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The presenilin/c-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular
signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the
membrane and also mediate the secretion of amyloid-b protein (Ab) has made modulation of c-secretase activity a
therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and b-
amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that
make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we
surveyed the proteome of a human cell line for targets of c-secretase and found a relatively small population of new
substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these
substrates to type I proteins not regulated by c-secretase, we determined that besides a short ectodomain, c-secretase
requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we
provide evidence for at least two mechanisms that can target a substrate for c cleavage: one in which a substrate with
a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires
ectodomain shedding to instruct subsequent c-secretase processing. These findings expand our understanding of the
mechanisms of substrate selection as well as the diverse cellular processes to which c-secretase contributes.

Citation: Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2008) Proteomic profiling of c-secretase substrates and mapping of substrate requirements. PLoS Biol 6(10): e257. doi:10.
1371/journal.pbio.0060257

Introduction

In the recently discovered process of regulated intra-
membrane proteolysis, activated transmembrane proteins are
liberated from the lipid bilayer in a two-step mechanism. The
first cleavage by a class of proteases dubbed secretases or
sheddases releases the ectodomain, leaving the protein with a
short lumenal stub, a transmembrane domain, and a
cytoplasmic domain. The second scission occurs when a
protease uses an unusual active site within the hydrophobic
lipid environment to recognize and cleave the truncated
target protein, releasing both the lumenal fragment and the
cytoplasmic domain from the membrane. The released
intracellular domain (ICD) may then signal as a transcription
factor or by other means [1,2]. This process was first
elucidated in studies of the pathogenesis of Alzheimer
disease, in which the amyloid precursor protein (APP) is
initially cleaved by b-secretase to generate an APP C-terminal
fragment (CTF) that is subsequently cleaved by the intra-
membrane aspartyl protease c-secretase, releasing amyloid b-
protein (Ab) from the membrane. Secreted Ab initiates the
amyloidogenic cascade that is widely believed to drive
pathogenesis [3].

c-secretase is a multiprotein complex consisting of pre-
senilin (PS), nicastrin, Aph-1, and Pen-2, with PS containing
the two catalytic aspartates that mediate peptide bond
scission [4]. PS is synthesized as a holoprotein that is post-
translationally cleaved into an N-terminal fragment (NTF)
and a CTF, which remain bound as a heterodimer. More than
160 different missense mutations have been identified within
the two human presenilin genes that cause an aggressive,
early-onset form of Alzheimer disease, largely by producing
longer and thus more aggregation prone species of Ab [5]. For

its key role in Ab generation, c-secretase has become a
principal target for Alzheimer disease therapeutics aimed at
inhibiting or modulating the protease’s activity. In addition,
c-secretase inhibition may prove therapeutic for some forms
of cancer by decreasing intracellular signaling molecules, e.g.
the Notch ICD, that are generated by c cleavage [6].
Through extensive investigation, principally of the proto-

typical substrates Notch and APP, a general model of c-
secretase function and activity has emerged [4]. c-secretase
processing is preceded by shedding of the substrate’s
ectodomain by either an a- or b-secretase, generating a
CTF with a short N-terminal extracellular domain. Once this
conversion to a CTF has occurred, the c-secretase complex
can bind the substrate and then translocate it to the active
site, where intramembrane proteolysis can occur within an
interior hydrophilic chamber [7,8]. There remain several
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major gaps in our understanding of c-secretase proteolysis. It
is unclear what number and spectrum of substrates are
processed by c-secretase. From the existing candidate-based
substrate studies, it has been proposed that c-secretase may
function as a type of ‘‘proteasome of the membrane,’’ with
loose substrate specificity [9]. It is thought that c-secretase
can only cleave type I transmembrane proteins. However,
substrates of other topologies have been proposed [10,11],
and preference for type I proteins has never been addressed
in an unbiased manner. Finally, it is unclear which regions of
a substrate are important for binding and subsequent
proteolysis by c-secretase, and whether a sheddase may,
beyond reducing ectodomain size, contribute to substrate
specificity.

To address these issues, we have performed a novel
unbiased proteomic screen to identify the range of substrates
in the proteome that are regulated by c-secretase processing.
Coupling a selective c-secretase inhibitor with the method of
stable isotope labeling with amino acids in cell culture
(SILAC) and subsequent mass spectrometry, we have identi-
fied a relatively small cohort of novel c-secretase substrates
among thousands of other proteins that are unchanged by c-
secretase inhibition. In agreement with the general model of
c-secretase processing, all substrates we identified were type I
transmembrane proteins. Using genetic and pharmacological
manipulations, we validated a subset of substrates and
nonsubstrates and confirmed that c-secretase cleavage is
preceded by ectodomain shedding. By generating chimeric
proteins containing substrate and nonsubstrate regions, we
identified two potentially independent mechanisms for
targeting a protein for proteolysis. Finally, we determined
that c-secretase binding of a truncated type I protein is not
sufficient to induce proteolysis, and that permissive trans-
membrane and cytoplasmic domains are required for c-
secretase cleavage to occur. These results demonstrate that c-
secretase regulates a relatively small subset of the membrane
proteome, and that substrates have specific determinants that
enable their recognition and proteolysis.

Results

Identification of c-Secretase Substrates Using Quantitative
Proteomics and c-Secretase Inhibition
The development of tools to compare proteomes quanti-

tatively has enabled identification of phosphorylation cas-
cades [12], DNA damage responses [13], and changes in tumor
cell lines [14]. The SILAC method takes advantage of the
ability of mass spectrometry to differentiate between heavy
and light isotopic variants. By metabolically labeling cells with
amino acids containing either heavy or light isotopes, the
entire proteome can be quantitatively compared, and differ-
ences arising from genetic disparity or experimental treat-
ments can be determined. In the present study, we sought to
identify substrates of c-secretase using SILAC coupled with
treatment by a selective c-secretase inhibitor.
HeLa cells were labeled with light or heavy lysine and

arginine. Once labeled, the c-secretase inhibitor DAPT was
applied to the light labeled cells (LightþDAPT) and control
DMSO solvent to the heavy labeled cells (HeavyþDMSO).
After this 16 h treatment, equal numbers of cells were
combined and then fractionated. As evidence of successful c-
secretase inhibition, we examined endogenous APP levels by
Western blot (Figure 1A). In whole-cell lysates (lanes 1 and 2)
DAPT treatment did not change the levels of full-length APP,
but as expected increased the levels of the APP CTF, the
immediate substrate of c-secretase. Proteins from the
combined LightþDAPT and HeavyþDMSO treatment con-
ditions were fractionated into cytosolic and membrane
fractions, with the APP and APP CTFs found in the
membrane fraction and absent from the cytosol. Purified
membrane proteins were separated by SDS-PAGE and
stained with Coomassie (Figure 1B). For mass spectrometry
analysis, the lane was divided into ten horizontal slices, and
each subjected to tryptic digestion and LC-MS/MS (see
Materials and Methods for details).
The expected spectral pattern for full-length APP and APP

CTF peptides, as well as other putative c-secretase substrates,
is shown in schematic form in Figure 1B. Peptides derived
from full-length proteins would not be expected to change in
relative abundance in response to c-secretase inhibition
(upper spectrum), regardless of whether they are true
substrates or nonsubstrates. In contrast, peptides derived
from c-secretase substrates, following ectodomain shedding
that reduces the protein’s molecular weight, should be higher
in relative abundance in the light-labeled condition treated
with DAPT (lower spectrum). Data arising from all quantita-
tive peptide comparisons were analyzed for this spectral
pattern to identify individual c-secretase substrates expressed
under endogenous conditions. In total, over 16,400 peptides
representing more than 2,500 proteins were quantitatively
compared (Table S1).
The APP protein sequence is shown in Figure 1C to

exemplify the findings of this proteomic analysis. An APP
tryptic peptide derived from the higher–molecular weight
region of the gel and present in equal abundance under the
two labeling conditions is indicated in blue, and two peptides
from the lower–molecular weight region of the gel with
significantly increased abundance in the LightþDAPT con-
dition are indicated in red. As expected for APP, the peptides
enriched in the LightþDAPT condition map to the C-
terminal region of the protein, which remains embedded in
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Author Summary

All cells face the challenge of removing transmembrane proteins
from the lipid bilayer for the purpose of signaling or degradation.
One molecular solution to this problem is the multiprotein enzyme
complex c-secretase, which is able to hydrolyze several known
transmembrane proteins within the hydrophobic lipid environment.
Due to its central role in the pathogenesis of Alzheimer disease,
modulation of c-secretase activity has become a therapeutic goal.
However, the number and diversity of proteins that can be cleaved
by this protease remain unknown, and the attributes that target
these proteins to c-secretase are unclear. In this study, we used an
unbiased approach to substrate identification and surveyed the
proteome for targets of c-secretase. Of the thousands of proteins
detectable, only a relative few were substrates of c-secretase, all of
which were type I transmembrane proteins. In addition to validating
several of these novel substrates, we compared them to other
proteins that we identified as nonsubstrates and determined that
there are specific domains that can activate or inhibit c-secretase
processing. These findings should advance our understanding of the
many cellular processes regulated by c-secretase and may offer
insights into how c-secretase can be exploited for therapeutic
purposes.



Figure 1. Identification of c-Secretase Substrates

HeLa cells were labeled using growth media containing heavy or light forms of arginine and lysine. (A) Cells grown with the light label were subjected
to the c-secretase inhibitor DAPT, which leads to accumulation of the APP CTF compared to the heavy-labeled control cells (lanes 1 and 2). Equal
numbers of cells from the LightþDAPT and HeavyþDMSO conditions were combined and fractionated into cytosolic and membrane proteins (lanes 3
and 4).
(B) One hundred micrograms of the combined LightþDAPT and HeavyþDMSO membrane fraction were separated by SDS-PAGE. The gel was divided
into ten horizontal slices and each subjected to trypsinization and LC-MS/MS. In quantitative comparisons, substrates would be expected to have equal
relative abundance of full-length proteins (upper spectrum) of the LightþDAPT and HeavyþDMSO conditions; whereas truncated fragments normally
cleaved by c-secretase (CTFs) would show an increased abundance of light-labeled peptides in the presence of DAPT (lower spectrum).
(C) Portion of the APP primary sequence, with a tryptic peptide identified from the higher–molecular weight (MW) portion of the gel and unchanged in
relative abundance indicated in blue. Red indicates tryptic peptides found in the lower-MW portion of the gel that were more abundant in the
LightþDAPT condition. The transmembrane sequence is highlighted in yellow, and arrowheads indicate the b-, a-, c-40, and c-42 secretase cleavage
sites (from left to right). APP-770 amino acid numbering is indicated on the left.
(D) List of all substrates identified through the proteomics screen, with the number of higher-MW, equal-abundance peptides in the left column and the
number of lower MW peptides that accumulate from DAPT treatment in the right column. Note that all unique HLA peptides identified were combined
in the table due to high sequence redundancy among the different HLA isoforms.
doi:10.1371/journal.pbio.0060257.g001
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the membrane after ectodomain shedding and represents the
substrate for c-secretase. Figure 1D displays all the proteins
identified by this quantitative proteomic screen that fit the
criteria for a potential c-secretase substrate. Listed next to
the protein in the left column are the higher–molecular
weight, equal-abundance peptides, and in the right column
are the relatively lower–molecular weight peptides enriched
by DAPT treatment. APP and its homolog amyloid precursor-
like protein 2 (APLP2) [15], as well as CD44 [16], are
previously described c-secretase substrates. The other APP
homolog, APLP1, was not identified in this screen, consistent
with it being expressed in the nervous system [17] and thus
not present in the epithelial HeLa cell line. Several novel
substrates were identified in this screen that have closely
related homologues previously identified as c-secretase
substrates: the human leukocyte antigen (HLA) [18], the
low-density lipoprotein receptor (LDLR) [19], and syndecan-1
and �2 (Synd) [20]. The remaining novel c-secretase sub-
strates we identified are: dystroglycan (DG), the Delta/Notch-
like EGF-related receptor (DNER), desmoglein-2 (DSG2),
natriuretic peptide receptor-C (NPR-C), plexin domain-
containing protein 2 (PLXDC2), and vasorin. Table S2 lists
the sequence and quantitative information of the peptides
derived from these putative c-secretase substrates.

Validation of Identified c-Secretase Substrates and
Nonsubstrates Using Genetic and Pharmacological
Systems

To confirm that the proteins identified in the SILAC
proteomic screen are indeed c-secretase substrates, DG,
DNER, DSG2, NPR-C, PLXDC2, and vasorin were each cloned
and C-terminally tagged with a FLAG epitope. To also
validate two of the many proteins identified by the screen
that were not implicated as c-secretase substrates, the
proteins integrin b-1 (Itgb1) and natriuretic peptide recep-
tor-A (NPR-A) were similarly cloned and FLAG-tagged. These
two apparent nonsubstrates were chosen based on their
similarities to known substrates, including type I trans-
membrane topology and function in cell adhesion (Itgb1) or
as a peptide receptor (NPR-A). As a genetic method of
validation (Figure 2), we used a fibroblast cell line that
contains deletions of the Presenilin-1 and -2 genes and thus
completely lacks c-secretase activity. In this PS double-
knockout (PS-DKO) cell line, we expressed one of three
constructs by viral transduction to generate a substrate
validation system: (1) a control cell line expressing just empty
vector; (2) a cell line expressing a catalytically inactive PS
construct with one active site aspartate mutated to alanine
(PS1-D257A), which thus restores c-secretase complex for-
mation but prevents catalytic activity; and (3) a cell line
expressing wild-type PS1 that forms a proteolytically active c-
secretase complex (Figure 2A). Due to low expression of some
proteins, not all cloned substrates could be tested in these PS-
DKO cells, but they were validated separately by DAPT
inhibitor treatment (see below).

Expression of either PS1-D257A or wild-type PS1 allowed
the formation of the c-secretase complex, as confirmed by the
mature glycosylation of nicastrin [21] (Figure 2A, top panel).
Probing for PS1 by Western blot with an N-terminally
directed antibody (middle panel) showed both PS1 holopro-
tein and NTF in the wild-type PS1 cells, whereas the PS1-
D257A construct remained as a holoprotein, failing to be

post-translationally cleaved into NTF and CTF. These data
confirm that PS holoprotein processing into NTF and CTF
occurs by an endoproteolytic mechanism dependent on PS
activity. As a readout for establishment of c-secretase activity,
these various cell lines were probed for the presence of
endogenous APP CTFs (lower panel), whose levels were
reduced in the PS1-expressing cells, thus indicating func-
tional c-secretase activity only with expression of wild-type
presenilin.
As a second means of validation, the cloned substrates and

nonsubstrates were expressed stably in HEK cells, and the
presence or absence of regulation by c-secretase was
confirmed by treatment with DAPT (Figure 3). In further
analyses of these cells, we searched for evidence of the
sheddase responsible for ectodomain secretion by applying
the b-secretase inhibitor C3, the metalloprotease (a-secretase)
inhibitor GM6001, or the phorbol ester PMA, which
stimulates ectodomain shedding. To probe for the c-
secretase–mediated release of intracellular domains, many
of which have been shown to be degraded rapidly by the
proteasome [18,22–24], we treated cells with the proteasome
inhibitor epoxomicin. The genetic (Figure 2) and pharmaco-
logical (Figure 3) experiments will be described together for
each potential substrate or nonsubstrate.
Vasorin is an inhibitor of TGF-b signaling and may play a

role in vascular remodeling [25]. In the PS-DKO cells, vasorin
CTF levels were potently reduced by active c-secretase
(Figure 2B and 2H). Vasorin achieved high overexpression
in HEK cells, with significant CTF accumulation in response
to DAPT treatment, and a reduction in CTF levels with a 6-h
GM6001 treatment, indicating the vasorin sheddase to be a
metalloprotease (Figures 3A and S1A). A prominent vasorin
ICD was observed with vasorin expression, which was further
stabilized by proteasome inhibition (Figure 3A, far right lane).
In both the PS-DKO and HEK cells, several distinct vasorin
CTF bands were observed. Similarly, when expressed at
comparatively low levels in HeLa cells, multiple vasorin CTF
bands were still generated (unpublished data). This CTF
pattern is unlikely to be due to multiple sheddase cleavages
(see below), but may be due to post-translational modification
or SDS-stable multimer formation. Of interest, we noticed
that stable vasorin expression in HEK cells altered cell
morphology and reduced cell adherence (Figure S1I),
although it did not produce overt cytotoxicity. Such a
morphological change was not observed upon expression of
any of the other c-secretase substrates.
DG, a member of the multiprotein dystrophin–glycopro-

tein complex, provides a physical connection between the
extracellular matrix and the intracellular cytoskeleton [26]
and is implicated in several diseases, including muscular
dystrophies [27]. DG is synthesized as a long precursor
protein and is post-translationally cleaved into an extra-
cellular a-DG fragment that noncovalently associates with the
membrane-anchored b-DG fragment [28]. In our PS-DKO cell
lines, b-DG was observed to undergo shedding to generate a
DG CTF, whose levels were then regulated by c-secretase
activity (Figure 2C and 2H). In the HEK cells, DAPT
treatment led to a significant increase in two distinct DG
CTFs, one of which was produced by metalloprotease
cleavage (Figures 3B and S1B–S1D). A DG ICD was observed
without DAPT treatment, which significantly accumulated
with proteasome inhibition (Figure 3B, right panel). To
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compare the complex banding pattern observed in HEK cells,
suggesting more than one ectodomain proteolytic pathway,
we also analyzed DG processing in HeLa cells. When DG was
expressed in HeLa cells, only a single CTF was produced from
b-DG, and it accumulated upon c-secretase inhibition
(Figures 3C and S1B). Thus, different cell types apparently
use different b-DG secretory processing pathways.

DNER is a Notch ligand expressed in neurons and involved
in cerebellar development and function [29,30]. In the PS-
DKO cell lines, full-length DNER was expressed as a doublet,

perhaps arising from differential glycosylation, and produced
a CTF that was regulated by c-secretase (Figure 2D and 2H).
In HEK cells, DNER expression resulted in the production of
a CTF whose levels also increased with DAPT treatment. After
a 16-h treatment, the metalloprotease inhibitor GM6001
modestly reduced CTF levels by inhibiting a-secretase
mediated ectodomain shedding (Figure S1E). The DNER
ICD could be detected upon inhibition of the proteasome
(Figure 3D, far right lane).
NPRs bind to circulating natriuretic peptides (atrial

Figure 2. Validation of c-Secretase Substrates Using a Genetic System

(A) Fibroblasts derived from Presenilin1/2 null mice were transduced to stably express a control empty vector, a catalytically inactive PS1-D257A
construct, or the wild-type PS1 construct. PS1-D257A and wild-type PS1 enabled the formation of the c-secretase complex, as indicated by the
maturation of nicastrin (mNct) from incompletely glycosylated immature nicastrin (iNct, top panel). The PS1-NTF and a small amount of PS1-holoprotein
were observed with wild-type PS1 expression, as expected, but cells expressing PS1-D257A were unable to convert PS1-holo into PS1-NTF (middle
panel). Endogenous APP CTFs (bottom panel) indicate that proteolytically active c-secretase was present only in the wild-type PS1 condition.
(B–E) In empty vector, PS1-D257A, and wild-type PS1 cells, FLAG-tagged candidate substrates were stably expressed to validate their processing by c-
secretase: (B) vasorin (Vasn), (C) dystroglycan (DG), (D) Delta/Notch-like EGF-related receptor (DNER), and (E) natriuretic peptide receptor-C (NPR-C). Two
type I transmembrane proteins found in the screen not to be processed by c-secretase—(F) integrin b-1 (Itgb1) and (G) natriuretic peptide receptor-A
(NPR-A)—were similarly analyzed and validated, with the predicted size of a theoretical CTF indicated with a vertical line and asterisk.
(H) Quantitative changes in substrate CTF levels normalized to the empty vector control. For comparisons between PS1-D257A and PS1 conditions, *p
, 0.05, **p , 0.01, ***p , 0.001.
doi:10.1371/journal.pbio.0060257.g002
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natriuretic peptide, brain natriuretic peptide, and C-type
natriuretic peptide) [31]. NPR-A and NPR-B contain a
guanylate cyclase domain, and upon binding natriuretic
peptides generate cyclic GMP. NPR-C, while similar to NPR-
A and -B in the function of its extracellular domain, has a
shortened cytoplasmic domain with no guanylate cyclase
activity. Thus, with no identified signaling function [32], NPR-
C has been termed a ‘‘clearance receptor’’ whose principal
role may be to remove excess natriuretic peptides [33,34].
However, recent studies have identified regions in the
cytoplasmic tail of NPR-C that modulate G-protein activity

[35], suggesting that NPR-C’s short cytoplasmic tail has a
signaling function. In our PS-DKO cell lines, expression of
full-length NPR-C resulted in an NPR-C CTF, the levels of
which were significantly regulated by c-secretase activity
(Figure 2E and 2H). Expression in HEK cells revealed robust
CTF accumulation with DAPT treatment, and metallopro-
tease inhibition by 16-h GM6001 treatment reduced CTF
levels (Figures 3E and S1F).
Desmogleins are structural components of desmosomes,

which form intercellular junctions and direct tissue morpho-
genesis [36]. Overexpression of DSG2 has been noted in

Figure 3. Pharmacological Characterization of c-Secretase Substrate Processing

HEK cells stably expressing the indicated constructs were treated for 16 h with DAPT (þ) or DMSO vehicle alone (–) (left panels), or for 6–16 h with DAPT
alone or in combination with the b-secretase inhibitor C3, the metalloprotease inhibitor GM6001, the phorbol ester PMA, and the proteasome inhibitor
epoxomicin (right panels). The constructs expressed are (A) vasorin, (B) DG, (D) DNER, (E) NPR-C, (F) DSG2, (G) PLXDC2, (H) Itgb1, and (I) NPR-A.
(C) DG was also expressed in HeLa cells, revealing just a single CTF that again accumulated with DAPT treatment. The asterisk in (G) indicates a PLXDC2
fragment that accumulated with simultaneous epoxomicin and DAPT treatment (data not shown). A quantitative analysis of these experiments is shown
in Figure S1.
doi:10.1371/journal.pbio.0060257.g003
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several forms of cancer, and transgenic overexpression of
DSG2 drives tumorigenesis by altering multiple signaling
pathways [37]. In HEK cells, DSG2 expression produced a full-
length protein and a CTF that was processed by c-secretase.
CTF levels decreased significantly upon 6-h treatment with
either C3 or GM6001, indicating that both b-secretase and an
a-secretase–like metalloprotease can shed the DSG2 ectodo-
main (Figures 3F and S1G). The DSG2 ICD was observed when
its degradation was prevented by the proteasome inhibitor
epoxomicin (Figure 3F, far right lane).

PLXDC2 is a poorly characterized protein expressed in the
developing nervous system [38] and found to be up-regulated
in cancerous tissue [39]. Full-length PLXDC2 is robustly
expressed in HEK cells, though the levels of CTF produced by
ectodomain shedding are relatively low. Shedding is appa-
rently due to a metalloprotease, as a 16-h GM6001 treatment
significantly reduces CTF levels, while the CTF levels increase
with PMA treatment (Figures 3G and S1H).

In addition to the novel substrates discussed above, analysis
of proteins that we identified to not be processed by c-
secretase may yield insight into substrate requirements.
Integrins are cell adhesion molecules that also play sub-
stantial roles in signal transduction. All integrin isoforms are
single-pass membrane proteins that form ab heterodimers
[40]. Itgb1 achieved modest expression in PS-DKO cells
(Figure 2F), and stronger expression in HEK cells (Figure 3H),
although no CTF was observed and protein levels were not
modulated by sheddase activators or inhibitors (Figure 3H,
right panel). We also analyzed endogenous Itgb1 levels in the
PS-DKO cells using a C-terminally directed antibody, and
again found no evidence for CTF production (unpublished
data). The second nonsubstrate examined was NPR-A, and
despite being in the same family as NPR-C, NPR-A did not
yield a CTF and was not proteolytically regulated by sheddase
or c-secretase activity, both in PS-DKO cells (Figure 2G) and
HEK cells (Figure 3I). Thus, as first identified in our unbiased
proteomics screen, these two proteins are not regulated by c-
secretase processing, despite having type I topology and
functions in common with some other known c-secretase
substrates.

Chimeric Constructs of Integrin and Vasorin Identify a Role
for the Transmembrane and Cytoplasmic Domains in
c-Secretase Proteolysis

Our finding that Itgb1 and NPR-A are not c-secretase
substrates suggests that protease activity is directed only at
specific type-I transmembrane proteins. In an effort to
establish which regions within a substrate are important for
c-secretase recognition and proteolysis, we used recombinant
methods to fuse the domains of a c-secretase substrate
(vasorin) and a nonsubstrate (Itgb1), thereby producing
various chimeric type I proteins. By expressing these
chimeras in HEK cells and inhibiting c-secretase activity with
DAPT, it becomes feasible to determine which regions of a
protein are permissive or inhibitory to c-secretase process-
ing. First, we examined chimeras of full-length proteins. A
construct containing the full-length ectodomain of integrin
fused to the transmembrane and cytoplasmic domains of
vasorin (Int/Vas) was expressed at high levels, although no
CTF was produced. This is presumably due to the observed
lack of ectodomain shedding of the integrin extracellular
domain (above), and thus Int/Vas is not a substrate of c-

secretase (Figure 4A), even though the transmembrane
domain of intact vasorin undergoes robust c cleavage. In
contrast, when the ectodomain of vasorin is fused to the
transmembrane and cytoplasmic domain of Itgb1 (Vas/Int),
ectodomain shedding occurs to produce a CTF that is
processed by c-secretase (Figure 4B). Thus, ectodomain
shedding is a requirement of c-secretase processing, even
when a protein contains a transmembrane and cytoplasmic
domain normally recognized and cleaved by c-secretase.
To bypass the requirement for ectodomain shedding,

chimeric CTFs can be produced directly by fusing the signal
peptide to the ectodomain 13 amino acids before the
transmembrane domain (designated CTF13). Signal peptide
removal produces a protein that resembles identically a CTF
generated by sheddase cleavage [41]. Interestingly, the Vas/Int
CTF13 protein was not regulated by c-secretase (Figure 4C).
This is in contrast to the Vas/Int CTF derived from
ectodomain shedding of the full-length Vas/Int (Figure 4B).
Taken together with data from other chimeric CTFs discussed
below, these data suggest that there may be an alternative
pathway for c-secretase recognition of a CTF, in addition to
the canonical stepwise cleavages by a sheddase and then c-
secretase, which may depend on the context in which the CTF
is generated and presented to c-secretase (see Discussion).
It has been hypothesized that due to the lack of a consensus

recognition sequence in the known c-secretase substrates, the
protease has loose sequence specificity and simply requires
that a protein’s ectodomain is shed to enable c-secretase
processing. To test this hypothesis, we made artificial CTFs of
Itgb1, which normally does not have its ectodomain shed and
is not regulated by c-secretase cleavage (Figures 2F and 3H).
We first examined Itgb1 CTF25, which after signal peptide
removal should produce a CTF with an ectodomain contain-
ing the first 25 amino acids of the integrin lumenal domain.
Expression in HEK cells with versus without DAPT treatment
(Figure 4D) and in the PS-DKO cell system (Figure 4E)
produced no evidence for processing of Itgb1 CTF25 by c-
secretase. Similar results were observed for the Itgb1 CTF13,
which has a shorter ectodomain as would be generated by an
a-secretase (Figure 4F). Thus, c-secretase requires that a
substrate has features more than just a short ectodomain. In
this regard, dimerization of CTFs has been hypothesized to be
important for c-secretase processing of APP [42] and
activated tyrosine kinase receptors [43], although forcing
dimerization of the ectodomain can inhibit c cleavage [44].
To investigate whether intracellular dimerization of a CTF is
sufficient to confer c-secretase cleavage, we appended the
dimerization-inducing leucine zipper domain to the C
terminus of Itgb1 CTF13 to produce Itgb1-LZ CTF13.
However, Itgb1-LZ CTF13 levels were not changed by DAPT
treatment (Figure 4K), suggesting that homo-dimerization is
not sufficient to promote c-secretase proteolysis.
The vasorin CTF13, as expected from previous results with

the full-length vasorin protein (Figures 2B and 3A), was
strongly regulated by c-secretase processing in that DAPT
treatment increased vasorin CTF13 levels approximately 10-
fold (Figure 4G and 4L). Also consistent with c-secretase
cleavage of the vasorin CTF13, a vasorin ICD was observed in
the absence of DAPT (Figure 4G, lower panel). Of note,
accumulated vasorin CTF13 produced higher–molecular
weight bands similar to those seen with expression of the
full-length protein, again suggesting either complex post-
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Figure 4. Processing of Chimeric Constructs of Integrin and Vasorin

The lumenal, transmembrane, and/or cytoplasmic domains of integrin (a nonsubstrate; red) and vasorin (a c-secretase substrate; blue) were
interchanged to determine how proteins are targeted for c-secretase processing. HEK cells expressing the constructs were treated with DAPT or vehicle
alone for 16 h. In the case of Itgb1 CTF25, (E) PS-DKO fibroblast cells were also analyzed as in Figure 2.
(A and B) The full-length ectodomains of integrin (Int) and vasorin (Vas) were exchanged, yielding a CTF regulated by c-secretase only from the Vas/Int
chimera.
(C–K) Recombinant CTFs were generated by fusing the protein’s signal peptide to the lumenal domain either 25 (CTF25) or 13 (CTF13) residues N-
terminal to the transmembrane domain. Integrin CTF constructs with an ectodomain of 25 residues (D and E) or 13 residues (F) were not processed by
c-secretase. This was also true of the Itgb1-LZ CTF13 construct that has a leucine zipper at its C-terminus to facilitate homo-dimerization (K).
(C, I, and J) Chimeric CTFs containing an integrin transmembrane and/or cytoplasmic domain were not processed by c-secretase.
(G and H) Vasorin CTF13 and chimeric constructs containing both the vasorin transmembrane and cytoplasmic domains (Int/Vas CTF13) are processed
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translational modification or a very stable multimerization of
the CTF. A CTF chimera of integrin and vasorin composed of
a short integrin ectodomain plus the vasorin transmembrane
and cytoplasmic domains (Int/Vas CTF13) was processed by c-
secretase (Figure 4H), with significant increases in CTF levels
caused by DAPT treatment (Figure 4L). Int/Vas CTF13
constructs also produced a detectable ICD following c-
secretase cleavage (Figure 4H, lower panel), which further
accumulated with proteasome inhibition (unpublished data).
That Int/Vas CTF13 (Figure 4H), but not the full-length Int/
Vas (Figure 4A), was processed by c-secretase further
supports ectodomain shedding as a necessary event occurring
prior to a substrate’s recognition by c-secretase.

Integrin and vasorin CTF chimeras that contain only the
vasorin cytoplasmic domain (Int/Vascyto CTF13) (Figure 4I) or
only the vasorin lumenal and transmembrane domains (Vas/
Intcyto CTF13) (Figure 4J) were not substrates of c-secretase.
Due to the higher–molecular weight bands observed in the
Int/Vascyto CTF13 (Figure 4I), the vasorin cytoplasmic domain
is likely the site of post-translational modification that
produces the banding pattern also observed in natively
produced vasorin CTF, vasorin CTF13, and Int/Vas CTF13.
Taken together, the data suggest that both a permissive
transmembrane and a permissive cytoplasmic domain are
necessary to confer c-secretase cleavage upon a substrate, and
that the ectodomain must be short but does not by itself
dictate substrate processing.

Chimeric Constructs of NPR-A and NPR-C Demonstrate an
Inhibitory Role of the NPR-A Cytoplasmic Domain in
c-Secretase Processing

To determine why NPR-C is regulated by c-secretase
processing but not by the NPR-A protein, despite their being
closely related receptors, we generated various chimeric
constructs in a similar manner as those described above. The
NPR-A CTF13 construct itself, like Itgb1 CTFs, was not
processed by c-secretase (Figure 5A); again demonstrating
that more than ectodomain shedding is required for a
protein to be a c-secretase substrate. Moreover, when the
large intracellular domain of NPR-A (containing the kinase
homology, hinge, and guanylate cyclase domains [45]) was
attached to either the NPR-C lumenal and transmembrane
domains (NPR-C/Acyto CTF13) (Figure 5B), or fused to the C
terminus of the NPR-C CTF (NPR-CþA CTF13) (Figure 5C),
the resulting constructs were not processed by c-secretase
(quantified in Figure 5I).

In contrast to the chimeras bearing the NPR-A C terminus,
NPR-C CTF13 levels were increased with DAPT treatment
(Figure 5D), as expected for this previously demonstrated
substrate (Figure 2E and 2H). Addition of the lumenal NPR-A
domain (NPR-A/C CTF13) (Figure 5E) or both the NPR-A
lumenal and transmembrane domains (NPR-A/Ccyto CTF13)
(Figure 5F) did not perturb the ability of the construct to be
regulated by c-secretase (quantified in Figure 5I). That these
three CTFs bearing the NPR-C cytoplasmic domain are
processed, but not the constructs bearing the NPR-A

cytoplasmic domain, suggested an inhibitory role of the
NPR-A cytoplasmic tail in c-secretase processing. To test this
hypothesis, we truncated the NPR-A C terminus by removing
the three domains (kinase, hinge, and guanylate cyclase) to
produce NPR-A DKG CTF13, which has a cytoplasmic tail of
similar size to that of NPR-C. Treatment of cells expressing
this construct with DAPT showed that NPR-A DKG CTF13
was regulated by c-secretase (Figure 5G and 5I) to a similar
extent as NPR-C CTF13. These data demonstrate that, while
the NPR-A transmembrane and juxtamembrane domains are
permissive as substrates, the C-terminal cytoplasmic tail of
NPR-A is not permissive of c-secretase processing. This
inhibition is not simply due to the large size of the NPR-A
cytoplasmic domain, however, because the c-secretase sub-
strate desmoglein-2 contains a cytoplasmic domain of
similarly large size (Figure 3F).
To determine if the processing of a substrate more potently

regulated by c-secretase could be inhibited by the NPR-A
cytoplasmic domain, we fused this domain to the C terminus
of the vasorin CTF13 construct, producing VasnþNPR-A
CTF13 (Figure 5H). DAPT treatment of this fusion protein
resulted in a small but significant 1.8-fold increase in CTF
levels (Figure 5I), demonstrating its regulation by c-secretase.
Considering that vasorin CTF13 levels increase 10-fold upon
c-secretase inhibition (Figure 4G and 4L), we hypothesize that
this observed reduction in cleavage efficiency of the vasorin
transmembrane domain by c-secretase is due to partial
inhibition by the NPR-A cytoplasmic domain.

Association of Substrate and Nonsubstrate CTFs with
c-Secretase
To exclude the possibility that the nonsubstrate chimeric

CTFs we expressed were cleaved simply because they were in
a subcellular location where no c-secretase exists, we
performed co-immunoprecipitation experiments. Previous
reports indicate that substrate CTFs, and to a much lesser
extent, full-length proteins prior to ectodomain shedding,
associate with c-secretase [46,47]. The initial binding by c-
secretase to a CTF may principally be regulated by nicastrin
and only require that the CTF have a free N terminus [48]. We
immunoprecipitated for the FLAG epitope at the C terminus
of several of our stably transfected constructs (Figure 6A,
bottom panel), then probed the immunoprecipitates for the
co-precipitation of nicastrin (Figure 6A, top panel) and PS1
(Figure 6A, middle panel) to determine association with the c-
secretase complex. Both full-length vasorin and vasorin
CTF13 were able to co-immunoprecipitate with the c-
secretase components (Figure 6A, lanes 3 and 4), as expected
of these established c-secretase substrates. By Western blot,
the CTF derived from the full-length vasorin runs larger than
vasorin CTF13 (Figure 6A, lower panel), suggesting that the
sheddase for vasorin cleaves somewhat further than 13 amino
acids from the membrane. We found that a slightly larger
vasorin construct, vasorin CTF25, had a molecular weight
more consistent with the natively produced CTF, and
behaved similar to vasorin CTF13 (Figure S2B–S2D). Whereas

by c-secretase to produce ICDs (lower panel, darker exposure), and CTFs accumulate in the presence of DAPT. Note that in (H), Int/Vas CTF13 chimeras
were generated using either the vasorin signal peptide (Int/VasSP CTF13, left panel) or the integrin signal peptide (Int/Vas CTF13, right panel), producing
similar results.
(L) The fold accumulation of CTFs in response to DAPT versus DMSO control; *p , 0.05, ***p , 0.001.
doi:10.1371/journal.pbio.0060257.g004
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full-length Itgb1 was not able to significantly co-precipitate
with nicastrin or PS, Itgb1 CTF13 robustly associated with the
c-secretase components (lanes 5 and 6). Lysates of cells
expressing Itgb1 CTF13 have an immunoreactive band
principally at the expected size, although immunoprecipita-
tion also pulls down higher–molecular weight aggregates
(Figure 6A, lower panel, lane 6). NPR-A CTF13, another
nonsubstrate with a short ectodomain, was able to associate

with c-secretase to a much greater extent than full-length
NPR-A (lanes 7 and 8). Co-immunoprecipitation of other
substrates with c-secretase was observed, and these results
show a correlation between the amount of CTF present in the
cellular lysates and the extent of association with nicastrin
and PS1 (Figure S2A).
Considering that nonsubstrates are able to co-precipitate

with c-secretase, we sought to determine whether the non-

Figure 5. Chimeric Constructs of NPR-A and NPR-C

Regions of NPR-C (green) and NPR-A (yellow) were recombined to generate chimeric CTFs. (A–C) The NPR-A CTF13 (A) and other NPR constructs
containing the full-length NPR-A cytoplasmic domain, whether fused to the NPR-C lumenal and transmembrane domains (NPR-C/Acyto CTF13) (B) or
fused to the end of NPR-C (NPR-CþA CTF13) (C), were not regulated by c-secretase.
(D–F) The levels of NPR-C CTF13 (D) and NPR-A/C chimeras containing the lumenal domain of NPR-A (NPR-A/C CTF13) (E) or the lumenal and
transmembrane domains of NPR-A (NPR-A/Ccyto CTF13) (F) were significantly elevated in response to DAPT, indicating their processing by c-secretase.
(G) NPR-A DKG CTF13, which lacks the characterized NPR-A cytoplasmic domains, was also elevated by c-secretase inhibition. By Western blot, this
construct appears as two distinct bands.
(H) VasnþNPR-A CTF13 levels were increased modestly with DAPT treatment, but relative accumulation of the CTF was far less than vasorin CTF13
(Figure 4G).
(I) The fold accumulation of CTFs arising from DAPT treatment versus DMSO control; *p , 0.05, **p , 0.01, ***p , 0.001.
doi:10.1371/journal.pbio.0060257.g005
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substrate CTF chimeras can inhibit c-secretase activity by
comparing the levels of endogenous APP CTF in cells
expressing substrates and nonsubstrates (Figure S3A). Under
control and DAPT treatment conditions, we found no
difference in APP CTFs between cells expressing substrates
and nonsubstrates (Figure S3B), demonstrating that cellular

expression of nonsubstrate CTFs does not interfere with
endogenous c-secretase processing. We also analyzed the
processing of APP and Itgb1 C100FLAG constructs in a
purified in vitro c-secretase activity assay. Under standard
assay conditions, we detected cleavage of APP C100FLAG to
generate an ICD, but we were unable to detect cleavage of

Figure 6. Co-Immunoprecipitation of CTFs with c-Secretase

(A) HEK cells stably expressing the indicated FLAG-tagged, full-length or CTF constructs or else untransfected control were immunoprecipitated for the
FLAG epitope to probe for association with the c-secretase complex. Immunoprecipitated samples were probed by Western blot for nicastrin (top
panel), PS1 (middle panel), and the FLAG-tagged protein (bottom panel). Whole-cell lysate from control cells was run in lane 1 for comparison.
(B) Amino-acid sequences of the c-secretase substrates identified in our screen and two nonsubstrates (Itgb1 and NPR-A; bottom), with the putative a-
secretase (ectodomain) and c-secretase cleavage sites indicated at the top. Sequences are aligned along their transmembrane domain, and amino acids
showing similarity down a column are highlighted according to side chain polarity: acidic (red), basic (blue), polar neutral (grey), and nonpolar (green).
doi:10.1371/journal.pbio.0060257.g006
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Itgb1 C100FLAG (Figure S3C). To examine the ability of Itgb1
C100FLAG to inhibit the processing of APP, we co-incubated
the two constructs together with c-secretase and observed
reduced APP ICD production (Figure S3D). Although it is
unclear how this inhibition occurs, one plausible interpreta-
tion is that Itgb1 is acting as a competitive inhibitor of APP’s
association with c-secretase in this purified preparation.
These data, taken together with the data in Figures 4 and 5,
suggest that having a short ectodomain is sufficient to allow
association with c-secretase, but that permissive transmem-
brane and cytoplasmic domains are required for further
processing by the protease. Furthermore, the ability of the
nonsubstrate CTFs to associate with c-secretase but not get
cleaved provides further evidence for the existence of
independent docking and catalytic sites within the c-secretase
complex [48,49].

Figure 6B shows partial amino acid sequences of the
proteins identified in this proteomics screen, with the two
nonsubstrates that we analyzed (Itgb1 and NPR-A) listed at
the bottom. Sequences are aligned along the transmembrane
domains, and amino acids showing similarity down a column
highlighted based on side chain polarity. In contrast to many
other soluble proteases and even other intramembrane
proteases [50], there is no apparent motif that predicts
whether a protein is a c-secretase substrate.

Discussion

By performing a critical proteolytic event in several
pathways of signal transduction, c-secretase is essential for
embryonic development, the maintenance of adult tissues,
and the pathogenesis of certain diseases [51]. In this study, we
have used an unbiased proteomic approach to identify
proteins within the cell membrane that are regulated by c-
secretase. By quantitatively comparing the proteomes of cells
treated with and without a potent c-secretase inhibitor, we
could identify accumulated substrates of the protease. Using
tools such as small molecule inhibitors or gene silencing, the
methods we applied here can, in principle, be exploited to
determine the substrates regulated by any protease of
interest. For enzymes similar to c-secretase, where no
substrate recognition sequence has been identified [52,53],
quantitative proteomics may be the most effective unbiased
method of endogenous substrate identification.

We found that among the thousands of proteins surveyed,
only relatively few were processed by c-secretase. In line with
previously described substrates, all are type I transmembrane
proteins whose ectodomain is shed prior to c-secretase
cleavage. Using a b-secretase inhibitor and a broad spectrum
metalloprotease inhibitor, we were able to provide evidence
for the proteases responsible for ectodomain shedding. For a
few substrates, we found small but significant decreases in
CTF levels by inhibiting a-secretase metalloproteases. That
we found only a small decrease for a few substrates could have
several explanations, such as the absence of a cognate ligand
for the substrate to stimulate its ectodomain shedding, an
incomplete inhibition of the responsible sheddase due to our
obligatory use of a broad-spectrum sheddase inhibitor, or a
generally low rate of ectodomain shedding of a particular
substrate in the cultures under study. By choosing to focus
our analysis on human HeLa cells, we limited the size and
diversity of the proteome we examined, and thus it is not

surprising that we did not identify all of the previously known
c-secretase substrates. Similar investigations of different cell
types, or of various tissues from inhibitor-treated mice using
other labeling methods [54], would greatly broaden the scale
of analysis and likely reveal additional substrates. That only a
select number of proteins are detected as c-secretase
substrates suggests that c-secretase may not be an indiscrimi-
nate intramembrane protease, and that the c processing of
these substrates may have functional signaling implications.
For some substrates, including Notch [55], ErbB4 [43], and N-
cadherin [56], a functional c-secretase cleavage has been
clearly demonstrated, in that the respective ICDs are released
from the membrane to modulate transcription. For other
substrates, such as APP, the purpose of ICD production has
been more elusive, but several functions have been proposed
[57–59].
Several of the new substrates that we have identified could

have important signaling functions regulated by c-secretase.
DNER, as a known Notch ligand and with its involvement in
patterning cerebellar development, may signal antagonisti-
cally to Notch in a similar fashion as some other Notch
ligands [60]. DG levels have been found to decrease in
muscular dystrophy, and any deficit in signaling through the
DG ICD, which is remarkably stable compared to the other
ICDs we observed, may be an important and thus far
unappreciated contributor to the disease’s progression.
Beyond promoting intercellular adhesion, desmoglein-2 has
been implicated in signaling involving tumorigenesis, and
expression of a recombinant cytoplasmic fragment of DSG2
has recently been reported to modulate apoptosis in
intestinal epithelial cells [61]. Our finding that DSG2 can be
shed by either b-secretase or an a-secretase–like metal-
loprotease followed by c-secretase–mediated liberation of
its ICD may identify the proteolytic pathway that generates
this signaling fragment. NPR-C was previously considered an
inactive clearance receptor, although some studies have
found functional consequences of NPR-C signaling that are
mediated by its short cytoplasmic tail [35]. Our demonstra-
tion that NPR-C is processed by c-secretase to liberate this
functional domain from the membrane may more clearly
define the molecular mechanism behind NPR-C signaling, as
well as raise the additional possibility of its modulating
transcriptional activity by gaining access to the nucleus as an
ICD. Although these proposed consequences of c-secretase
processing and ICD function for the newly identified
substrates are speculative at this juncture, our description
of the sequential proteolytic processing of these substrates
recommends further functional studies.
The experiments with chimeric constructs provide insight

into which features c-secretase requires in recognizing and
cleaving its substrates. First, the protein’s ectodomain must
be removed before cleavage, as previously reported [44]. For
example, fusing the integrin ectodomain to vasorin’s trans-
membrane and cytoplasmic domains precludes both sheddase
and c-secretase cleavage. However, when the large ectodo-
main is removed (producing the Int/Vas CTF13 constructs),
these proteins are readily processed by c-secretase. Although
shortening of the ectodomain can enable binding to the c-
secretase complex (e.g., Intb1 CTF13 and NPR-A CTF13;
Figure 6A), this is not sufficient to promote proteolysis
(Figures 4F and 5A). Our chimeric results suggest that the
ectodomain contributes little to substrate specificity,
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although some reports suggest that the short ectodomain may
modulate the avidity of c-secretase processing [62,63].

Second, substrates must have both permissive transmem-
brane and cytoplasmic domains. Extensive mutagenesis
experiments can now be performed to determine precisely
what makes these domains permissive in vasorin but not in
integrin, but in general, the primary sequence of proteins has
thus far not been a reliable predictor of substrates of c-
secretase. Perhaps permissive domains allow the CTF to
adopt a conformation amenable to c cleavage, as is the case
for substrates of the intramembrane protease rhomboid [64],
but such a conformational change has yet to be examined
experimentally.

Third, inhibitory domains may exist on a protein that
preclude c-secretase processing. We show this to be the case
for NPR-A, whose large cytoplasmic domain reduces cleavage
of the NPR-A CTF and also does so when fused to end of the
NPR-C and vasorin CTFs (Figure 5). This inhibitory function
is not due simply to the large size of the cytoplasmic domain;
it may alternatively lie in protein folding that prevents
proper entry of the transmembrane domain into the active
site of c-secretase, in a subcellular localization that protects
the protein from recognition by c-secretase, or in protein
associations that anchor the cytoplasmic domain in a rigid
conformation that c-secretase does not efficiently recognize.

Finally, our data suggest that at least two pathways may
exist that allow for the processing of CTFs. The first, as
exemplified by vasorin, NPR-C, and other permissive CTF13
constructs, is the initial production of a CTF apart from c-
secretase that may later bind to the complex and undergo
proteolysis. The second mechanism is suggested by the
contrast between the full-length Vas/Int construct, which
generates a CTF after ectodomain shedding in the secretory
pathway and is processed by c-secretase (Figure 4B), and Vas/
Int CTF13, which shares the same size and sequence but is not
processed by c-secretase (Figure 4C). A possible explanation
for this finding is that the occurrence of ectodomain
shedding in situ flags the protein for c-secretase cleavage by
forcing a preferred conformation and/or by initiating a
multi-protein interaction that passes the newly produced
CTF directly to c-secretase for processing. Further exper-
imentation is now required to clarify these newly proposed
mechanisms for substrate proteolysis by c-secretase. This
work should enhance our understanding of the many
physiological processes regulated by this ubiquitous and
conserved protease and at the same time provide insights into
the proteolytic mechanism of c-secretase that can be
exploited for therapeutic advances.

Materials and Methods

SILAC and LC-MS/MS. HeLa cells were propagated for six
doublings in DMEM lacking L-lysine and L-arginine (Invitrogen),
and supplemented with 10% dialyzed fetal bovine serum (FBS)
(Calbiochem), antibiotics, and either 12C14N arginine, 12C14N lysine
(‘‘light’’), or 13C15N arginine, 13C15N lysine (‘‘heavy’’) (Cambridge
Isotope Laboratories). Cells were then treated with the c-secretase
inhibitor DAPT [65] (light label condition) or DMSO (heavy label
condition) as control for 16 h in labeling media containing 0.5%
dialyzed FBS. After treatment, cells were suspended by trituration
with PBS containing 5 mM EDTA and counted. Equal numbers of
cells from each treatment were combined and subjected to hypotonic
lysis and Dounce homogenization. Nuclei were removed from the
homogenate by spinning at 1,000g for 10 min, and the remaining
supernatant was spun at 125,000g for 1 h to pellet cellular

membranes. The membrane fraction was washed with 100 mM
Na2CO3 (pH 11.5), briefly sonicated, and spun again at 125,000g for 1
h to pellet membranes.

One hundred micrograms of the purified membrane proteins were
run on an 8–16% Tris-Glycine SDS-PAGE gel, stained with Coomassie
blue, divided into ten molecular weight gel slices, and subject to in-gel
digestion with trypsin. Liquid chromatography tandem mass spec-
trometry (LC-MS/MS) was performed using an LTQ FT hybrid linear
(2-D) ion trap-Fourier transform ion cyclotron resonance (FTICR)
mass spectrometer (ThermoFisher) as previously described [66].
Resulting MS/MS spectra were matched to a composite target-decoy
[67] human sequence database [68], by both SEQUEST and Mascot
search engines. An in-house algorithm was used to select confident
peptide identifications with an estimated false discovery rate less than
1%. Confident peptide identifications were then subjected to Vista,
an automated software suite which measures the relative abundance
of light and heavy isotopic peptide pairs [14,69]. This analysis yielded
over 16,400 quantitative peptide comparisons, with an estimated false
discovery rate of 10%.

Proteins were considered substrates when the following conditions
were met: (1) peptides derived from a higher molecular weight gel
band, consisting of full-length protein, have a Light:Total peptide
ratio of 0.5; (2) peptides derived from a lower–molecular weight gel
band, consistent with a shorter fragment after ectodomain shedding,
have a Light:Total peptide ratio of 0.65 or greater; (3) each unique
peptide is identified more than once; (4) multiple unique peptides
from the protein are identified.

Cell culture and treatments. Human embryonic kidney (HEK) 293-
FT (Invitrogen) and mouse embryonic fibroblasts derived from
Presenilin1/2 null mice [21] were grown in Dulbecco’s modified Eagle’s
medium containing 10% FBS, 2 mM L-glutamine, 100 lg/ml
penicillin, and 100 lg/ml streptomycin. Transfections were per-
formed with Fugene6 (Roche Applied Sciences). Stable cell lines were
generated by transduction with lentivirus containing the cDNAs of
interest, as previously described [70]. Cells were treated with the c-
secretase inhibitor DAPT (10 lM) for 6 or 16 h in Opti-MEM I
(Invitrogen) to monitor CTF accumulation. HEK cells were treated
for 6–16 h with the b-secretase inhibitor C3 (3 lM, BACE inhibitor
IV) or the metalloprotease inhibitor GM6001 (15 lM), or for 6 h with
the proteasome inhibitor epoxomicin (1 lM) or phorbol 12-myristate
13-acetate (PMA, 0.5 lM). All drugs were purchased from Calbio-
chem.

Cloning. Full-length cDNAs were obtained from the National
Institutes of Health Mammalian Gene Collection. The NPR-C and
Itgb1 cDNA were from mouse, and all other cDNAs were human.
Expression constructs were C-terminally tagged with the FLAG
epitope (DYKDDDDK) by inserting the sequence encoding FLAG into
the 39 primer before the stop codon. To generate artificial CTFs, the
construct’s signal peptide and putative CTF region were individually
amplified by PCR with overlapping complimentary regions added to
the primer. These two overlapping amplicons were then combined
and PCR amplified with outside primers, as previously described [70].
Chimeric constructs were similarly produced using primers designed
with overlapping regions. All expression constructs were verified by
DNA sequencing.

Immunoblotting and immunoprecipitation. Cells were lysed in 50
mM Tris-HCl (pH 7.4), 1% NP-40, protease inhibitor cocktail (Roche
Applied Sciences), 2 mM 1,10-phenanthroline and 5 mM EDTA.
Lysate was centrifuged at 1,000g for 10 min to remove nuclei. Protein
concentrations were determined using a bicinchoninic acid-based
assay (Pierce Biotechnology). Samples were then subjected to SDS-
PAGE and Western blotting. APP was detected using the polyclonal
antibody C9 (1:1,000) [71]; nicastrin with N1660 (1:2,500, Sigma);
presenilin with MAB1563 (1:1,000, Chemicon); and FLAG tag with M2
(1:1,000, Sigma) or Rabbit anti-FLAG (F7425 1:1,000, Sigma). Western
blots were probed with anti-mouse, anti-rabbit, or anti-rat secondary
antibodies (1:10,000, Rockland Immunochemicals) and detected using
the Odyssey infrared imaging system (LI-COR Biosciences). For co-
immunoprecipitation experiments, cells were lysed in 1% CHAPSO
with 25 mM Tris-HCl (pH 7.4), 100 mM NaCl, 2 mM EDTA and
protease inhibitor cocktail. FLAG-tagged proteins were immunopre-
cipitated overnight with an M2 Affinity Gel (Sigma) and subjected to
three washes with lysis buffer containing 0.5% CHAPSO before
Western analysis. Immunoblots shown are representative of at least
three experiments. Immunoreactive proteins were quantified using
Odyssey Software v1.2 and the data were analyzed using a one-way
analysis of variance with Tukey post-hoc comparison or a two-tailed
Student t-test, where appropriate. Calculated comparisons of p , 0.05
were considered significant. All reported values represent the means
6 standard error of the mean (SEM).
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In vitro c-secretase assay. Purification of c-secretase from the S-1
CHO cell line and preparation of recombinant substrates was
performed as previously described [72]. Recombinant APP and Itgb1
C100FLAG-tagged proteins consist of an N-terminal start codon
(methionine) and a C-terminal FLAG tag joined to the 99-residue
CTF, and were produced by bacterial expression and subsequent
purification. APP and Itgb1 have cytoplasmic domains of identical
length. Purified c-secretase was incubated with lipids (phosphatidyl-
choline and phosphatidylserine) and the C100FLAG substrate at 37
8C for 4 h. The reaction was assayed by Western blotting for the C-
terminal FLAG tag. For co-incubation experiments where APP and
Itgb1 C100FLAG proteins were mixed, half the normal amount of
each protein was combined so as to keep the total concentration of
protein and detergent consistent.

Supporting Information

Figure S1. Quantitative Substrate CTF Changes Arising from
Inhibitor Treatments

(A–H) CTF levels were determined from Western blots like those
shown in Figure 3 and compared to the vehicle (DMSO) condition. (B)
DG CTF accumulation after 16-h treatment of HEK stably transfected
cells (left graph) and HeLa stably transfected cells (right graph).
(C and D) Effects of 16-h inhibitor treatment on DG CTFs expressed
in HEK cells. In both DG and DNER cells, a prolonged 16-h treatment
with C3 produced a small but significant increase in CTF levels
compared to DAPT control.
(I) Altered morphology of HEK cells stably expressing vasorin (scale
bar¼ 200 lm). For comparisons to the control (DMSO) condition, *p
, 0.05, **p , 0.01, ***p , 0.001.

Found at doi:10.1371/journal.pbio.0060257.sg001 (4.58 MB TIF).

Figure S2. Co-Immunoprecipitation of Novel Substrates with c-
Secretase

(A) HEK cells stably expressing FLAG-tagged full-length substrates
were immunoprecipitated and probed for association with c-
secretase as in Figure 6.
(B) Co-immunoprecipitation of vasorin and recombinant vasorin
CTFs with c-secretase. The principal band of vasorin CTF25 co-
migrates with natively produced vasorin CTF.
(C and D) Accumulation of vasorin CTF25 upon c-secretase
inhibition. The fold accumulation of CTFs arising from DAPT
treatment versus DMSO control; ***p , 0.001.

(E) Co-migration of natively produced NPR-C CTF with NPR-C
CTF13.

Found at doi:10.1371/journal.pbio.0060257.sg002 (4.73 MB TIF).

Figure S3. Effects of Nonsubstrates on c-Secretase Processing in Cells
and In Vitro

(A) Western blot of endogenous APP CTF levels in cells stably
expressing recombinant CTF substrates or nonsubstrates in the
presence or absence of DAPT.
(B) APP CTFs are significantly elevated by DAPT but are unaffected
by the expression of a nonsubstrate. The fold accumulation of CTFs
arising from DAPT treatment versus DMSO control; ***p , 0.001.
(C) In vitro c-secretase activity assay measuring cleavage of APP
C100FLAG and Itgb1 C100FLAG proteins.
(D) Co-incubation of the nonsubstrate Itgb1 C100FLAG and the APP
C100FLAG proteins with c-secretase reduces the production of the
APP ICD.

Found at doi:10.1371/journal.pbio.0060257.sg003 (3.27 MB TIF).

Table S1. Peptides Unchanged by c-Secretase Inhibition

Found at doi:10.1371/journal.pbio.0060257.st001 (3.60 MB XLS).

Table S2. Putative c-Secretase Substrates Identified by Proteomics

Found at doi:10.1371/journal.pbio.0060257.st002 (49 KB XLS).
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