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Abstract: The vibrational kinetics of the CO2 asymmetric stretching mode is analysed 

numerically through two different methods: a full State-To-State (STS) model and a 

simplified STS model for the first vibrational levels consistently coupled to the solution of 

the Fokker-Planck (FP) equation in the vibrational energy space. Results obtained with the 

two methods are compared and it is shown that consistent results can be obtained with higher 

computational efficiency using the FP approach. 
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1. Introduction 

In recent years, much attention has been dedicated to 

low-temperature plasmas to convert greenhouse CO2 into 

new carbon-neutral fuels or useful chemicals [1]. 

Vibrational excitation of the CO2 molecule plays an 

important role in energy-efficient non-equilibrium 

dissociation kinetics. The main tool used to study 

vibrational kinetics is the state-to-state (STS) finite rate 

method, based on the numerical solution of a master 

equation (ME). This last is actually a stiff system of 

nonlinear Ordinary Differential Equations (ODEs), as 

many as the number of vibrational levels. When 

polyatomic molecules are involved, with a high number of 

vibrational levels and transitions, the computational 

efficiency of models describing reactors with spatial 

resolution and coupling different physical phenomena is 

compromised. Such models require new methods allowing 

a significant reduction in computational cost. 

In our previous publications [2, 3], we have proposed, as 

an alternative, a numerical method based on the diffusion 

formalism developed in the past for analytical studies [4]. 

The vibrational distribution function (VDF) representing 

the populations of the asymmetric stretching mode of CO2 

on a continuous internal energy scale has been calculated 

through the resolution of the drift-diffusion Fokker−Planck 

(FP) equation with fixed input vibrational temperature (Tv). 

The numerical solution has been accomplished through the 

time-dependent diffusion Monte Carlo method in [2] and 

in stationary condition by the flux-matching approach in 

[3]. In this work, the FP equation is solved for Tv self-

consistently calculated from a simplified STS model. 

Results are compared to the ones obtained through a full 

STS model. 

2. Computational methods 

a. Full State-To-State (STS) approach 

The temporal evolution of the number densities of each 

species i is calculated by the solution of the rate equations: 

𝑑𝑛𝑖

𝑑𝑡
= ∑ 𝑆𝑖𝑗(𝑡)𝑗     (1) 

where ni is the number density of species i and Sij is the 

source/loss term associated to reaction j. A total of 24 

species is considered in a pure CO2 plasma: all the states of 

the vibrational asymmetric stretching mode of CO2 

(CO2(v=n), with n the vibrational quantum number from 0 

to 21), together with electrons and the positive ion CO2
+. 

The vibrational kinetics is described by a total of 253 

reactions, listed in Table 1, and with rate coefficients from 

[5]. In Table 1, eV indicates vibrational excitation/de-

excitation by electron impact, VV vibrational-vibrational 

energy exchange, VT vibrational-translational energy 

exchange. 

Table 1. List of processes in the full STS model. 
Process name Reaction 

Ionization e + CO2(v=0) → CO2
+

 + 2 e 

Recombination e + CO2
+ → CO2(v=0) (CO + O, C + O2) 

eV e + CO2(v=0) ↔ CO2(v=1-21) + e 

VV CO2(v=n) + CO2(v=1) ↔ CO2(v=n+1) + CO2(v=0) 

CO2(v=n) + CO2(v=n) ↔ CO2(v=n+1) + CO2(v=n-1) 

VT CO2(v=n) + CO2 ↔ CO2(v=n-1) + CO2 

Dissociation CO2(v=21) + CO2(v=1) → (CO + O) + CO2(v=0) 
CO2(v=21) + CO2(v=21) → (CO + O) + CO2(v=20) 

 

We consider a pressure p = 2660 Pa, fixed gas 

temperature Tg = 300 K and gas density N = 6.43 × 1017 

cm-3. We assume a constant power density Pdep transferred 

to the electrons and thus the temporal evolution of the 

electron mean energy ε is described by the electron energy 

equation 

𝑑(𝑛𝑒𝜖)

𝑑𝑡
= 𝑃𝑑𝑒𝑝(𝑡) −

𝑃𝑒𝑙

𝑁
(𝜀) × 𝑁 × 𝑛𝑒  

− 
𝑃𝑖𝑛𝑒𝑙

𝑁
(𝜀) × 𝑁 × 𝑛𝑒   (2) 

where ne is the electron number density and Pel and Pinel are 

the components of the power lost by electrons through 

elastic and inelastic collisions, respectively. The electron-

impact rate coefficients and the electron power losses are 

obtained as function of ε from the Electron Energy 

Distribution Function (EEDF) solution from the Electron 

Boltzmann Equation (EBE) solver BOLSIG+ [6], using the 
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electron-impact cross sections from the Phelps database in 

LXcat [7]. The set of ODEs is solved until reaching a 

stationary condition with the solver RADAU5, an implicit 

Runge-Kutta method of order 5 [8]. We take as initial 

conditions ne = [CO2
+] = 4.0 × 1010 cm-3 and ε = 1.0 eV. 

An example of temporal evolutions of species number 

densities obtained with this model is presented in Fig. 1, 

using as input power density Pdep = 100 Wcm-3. 

 

Fig. 1. Temporal evolution of species number densities 

using the full STS model with Pdep = 100 Wcm-3. 

 

b. Fokker-Planck (FP) approach 

The FP equation allows one to describe the evolution of 

the VDF f as a transport process in the space of energy 𝜀𝑣 

of the vibrational asymmetric stretching mode, as follows: 

𝑑𝑓

𝑑𝑡
=

𝑑𝐽

𝑑𝜀𝑣
; 𝐽 = 𝑎𝑓 − 𝑏

𝑑𝑓

𝑑𝜀𝑣
   (3) 

where 𝐽(𝜀, 𝑡) is the flux in energy space and 𝑎 and 𝑏 are, 

respectively, the drift and diffusion coefficients, functions 

of Tg, Tv and the VV and VT rate coefficients, as described 

in [3]. In this work, Tg is fixed and the rate coefficients are 

the same as those used in the STS model presented in the 

previous section. The new approach we present in this 

work consists in solving a simplified STS model that 

allows to calculate the temporal evolution of the vibrational 

temperature Tv until reaching a stationary condition, 

coupled to the resolution of the FP equation for df/dt = 0 

through the flux-matching method presented in [3]. The 

flux 𝐽 (which is a constant under stationary conditions) is 

determined by the VV dissociation processes of Table 1 

with rate coefficients 𝑘𝑑
1,21

 and 𝑘𝑑
21,21

: 

𝐽 = 𝑓(𝜀𝑚𝑎𝑥)
1

𝑁
(𝑘𝑑

1,21𝑛1 + 𝑘𝑑
21,21𝑓(𝜀𝑚𝑎𝑥)) (4) 

where 𝜀𝑚𝑎𝑥 = 5.467 eV, 𝑓(𝜀𝑚𝑎𝑥) is the number density at 

the dissociation energy and 𝑛1 is the number density of 

level v = 1. 

The simplified STS model contains the same ionization 

and recombination processes as the full STS model (Table 

1), as well as the eV, VV and VT processes for the 

vibrational levels v ≤ 2. Hence, it contains 5 species and 15 

reactions, much less than in the full STS model. Tv is 

calculated in both full and reduced STS models assuming 

a Boltzmann distribution as: 

𝑇𝑣 = −
𝐸1

𝑘𝐵 log (𝑛1/𝑛0)
  (5) 

where E1 is the energy of the vibrational level v = 1 and 𝑛1 

and 𝑛0 are the number densities of levels v = 1 and v = 0 

respectively. 

 

3. Model comparison 

a. Base case 

For the particular case with transferred power density 

Pdep = 100 Wcm-3, the full STS calculation has reached a 

stationary condition at t = 1.003 ms with electron density 

and temperature 𝑛𝑒 = 1.2 × 1011 cm-3 and 𝑇𝑒 = 0.83 eV. 

With the model using a simplified STS calculation, the 

stationary condition has been reached at t = 1.320 ms with 

the same 𝑛𝑒 and 𝑇𝑒. Concerning vibrational kinetics, the 

results using the full and simplified STS calculations are 

only slightly different. Fig. 2 shows the temporal evolution 

of 𝑇𝑣 calculated through Eq. (5) with both models. 

 

Fig. 2. Temporal evolution of Tv using both full and 

reduced STS models with Pdep = 100 Wcm-3. 

 

The temporal evolution of Tv has the same trend with 

both models. When the stationary condition is reached, Tv 

is 2335 K in the full STS model and 2148 K in the reduced 

STS model. The difference may be due to truncating the 

vibrational kinetics scheme at v = 2 in the reduced STS 

calculation. Once the stationary condition is reached, the 

FP equation is solved for Tv = 2148 K. The resulting VDF 

is presented in Fig. 3 and compared to the VDF obtained 

with the full STS model in stationary condition. 

Fig. 3 shows that the VDFs obtained by the two methods 

are close, even though there are visible discrepancies in the 

VDF tail. Moreover, the dissociation rate due to the VV 

processes listed in Table 1 is calculated in the full STS 

model as 4.76 × 1013 cm-3s-1. Using the FP approach, the 

rate of dissociation through the same processes is 



calculated from Eq. 4 as 𝐽 × 𝑁 and is less than an order of 

magnitude higher: 2.28 × 1014 cm-3s-1. This difference is 

a result of the discrepancies in the VDF tail. In a more 

complete model, the dissociation rate is then used to 

calculate the densities of other species and ultimately to 

calculate the conversion degree in the plasma. This result 

shows that an accurate trend can be obtained using the FP 

approach self-consistently coupled with a reduced STS 

model. 

 

Fig. 3. Vibrational distribution function in stationary 

condition, using the full STS model (blue curve with 

crosses) and the FP equation (orange curve). 

It is worth noticing that with the full STS model, the 

calculation time until reaching the stationary condition is 

of 377.7 s (~ 6 min). Although acceptable in zero-

dimensions, we should notice that in multidimensional 

fluid models this calculation time would be multiplied by 

thousands or millions, and thus the total calculation time 

could compromise the computational cost of such models. 

On the other hand, with the model coupling a simplified 

STS calculation with the FP equation, the stationary 

condition is reached with a calculation time of only 52.9 s 

(52.8 s for the simplified STS calculation + 0.1 s for the 

resolution of the FP equation), seven times lower than the 

full STS calculation. The difference is fundamentally due 

to the fast semi-analytical solution which is possible for the 

FP equation and shows the computational gain that can be 

obtained through the FP approach. 

b. Variation of input power density 

By changing the input parameter Pdep, we can assess the 

validity of the FP approach for different conditions by 

comparing the results with the two models. In Table 2 are 

listed the resulting Tv obtained with the full and reduced 

STS calculations in stationary condition for transferred 

power densities Pdep between 40 and 140 Wcm-3. 

 

 

 

Table 2. Vibrational temperatures obtained in stationary 

condition with the full and reduced STS schemes for 

different Pdep. 
Pdep [Wcm-3] Full STS Tv [K] Reduced STS Tv [K] 

40 1781 1523 

60 2024 1762 

80 2204 1967 

100 2335 2148 

120 2429 2312 

140 2500 2463 

 

As expected, with higher Pdep there is more electron 

production and vibrational excitation, thus increasing Tv. Tv 

obtained with the reduced STS calculation is consistently 

lower than the one calculated with the full STS scheme, the 

difference being below 300 K. 

 

Fig. 4. Vibrational distribution functions in stationary 

condition, using the full STS approach for different Pdep. 

 

Fig. 5. Vibrational distribution functions in stationary 

condition, using the FP approach for different Pdep. 

The effect of Pdep variation on the VDF obtained through 

the full STS approach is shown in Fig. 4 and the one 

calculated through the FP approach can be observed in Fig. 

5. 



We can notice that relatively small variations of Tv can 

significantly change the VDF. In particular, using the FP 

approach, 𝑓(𝜀𝑚𝑎𝑥) increases around 9 orders of magnitude 

from Pdep = 40 Wcm-3 until Pdep = 140 Wcm-3. With the 

STS approach, the variation of density of level v = 21 is of 

only 3 orders of magnitude. The FP method produces 

VDFs overall very similar to the STS ones, also 

reproducing the features, variations and trends while 

changing the power. The changes on the VDF obviously 

impact the VV dissociation rate. This influence can be 

observed in Table 3 as function of Pdep. 

Table 3. Dissociation rates in stationary condition with 

the full STS and FP approaches for different Pdep. 
Pdep [Wcm-3] Diss. rate STS [cm-3s-1] Diss. rate FP [cm-3s-1] 

40 2.99 × 1012 5.67 × 109 

60 6.60 × 1012 6.51 × 1011 

80 1.52 × 1013 1.68 × 1013 

100 4.76 × 1013 2.28 × 1014 

120 1.59 × 1014 4.61 × 1015 

140 4.78 × 1014 1.25 × 1019 

 

The dissociation rates in Table 3 reflect the dependence 

of the VDF on Pdep observed in Figs. 4 and 5. We should 

notice that, while the difference between the dissociation 

rates calculated with the two models remains lower than 

one order of magnitude between Pdep = 60 Wcm-3 and Pdep 

= 100 Wcm-3, it becomes clearly excessive for the lowest 

and highest values of Pdep considered here. Progresses in 

the determination of the transport coefficients from 

chemical rate coefficients should reduce these differences 

while keeping the clear advantage in terms of 

computational cost. 

4. Conclusions 

The vibrational kinetics of the CO2 asymmetric 

stretching mode has been studied numerically in conditions 

of fixed gas temperature and transferred power density in a 

pure CO2 plasma. The solution has been obtained with the 

classical STS approach and with a new approach 

introduced here: the resolution of a simplified STS model 

coupled to the calculation of the VDF in stationary 

conditions by solving the FP equation in the vibrational 

energy space. The results obtained through the two 

methods have been compared and it has been shown that 

Tv can be reasonably estimated from a reduced STS scheme 

with only vibrational levels v ≤ 2. Hence, the FP approach 

can be used in self-consistent plasma models. The accuracy 

of the FP approach, i.e. the agreement between the FP and 

STS approaches on the resulting VDFs and dissociation 

rates, has been shown to be dependent on the choice of the 

input deposited power density and thus on Tv. The 

difference in the resulting dissociation rates is lower than 

one order of magnitude for Pdep between 60 Wcm-3 and 100 

Wcm-3. In the cases under study, the use of the FP approach 

is about seven times more computationally efficient than 

the full STS approach. The result on computational 

efficiency is very promising for the development of more 

complete multidimensional fluid models to describe 

discharge reactors. 

In the near future, we plan to correct the discrepancies in 

the VDF between the two approaches. The present set of 

transport coefficients used in the FP equation is 

preliminary and can be significantly improved. Moreover, 

we will include more complete chemistry in the CO2 

plasma model and couple it with the EEDF solution for 

different mixtures. 
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