNF-

a, Fas, MIP-1a, F4/80 in the cortex, cerebellum, Bs+ScS, and

spinal cord of mice sacrificed at the humane endpoint (untreated

GM1 mice, PBS-treated GM1 mice, AAV-T GM1 mice), or 52

weeks of age (AAV-TC GM1 mice, and heterozygote mice) (Fig. 5).

As expected most marker genes were elevated in untreated GM1

mice compared to naı̈ve heterozygote mice, and in some instances

such as MIP-1a by more than 100-fold (Fig. 5C, black bars). In

AAV-T and AAV-TC GM1 mice there were statistically

significant decreases in expression levels in some of the structures

analyzed (asterisks in Fig. 5, p,0.05), but seldom to levels

comparable to those in heterozygote control mice.

Effect of AAV treatment on motor performance of GM1
mice

We used rotarod and open field tests to assess the motor

performance of AAV-treated GM1 and control mice at different

time points after injection (Fig. 6). Rotarod testing of all animals

prior to intracranial injection of AAV vector showed comparable

performance for all groups of mice (Fig. 6A). Mice were

subsequently tested at 1, 2.5, 4, and 6 months post-injection.

The performance of either group of AAV-treated GM1 mice

(AAV-T and AAV-TC) declined over time, and was indistinguish-

able from that of control untreated GM1 mice (Fig. 6A). The

Figure 4. Biochemical quantification of GA1 content in the CNS of AAV-treated GM1 mice by HPTLC. GA1 isolated from (A, B) cortex, (B,
C) cerebellum, (D, E) brainstem + subcortical structures (Bs+ScS), and (F, G) spinal cord of heterozygote (HZ, white bars*), untreated GM1 (1, black
bars), PBS-treated GM1 (2), AAV-T GM1 (3, light gray bars), and AAV-TC GM1 (4, dark gray bars) mice. (A, C, E, G) Representative chromatograms for 4
months post-injection are shown. The amount of sample spotted per lane was approximately equivalent to 0.2 mg tissue dry weight. (B, D, F, H)
Mean concentration of GA1 glycosphingolipid represented as mg of GA1/100 mg dry tissue weight (dw) for each region of the CNS at 1 month (1M),
4 months (4M) post-injection, and at the humane or experimental endpoint (Endpoint) are shown. Error bars represent 1 SEM. n.d. – not determined;
* White bars = 0.
doi:10.1371/journal.pone.0013468.g004

Table 1. Concentration of cortical cerebrosides in adult GM1
Micea.

Genotype Treatment 90 days of age 180 days of age

bgal+/2 - 2.4360.14 2.5460.14

bgal2/2 - 1.4560.15# 1.3960.07#

bgal2/2 PBS 1.4060.25# 1.2560.05#

bgal2/2 AAV-T 1.5960.10 2.0660.27*

bgal2/2 AAV-TC 1.7360.16 1.7960.19

aConcentration expressed as mg/100 mg dry weight. Values represent mean 6

SEM, where 3 independent samples were analyzed per group.
#Indicates that the value is significantly different from that in untreated bgal+/2

mice at P,0.05.
*Indicates that the value is significantly different from that in untreated bgal2/2
mice at P,0.01.

doi:10.1371/journal.pone.0013468.t001
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performance of HZ control mice remained essentially stable for

the duration of the experiment. Open-field testing was performed

at 2.5 and 4 months post-injection to measure locomotor (Fig. 6B)

and rearing activity (Fig. 6C). At 2.5 months post-injection the

locomotor activity of both groups of AAV-treated GM1 mice was

greater than untreated GM1 controls (Fig. 6B, 2.5M - black bar),

but statistical significance (p,0.05) was only achieved in AAV-T

GM1 mice (Fig. 6B, 2.5M – light gray bar). By 4 months post-

injection the locomotor activity of AAV-treated GM1 mice

declined and was indistinguishable from untreated GM1 control

mice (Fig. 6B, 4M). The locomotor activity of untreated GM1

mice increased between the two time points (Fig. 6B, black bars,

p,0.01), while that of HZ controls decreased (Fig. 6B, white bars,

p,0.05). Although the number of rearing events in AAV-treated

GM1 mice (Fig. 6C, gray bars) was consistently higher than in

untreated GM1 mice controls (Fig. 6C, black bars), this difference

was significant only in AAV-T GM1 mice at 2.5 months post-

injection (p,0.05).

Effect of AAV treatment on Visual Evoked Potentials in
GM1 mice

GM1 mice older than 6 months display visual abnormalities

characterized by normal electroretinograms but subnormal

visually evoked potentials (VEP) [28]. We analyzed VEPs in

AAV-treated GM1 mice at 10–11 months of age, and age

matched untreated control HZ mice (Fig. 7). Untreated GM1 mice

were analyzed at 7–8 months of age, and presented subnormal

VEPs (Fig. 7C) compared to wild type (Fig. 7A) and HZ (Fig. 7B)

mice. AAV-treated GM1 mice showed some response to the visual

stimulus (Fig. 7D, E), albeit with considerable variability among

animals within each group (gray lines in Fig. 7D, E represent the

VEP of each individual animal in the group). The VEP data also

Figure 5. Disease marker gene expression in the CNS of AAV-treated GM1 mice. Untreated GM1 mice (black bars), and AAV-T GM1 mice
(light gray bars) were sacrificed at the humane endpoint defined by .20% loss in body weight, or at 52 weeks of age for AAV-TC GM1 mice (dark gray
bars), and HZ mice (white bars). Total RNA was isolated from cerebrum (c), cerebellum (Cb), brainstem+subcortical structures (Bs+ScS), and spinal
cord (sc) and used for real-time PCR quantification of TNF-a (A), Fas (B), MIP-1a (C), and F4/80 (D) expression levels. Average fold induction over
normal (HZ levels) was calculated for each tissue. Error bars correspond to 1 SEM. * indicates statistical significance with a p-value,0.05 in Student’s t-
test.
doi:10.1371/journal.pone.0013468.g005
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show, on average, normal negative peak implicit time (50–

75 msec) for AAV-treated mice. These data suggest that AAV-

treated GM1 mice retained some degree of visual functionality

past 6 months of age. Histological analysis of the eye at the

humane endpoint (untreated GM1 and AAV-T GM1 mice), or 1

year of age (heterozygote mice, and AAV-TC GM1 mice) showed

evidence of some bgal activity in the retinal ganglion cell layer

(GCL) in both groups of AAV-injected GM1 mice compared to no

detectable activity in the retinas of untreated GM1 mice (Fig. 8).

Effect of AAV treatment on survival
In addition to sacrificing mice at different time points after

treatment for biochemical and histological analyses, we allowed a

subset of animals from each group (n = 8–12 animals per group) to

survive until the humane endpoint defined by .20% loss in body

weight. The median survival for untreated and PBS-injected GM1

mice was 38 and 37 weeks post-treatment, respectively (Fig. 9),

while the median survival time for AAV-T GM1 mice was

significantly increased to 45 weeks (p,0.05, Log-Rank test). All

but one AAV-TC GM1 mouse (n = 8) survived until the 52-week

experimental endpoint (p,0.001, Log-rank test), despite their

poor performance in motor tasks. Although these animals never

reached the humane endpoint as defined above, they displayed

signs of disease such as tremor, and difficulty in moving the hind

limbs at the experimental endpoint.

Discussion

Previously, we had shown that a single AAV injection into the

cerebral lateral ventricles of neonatal GM1 mice was sufficient to

correct the neurochemical phenotype [17]. In this study, we

examined the therapeutic efficacy of an AAV2/1 vector encoding

mouse bgal infused bilaterally into the thalamus, or thalamus and

deep cerebellar nuclei of adult GM1 mice. This intraparenchymal

infusion approach led to sustained high-level expression of bgal in

many of the CNS structures analyzed, and dramatic reductions in

GM1-ganglioside and GA1 content. Surprisingly the motor

performance of AAV-treated GM1 mice declined over time at a

rate similar to that of untreated GM1 mice. Nonetheless, the

median survival of both groups of AAV-treated mice was

significantly increased compared to untreated GM1 mice.

Our results show that thalamic delivery of an AAV2/1 vector

encoding mouse bgal is an effective approach to achieve

widespread distribution of therapeutic levels of this enzyme in

the adult GM1 mouse brain. The distribution of bgal in the brain

was uneven with anterior parts of the brain receiving less enzyme

than posterior regions closer to the injection site. The simplest

explanation is that enzyme diffusion limits its distribution to areas

near the injection site. However we have shown that bgal, like

many other lysosomal enzymes [18,20], can be transported by

axonal retrograde transport from the site of injection [21]. Thus

an alternative explanation is that the bgal distribution pattern

observed here is a direct result of the tropism of AAV2/1 vector

for a subset of thalamic nuclei, namely dorsal and lateral nuclei.

The faint ISH signal present in the cerebral cortex (Fig. 1G–I)

Figure 6. Effect of AAV-treatment on motor performance of
GM1 mice. (A) Rotarod testing was performed prior to injection (0
months), and then at 1, 2.5, 4, and 6 months post-injection in AAV-T
GM1 mice (N), AAV-TC GM1 (X), untreated GM1 (m), and HZ mice (X).

Open-field testing measured (B) locomotor and (C) rearing activity at
2.5 (2.5M) and 4 (4M) months post-injection in HZ (white bars),
untreated GM1 (black bars), AAV-T GM1 (light gray bars), and AAV-TC
GM1 (dark gray bars) mice. Group sizes: n = 20–24 for 0 and 1 month
time points; n = 14–18 for 2.5 and 4 month time points; n = 10–12 for 6
month time point. Graphs represent the mean for each group at the
specified time point. Error bars correspond to 1 SEM. * p,0.05 in paired
Student’s t-test.
doi:10.1371/journal.pone.0013468.g006
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could be due to axonal transport of vector-derived mRNA in

thalamic neurons that project to the cerebral cortex, similar to our

previous observation in the hippocampal system [21]. Alterna-

tively, it could be due to leakage of vector along the needle track

with subsequent transduction of cortical cells. This could explain

the intense staining observed in these cortical regions. Additional

experiments will be necessary to determine whether more

widespread transduction of thalamic nuclei leads to wider

distribution of bgal in the brain. Others have also injected AAV

vectors encoding lysosomal enzymes into the adult thalamus in

mouse models of other LSDs, but it has been done in combination

with several other targets, and thus it is difficult to assess the

contribution of thalamic transduction to the overall pattern of

enzyme distribution in the CNS [37,44,45]. Recently, Kells and

colleagues showed that thalamic infusion of an AAV2 vector

encoding GDNF resulted in extensive distribution of this growth

factor to the frontal cortex [46]. These results support the notion

that AAV-mediated genetic modification of thalamus may indeed

be an effective approach to distribute other secreted therapeutic

proteins to large regions of the brain.

The main finding from our studies is that bilateral injections of

AAV vector in adult GM1 mice lead to sustained reduction of

GM1-ganglioside and GA1 content to nearly normal levels in most

CNS structures analyzed. The spinal cord was an exception,

however, as GM1 levels were reduced to only ,50% of the levels

found in age-matched untreated GM1 mice. Both groups of AAV-

treated mice survived significantly longer than untreated GM1

mice, with the group receiving bilateral injection of AAV vector in

the thalamus and DCN (AAV-TC group) surviving until 1 year of

age. Nonetheless the motor performance of both groups of AAV-

treated GM1 mice declined over time and was indistinguishable

from that of age-matched untreated GM1 mice. According to our

neurochemical analysis, combined bilateral injection into thalamus

and DCN (AAV-TC group) is effective in restoring GM1-

ganglioside level to normal and eliminating GA1 glycosphingolipid

in the cerebellum, while bilateral thalamic injections (AAV-T

group) lead to partial correction (Fig. 3D, light gray bars), despite

achieving enzymatic activity levels comparable to those in

cerebellum of HZ mice (Fig. 1D, light gray bars) (This apparent

paradox is addressed below). The effect on lipid content in other

CNS structures is comparable in both treatment groups. The

difference in median survival between AAV-T and AAV-TC GM1

mice suggests that disease progression in the cerebellum is a

contributing factor to the phenotype in GM1 mice. Previous

studies have shown that the earliest and most profound changes in

neuroinflammatory markers and cytokine production are found in

cerebellum, brainstem and spinal cord [12,13]. The unexpected

finding in this study was that GM1-ganglioside and GA1 levels in

the spinal cord were essentially the same in both groups of AAV-

treated mice. bgal activity in the spinal cord of both groups of

AAV-treated GM1 mice was comparable at all time points

analyzed at approximately 50% of enzymatic activity in HZ spinal

cord (same observation as in the cerebellum of AAV-T GM1

mice). This level of enzymatic activity should be sufficient to

completely correct lysosomal storage in the spinal cord. This

apparent paradox may be explained by transport of bgal from

injected structures in the brain to a relatively small subset of cells in

the spinal cord where bgal activity reaches high levels and skews

the total enzymatic activity in the tissue. The fact that we do not

observe normalization of GM1-ganglioside level and elimination

of GA1 glycosphingolipid suggests that secondary distribution of

enzyme to other cells may be inefficient. Our present observation

that injection of an AAV vector into DCN does not improve

significantly lysosomal storage in the spinal cord is surprising.

Previous studies have shown that AAV-mediated gene transfer to

DCN in mice is an effective approach to supply lysosomal enzymes

and growth factors to the spinal cord [23,24]. Moreover this target

has also been utilized in several studies of AAV-mediated gene

delivery to the adult brain in mouse models of other LSDs, but also

in the context of multi-target injections [37,44,47], and thus

difficult to discern the contribution of AAV-transduced DCN to

the overall therapeutic effect. Several explanations are possible for

Figure 7. Effect of AAV treatment on visual function in GM1
mice. Visual evoked potentials were measured in (A) wild type, (B) HZ,
(C) untreated GM1, (D) AAV-T GM1, and (E) AAV-TC GM1 mice. Group
sizes are indicated on the graphs. (C–E) Gray lines show the results for
each mouse in the group. Black lines represent the group average.
doi:10.1371/journal.pone.0013468.g007
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our results: 1) Stereotaxic injections missed the intended DCN

target, and transduction of other cerebellar regions is sufficient to

supply the cerebellum with therapeutic levels of bgal, but

inadequate for axonal transport of enzyme to the spinal cord; 2)

differences in vector preparation/purification method that could

affect its tropism, similar to the effect reported for other AAV

serotypes [48]; 3) severity of spinal cord involvement may be

disease-specific, and in GM1 mice it appears to be one of the first

structures in the CNS where alterations are detected [12,13]; 4)

higher levels of bgal may be necessary in the spinal cord of GM1

mice to achieve therapeutic correction compared to the amount of

enzyme necessary in other mouse models of LSDs. Although we

documented nearly normal GM1-ganglioside levels and complete

elimination of GA1 in cerebrum (cortex, brainstem and subcortical

structures) and cerebellum of AAV-TC GM1 mice at 4 months

post-injection (5.5 to 6 months of age), these glycosphingolipids

remained elevated in the spinal cord (2.2-fold above normal).

Since motor performance was essentially indistinguishable from

age matched untreated GM1 mice, disease progression in the

spinal may be responsible for the progressive decline in motor

performance of AAV-treated GM1 mice in the present study.

Myelin loss has been reported in patients and animal models of

GM1- gangliosidosis [41,42]. Previously we have shown that

intracerebroventricular injection of an AAV2/1-CBA-bgal vector

in neonatal GM1 mice restored cerebrosides, which are myelin-

enriched lipids, to normal levels in the cerebrum at 3 months of

age [17]. The concentration of cerebrosides is directly propor-

tional to the amount of myelin and has been used as a myelin

marker in remyelination studies in mice [49,50,51]. Our results

further document the presence of a biochemical alteration in GM1

mouse myelin, and suggest that AAV-treatment partially corrects

it (Table 1). Previous studies have shown that the timing of

intervention is a critical parameter to prevent axonal degeneration

in classical late infantile neuronal ceroid lipofuscinosis mice, where

early treatment extends considerably the longevity of AAV-treated

mice [44]. We have performed additional studies in 4 week-old

Figure 8. Presence of b-galactosidase activity in the retina of AAV-treated GM1-gangliosidosis mice. The eye was collected at the
humane endpoint or 1 year of age, and bgal activity assessed by X-gal staining at pH 5.0 of histological sections from: (A) Heterozygote mice;
(B) Untreated GM1 mice; (C) GM1 mice injected bilaterally in the thalamus (AAV-T group); (D) GM1 mice injected bilaterally in the thalamus and deep
cerebellar nuclei (AAV-TC group). Sections were counterstained with Nuclear Fast Red reagent. Abbreviations: GCL- ganglion cell layer; INL – inner
nuclear layer; ONL – outer nuclear layer. Magnification – 2006.
doi:10.1371/journal.pone.0013468.g008
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GM1 mice injected bilaterally in the thalamus and DCN with the

same dose of AAV2/1-CBA-mbgal vector used in this study (with

and without i.v. infusion of liver-specific AAV vector) to test this

possibility, but did not observe any improvement in motor

performance compared to age matched untreated GM1 mice

(data not shown).

A potentially important observation in this study was the

apparent preservation of some visual function in AAV-treated

GM1 mice beyond 6 months of age, while age-matched untreated

GM1 control mice did not respond to visual stimuli, as previously

described [28]. Also the observation of normal peak implicit times

with reduced amplitudes in the averaged responses in AAV-

treated mice suggests that some (but not all) cells in the retina may

have retained normal function. Since retinal ganglion cells project

to the lateral geniculate nucleus in the thalamus, and this region

appeared to express high levels of bgal (as indicated by some of the

darkest X-gal staining anywhere in the brain – See Fig. 1), it is

possible that some enzyme and/or AAV vector may have been

transported via retrograde axonal transport to the retina. The

histological evidence of bgal activity in the retinal ganglion cell

layer of AAV-treated GM1 mice supports this notion, and could

be the basis for preservation of some visual function in these mice.

The effectiveness of transport of lysosomal enzymes and/or AAV

vector from the thalamus to the eye requires additional

experiments to characterize visual function in detail (electroreti-

nograms, VEP and acuity) over time, and correlate it to GM1-

ganglioside levels and histopathology in the retina.

Although it is possible that storage in other structures in the

CNS, or remaining myelin deficits, may be involved in the long-

term phenotype observed in AAV-treated GM1 mice, the

symptoms that were displayed throughout the experiment are

consistent with spinal cord involvement. Thus we hypothesize that

to achieve long-term survival of GM1 mice with stable or

improved motor performance, it will be necessary to devise a

strategy to effectively address disease progression in the spinal

cord. Several recent studies have shown that infusion of

recombinant lysosomal enzymes into the cerebral spinal fluid via

the lateral ventricles or intrathecally, is an effective approach to

reach therapeutic levels throughout the CNS [52,53,54]. Also

intracerebroventricular and intrathecal infusion of AAV vectors

appear to be effective in delivering therapeutic levels of lysosomal

enzymes to many regions of the CNS in various mouse LSD

models [55,56]. Combination of bilateral thalamic injections with

one of these modalities may be an effective way to achieve

complete correction throughout the CNS. Other targets in the

CNS such as the ventral tegmental area (VTA) [22] and external

capsule (EC) [57] appear to be highly effective to achieve

widespread distribution of lysosomal enzymes in the brain after

a single injection of an AAV vector. Rigorous studies will be

necessary to compare the effectiveness of different AAV vector

engineered enzyme producing centers in the brain (thalamus,

VTA, EC) to achieve global distribution of those enzymes

throughout the adult GM1 mouse CNS. To our knowledge this

is the first study demonstrating the potential of thalamic gene

delivery to achieve global distribution of a lysosomal enzyme

throughout the mouse cerebrum. Our studies suggest that the

thalamus can be used as a central node in a ‘built-in’ network for

widespread distribution of lysosomal enzymes, and possibly other

secreted therapeutic proteins throughout the cerebrum.
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Table S1 Cortical ganglioside distribution in adult GM1 Mice, 1

month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s001 (0.03 MB

XLS)

Table S2 Cortical ganglioside distribution in adult GM1 mice, 4

months post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s002 (0.03 MB

XLS)

Table S3 Cortical ganglioside distribution in adult GM1 mice,

at endpoint or 10 months post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s003 (0.03 MB

XLS)

Table S4 Brainstem+subcortical structures ganglioside distribu-

tion in adult GM1 mice, 1 month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s004 (0.03 MB

XLS)

Table S5 Brainstem+subcortical structures ganglioside distribu-

tion in adult GM1 mice, 4 months post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s005 (0.03 MB

XLS)

Table S6 Cerebellar ganglioside distribution in adult GM1

mice, 1 month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s006 (0.03 MB

XLS)

Table S7 Cerebellar ganglioside distribution in adult GM1

mice, 4 month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s007 (0.03 MB

XLS)

Table S8 Cerebellar ganglioside distribution in adult GM1

mice, at endpoint or 10 months post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s008 (0.03 MB

XLS)

Table S9 Spinal Cord ganglioside distribution in adult GM1

mice, 1 month post AAV in injection.

Found at: doi:10.1371/journal.pone.0013468.s009 (0.03 MB

XLS)

Table S10 Spinal Cord ganglioside distribution in adult GM1

mice, 4 month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s010 (0.03 MB

XLS)

Figure 9. Kaplan-Meier survival analysis of AAV-treated GM1
mice. Untreated GM1 (KO, black line), PBS-treated GM1 (PBS, bold
dashed line), heterozygote (HZ, dashed line), AAV-T GM1 (light gray
line), and AAV-TC GM1 (dark gray line) mice were allowed to survive
until the humane endpoint defined by .20% body weight loss, or 52
weeks of age. N = 8–12 per group.
doi:10.1371/journal.pone.0013468.g009
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Table S11 Spinal Cord ganglioside distribution in adult GM1

mice, at endpoing or 10 month post AAV ic injection.

Found at: doi:10.1371/journal.pone.0013468.s011 (0.03 MB

XLS)
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