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Levels of vascular endothelial growth factor-A165b (VEGF-A165b) are
elevated in experimental glaucoma

Ceren Ergorul,1 Arjun Ray,1 Wei Huang,1 Diane Darland,2 Zhonghui K. Luo,1 Cynthia L. Grosskreutz1

1Howe Laboratory of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA; 2University of
North Dakota, Department of Biology, Grand Forks, ND

Purpose: Although ischemia has previously been suggested to contribute to the pathogenesis of glaucoma,
neovascularization is not implicated in glaucoma. Because vascular endothelial growth factor-A (VEGF-A) is a key
mediator in neovascularization response, we investigated the levels of the major pro-angiogenic (VEGF-A164) and anti-
angiogenic VEGF-A subtypes (VEGF-A165b) in the retina during experimental glaucoma.
Methods: Glaucoma was induced unilaterally in rats by injecting 1.9 M hypertonic saline solution in the episcleral veins.
The contralateral eye served as the control. The intraocular pressure (IOP) of each eye was measured via Tonopen in
conscious rats. Eyes were enucleated either on the 5th or the 10th day of elevated IOP. Whole retinal lysates were separated
by SDS–PAGE and transferred to PVDF membranes. Levels of VEGF-A164 and VEGF-A165b were analyzed by western
blotting using specific antibodies. In a different group of rats, retinal ganglion cells were retrogradely labeled by injecting
Fluorogold in the superior colliculus a week before the induction of glaucoma. After the eyes were enucleated on the fifth
day of elevated IOP, posterior eye cups were sectioned using a cryostat. Levels and localization of VEGF-A164 and VEGF-
A165b were examined in retinal sections by immunohistochemistry.
Results: VEGF-A164 levels remained unchanged between the control and glaucomatous retinas after five days (p=0.341)
and 10 days of elevated IOP (p=0.117). The presence of the anti-angiogenic VEGF-A isoform has not been previously
reported in the rat. An antibody specific to VEGF-A165b detected the anti-angiogenic protein in the rat retina. VEGF-
A165b levels were significantly increased (2.33±0.44 fold, p=0.014) in the glaucomatous retinas compared to those in
controls after five days of elevated IOP. VEGF-A165b levels were not different (p=0.864) between the control and
glaucomatous retinas following 10 days of elevated IOP. Expression of both VEGF-A164 and VEGF-A165b were observed
in the retinal ganglion cells (RGC) and inner nuclear layer (INL).
Conclusions: Five day elevation of IOP leads to an increase in the anti-angiogenic VEGF-A165b levels but not in the pro-
angiogenic VEGF-A164 levels in the glaucomatous retina. VEGF-A165b levels return to baseline after 10 days of elevated
IOP, and VEGF-A164 levels remain unchanged. We speculate that the short-term elevation of VEGF-A165b levels and/or
the unchanged levels of VEGF-A164 contribute to the lack of neovascularization in the glaucomatous retina.

Glaucoma is a neurodegenerative disease of retinal
ganglion cells (RGC) that leads to blindness. Although the
most prominent risk factor for RGC death in glaucoma is
elevated intraocular pressure (IOP), the sequence of events by
which IOP causes RGC death still remains largely unknown.
One possible mechanism is that elevated IOP can induce
abnormalities in blood flow in the glaucomatous eye. In open-
angle glaucoma patients, abnormal vascular autoregulation
has been observed in the inferior temporal retinal artery, the
central retinal artery, the circulation of the optic nerve head,
the choroid, and the perifoveal macular capillaries [1-8]. It has
been suggested that dysregulation of blood flow may lead to
decreased vascular perfusion in the retina and in the optic
nerve head, resulting in an hypoxic response [9,10].
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(617) 573-4328; FAX: (617) 573-4300; email:
cynthia_grosskreutz@meei.harvard.edu

In the classical view of hypoxia, the ischemic tissue
compensates for a decrease in oxygen levels by forming new
blood vessels, a process known as neovascularization [11].
VEGF-A is a key mediator in neovascularization in ischemic
retinopathies [12-14]. There are several VEGF-A isoforms
expressed from a single gene via alternative splicing [15,16].
Among these, VEGF-A165 is the most abundantly expressed
pro-angiogenic isoform in the retina [17]. More recently, anti-
angiogenic sister isoforms of VEGF-A have also been
identified [18-20]. For example, VEGF-A165b, an anti-
angiogenic human VEGF-A isoform, has been shown to
inhibit VEGF-A induced neovascularization in the mouse
retina following ischemia [21].

There are only a few studies that have examined VEGF-
A in glaucoma. VEGF levels were shown to be increased in
the plasma of glaucoma patients when compared to that of
healthy controls [22] and in the aqueous humor of glaucoma
patients when compared to their plasma VEGF levels [23].
Despite these findings, neovascularization is not implicated
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in glaucoma, and the role of VEGF-A has not been examined
in the glaucomatous retina.

If ischemia contributes to the pathogenesis of glaucoma,
why is there no neovascularization in glaucoma? To answer
this apparent paradox, we investigated the levels of pro-
angiogenic VEGF-A164 (the rat version of VEGF-A165) and
anti-angiogenic VEGF-A165b (the rat version of VEGF-A165b)
in normal and glaucomatous retinas after a short-term (five
day) and an intermediate-term (10 day) elevation of IOP.
Because of the lack of neovascularization in glaucoma, we
hypothesized that the levels of VEGF-A165b but not VEGF-
A164 would be increased in the glaucomatous retina.

METHODS
Subjects: Male rats (retired breeder Brown Norway; 300-450
g; n=16) were used for the study. Rats had ad libitum access
to food and water during the study and were kept on a 12 h
illumination cycle. All animal related procedures were
performed in accordance with the statement for the use of
animals in research released by the Association for Research
in Vision and Ophthalmology.
Retrograde labeling of retinal ganglion cells: Rats (n=4) were
anesthetized with an intraperitoneal injection of 1.5 mg/kg of
acepromazine maleate, 7.5 mg/kg of xylazine, and 75 mg/kg
of ketamine (Webster Veterinary Supply, Sterling, MA).
Following shaving of the head, each rat was placed in a
stereotaxic instrument. The skin covering the skull was
incised along the midline using a surgical blade, and the skull
was exposed and leveled. Next, for each hemisphere, a 30-
gauge stainless steel needle was lowered into the superior
colliculus at 5.3 mm posterior to the bregma, 1.5 mm lateral
to the midline, and 4.8 mm ventral to the skull surface. Using
a 5 μl syringe (Hamilton, Reno, NV), 2 μl of Fluorogold
solution (3% in PBS with 10% DMSO; Fluorochrome,
Denver, CO) was injected over 10 min into each hemisphere.
Following the injections, the skin was sutured. Rats were
allowed to recover for a week before glaucoma was induced
experimentally.
Experimental induction of glaucoma: To elevate IOP,
hypertonic saline solution (1.9 M) was unilaterally injected in
the episcleral veins as described by Morrison and colleagues
[24]. The contralateral eye of the rat served as the control. A
maximum number of three injections that were two weeks
apart were performed in the absence of IOP elevation. Rats
that did not have an elevation of IOP after the third surgery
were excluded from the study.
Intraocular pressure measurements: IOPs were measured
with a TonoPen XL tonometer (Medtronic Ophthalmics,
Jacksonville, FL) in conscious rats [25]. Measurements were
taken between 10 AM and 2 PM. Before the first hypertonic
saline injection, baseline IOPs for both eyes were measured
for each rat. Following glaucoma inducing surgery, IOPs were
measured three times a week. On each measurement day, an

average of 15 readings was calculated for each eye. This study
investigated a five day (n=6) and a 10 day elevation of IOP
(n=6).
Tissue preparation: Rats were sacrificed by CO2 inhalation
either after five days or 10 days of elevated IOP. For western
blotting, retinas were isolated from eyes obtained after five
days and 10 days of elevated IOP (six pairs each). Retinas
were placed in 200 μl of 1 mM of EDTA/EGTA/DTT, 10 mM
of Hepes (pH=7.6), 0.5% Igepal (Sigma Chemical Co., St.
Louis, MO), 42 mM of KCl, 5 mM of MgCl2, 1 mM of PMSF,
and a tablet of protease inhibitors (Complete Mini, Roche
Diagnostics, Mannheim, Germany). After retinas were
sonicated and incubated for 15 min on ice, samples were spun
at 21,000 rpm at 4 °C for 30 min. Retinal proteins were
quantified by spectrophotometry using the Bio-Rad Dc Protein
Assay (Bio-Rad Laboratories, Hercules, CA).

For immunohistochemistry, four pairs of eyes that were
enucleated after five days of elevated IOP were fixed with 4%
paraformaldehyde for 20 min at room temperature. These eyes
were previously back-labeled with Fluorogold. Next, the
posterior eye cups were isolated and fixed with 4%
paraformaldehyde for an additional 40 min at room
temperature. After posterior eye cups were cryoprotected
overnight in graded sucrose dilutions, they were placed in the
optimal cutting temperature compound (Tissue-tek, Miles
Diagnostic Division, Elkhart, IN) and were sectioned 16 μm
thick using a cryostat.
Western blotting: Retinal proteins isolated after either five
days or 10 days of elevated IOP were separated on Tris-HCl
Ready-Gels (Bio-Rad Laboratories, Hercules, CA).
Recombinant rat VEGF-A164 protein (25–250 ng; R&D
Systems, Minneapolis, MN) was also loaded as a positive
control in certain experiments. Proteins separated by SDS–
PAGE were then transferred to polyvinylidene difluoride
membranes (Immobilon-P; Millipore, Billerica, MA) for 1 h.
After the membrane was blocked for 1 h at room temperature
with 2% ECL Advance Blocking Agent (GE Healthcare,
Piscataway, NJ) in Tris-buffered saline with Tween (TBS-T),
it was incubated at 4 °C overnight with a primary antibody.
The primary antibodies used in this study were as follows:
rabbit polyclonal anti-VEGF (1:50; Santa Cruz
Biotechnology, Santa Cruz, CA), mouse monoclonal anti-
VEGF165B (1:1,000; Abcam, Cambridge, MA), and mouse
monoclonal anti-α-tubulin (1:100,000; Sigma, Saint Louis,
MO). The next day, membranes were incubated for 1 h at room
temperature with peroxidase-conjugated secondary
antibodies. Goat anti-rabbit IgG (1:10,000–1:40,000; Jackson
ImmunoResearch, West Grove, PA) and goat anti-mouse IgG
(1:20,000–1:100,000; Jackson ImmunoResearch) were the
secondary antibodies used in the study. Both of these
antibodies had minimal cross-reaction to rat serum proteins.
Next, membranes were processed with ECL Advance Western
Blotting Detection Kit (GE Healthcare, Piscataway, NJ) and
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exposed to Kodak BioMax Light Film (Crestream Health,
Inc., Rochester, NY).
Densitometry and statistical analysis: A Personal
Densitometer SI (Molecular Dynamics, Sunnyvale, CA) was
used to scan the exposed films. The density of the protein of
interest on the film was measured using ImageQuant 1.2
(Molecular Dynamics). First, the background density was
subtracted from the density of each band. Next, the
densitometric reading of the protein of interest was
normalized to α-tubulin readings, which served as loading
controls. For each retina pair, the normalized densitometric
reading from the glaucomatous retina was divided by the
reading from the control retina. Then, the ratios from different
pairs of retinas were averaged. For statistical analysis, a one-
sample t-test was used to evaluate the significance of the ratios
for a given protein (one-tailed, hypothesized mean=1, α
level=0.05). Data were reported as mean±standard error of the
mean (SEM) in the text.
Immunohistochemistry: Retinal sections from four pairs of
eyes were blocked for 1 h at room temperature in 4% normal
goat serum and 0.3% Triton-X 100 in 1X PBS, pH 7.4.
Sections were incubated with the primary antibody overnight
at 4 °C. Some sections were incubated in blocking solution
without the primary antibody and were used as negative
controls. The primary antibodies and the dilutions used in the
study were mouse monoclonal anti-VEGF (20 μg/ml; Sigma)
and mouse monoclonal anti-VEGF165B (1:500; Abcam). The
following day, sections were incubated with the Alexa Fluor
594-conjugated goat anti-mouse secondary antibody (1:500;
Invitrogen, Carlsbad, CA) for 1 h at room temperature. After
the sections were treated with Prolong Gold anti-fade reagent,
staining was visualized using an Olympus BX51 microscope
(Olympus, Center Valley, PA).

On our BX51 microscope, we used UPlanApo 0.70 NA
20X (Olympus) and UPlanApo 0.85 NA 40X (Olympus)
objective lenses through a 10X ocular or camera lens to image
our retinal sections for a total magnification of 200X or 400X,
respectively. Excitation/emission filter cubes used for a given
fluorophore were 11006v2 Gold (Chroma, Rockingham, VT)
for Fluorogold and N41004 HQ Texas Red (Chroma) for
Alexa Fluor 594. We used DPController 1.2.1.108 (Olympus)
in conjunction with the DP70 color camera (Olympus) affixed
to the BX51 to image the retinal sections for fluorescence. We
then used Adobe Photoshop to layer the images and apply
transparency to see the overlap of different fluorophores in a
given section area.

RESULTS
Levels of VEGF-A164 do not change in the glaucomatous
retina: Average peak IOP was (mean±SEM) 40.7±1.9 mmHg
and 43.1±0.8 mmHg for the five-day (n=6) and 10-day (n=6)
groups that were used in the western blot (WB) analysis,
respectively. Average peak IOP was 43.4±0.8 mmHg for the

other five-day group used for the immunohistochemistry
(IHC) analysis (n=4).

In western blots, anti-VEGF antibody detected a 45 kDa
band corresponding to the VEGF-A164 dimer in all retinas and
in the positive control brain (Figure 1). VEGF-A164 levels
remained unchanged between the control and glaucomatous
retinas after five days (p=0.341, n=6; Figure 1A,C) and 10
days of elevated IOP (p=0.117, n=6; Figure 1B,C). Using this
well characterized antibody [26,27], the VEGF-A164 monomer
was not detected in the retina or in the brain.

In VEGF-A164 IHC, there was some nonspecific staining
in the blood vessels in the RGC layer and INL of the negative
control retinas (Figure 2B,C). VEGF-A164 staining did not
differ between the normal (Figure 2E) and glaucomatous
retinas (Figure 2H). VEGF-A164 expression was localized to
the RGC and the cells in the INL of both groups (Figure 2E,H).
In the RGC layer, VEGF-A164 staining colocalized with the
retinal ganglion cell marker, Fluorogold (Figure 2F,I). Also,
VEGF-A164 levels did not differ between the normal and
glaucomatous retinas, which are consistent with the WB
results.
Anti-VEGF-A165b antibody does not recognize VEGF-A164:
Because it had been predicted that VEGF-A164 and VEGF-
A165b are highly homologous in amino acid sequence [18], we
first investigated whether the anti-VEGF-A165b antibody
would also recognize VEGF-A164. To test this possibility, we
immunoblotted different concentrations (25 ng, 100 ng, and
250 ng) of the recombinant rat VEGF-A164 protein with the
anti-VEGF-A165b antibody. Whereas the anti-VEGF-A165b

antibody did not recognize the VEGF-A164 protein at any
concentration, it recognized two bands around 22.4 and
45 kDa in a pair of control and glaucomatous retinas
corresponding to the monomer and dimer forms of VEGF-
A165b, respectively (Figure 3A). Next, we stripped the

Figure 1. Western blot analysis of VEGF-A164 expression in the
glaucomatous retina. A: VEGF-A164 was detected at 45 kDa in
control and glaucomatous retinas after five days of elevated IOP.
B: Similarly, VEGF-A164 was observed at 45 kDa in the control and
glaucomatous retinas following 10 days of elevated IOP. C:
Glaucomatous/control ratio of normalized VEGF-A164 densitometry
readings in the retina is demonstrated in the chart. VEGF-A164 was
expressed at comparable levels in the control and glaucomatous
retinas after five and 10 days of elevated IOP. The positive control
was the brain, and the loading control was α-tubulin.
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membrane and subsequently immunoblotted with the anti-
VEGF antibody. A 22.4 kDa VEGF-A164 monomer was
detected at all concentrations (Figure 3B), confirming the
presence of VEGF-A164 recombinant protein in the same
membrane. The dimer form was not observed with the
recombinant rat VEGF-A164 protein. The combination of these
findings indicated that the anti-VEGF-A165b antibody does not
recognize VEGF-A164 and that VEGF-A165b is expressed in the
rat retina.

VEGF-A165b levels are increased in the glaucomatous retina:
Following five days of elevated IOP, the anti-VEGF-A165b

antibody detected bands around 22.4 and 45 kDa in all retinas,
which represent the monomer and dimer forms of VEGF-
A165b, respectively (Figure 4A). Whereas VEGF-A165b dimer
levels remained unchanged between the control and
glaucomatous retinas (p=0.273, n=6), VEGF-A165b monomer
levels were significantly increased in the glaucomatous
retinas compared to those in controls (2.33±0.44 fold,
p=0.014, n=6) (Figure 4A,B). However, following 10 days of
elevated IOP, there was no change in levels for the VEGF-
A165b dimer (p=0.483, n=6) or for the VEGF-A165b monomer
(p=0.864, n=6) between the control and glaucomatous retinas

Figure 3. Anti-VEGF-A165b antibody does not recognize VEGF-
A164. A: Incubation with VEGF-A165b antibody. This antibody
recognizes the VEGF-A165b monomer (22.5 kDa) and dimer (45 kDa)
in control and glaucomatous retinas (first two lanes). VEGF-A165b

antibody does not recognize 25 ng, 100 ng, or 250 ng of VEGF-
A164 recombinant protein in the same membrane (last three lanes).
B: Incubation of the same membrane with the anti-VEGF antibody
after stripping. The anti-VEGF antibody recognizes VEGF-A164

recombinant protein at all concentrations.

Figure 2. Immunohistochemical
analysis of VEGF-A164 expression in the
glaucomatous retina after five days of
elevated IOP. A-C: Negative control.
Some non-specific staining of blood
vessels in the RGC and the INL was
observed. D-F: VEGF-A164 staining of
the normal retina (n=4). VEGF-A164 was
present in the RGC and the INL. G-I:
VEGF-A164 staining of the
glaucomatous retina (n=4). Staining was
detected in the RGC and INL. VEGF-
A164 levels did not differ between the
normal and glaucomatous retinas.
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(Figure 4C,D). These results indicate that VEGF-A165b levels
increase after five days of elevated IOP and return to baseline
levels after 10 days of elevated IOP.

IHC demonstrated that the distribution of VEGF-A165b

was similar to that of VEGF-A164. VEGF-A165b staining was
observed in the RGC and in the inner nuclear layer (Figure
5E,H). In the RGC layer, staining overlapped with the RGC
marker, Fluorogold (Figure 5F,I,O,R). No staining was
observed in the negative control with the primary antibody
omitted (Figure 5B,K). Consistent with our WB results, IHC
analysis showed increased levels of VEGF-A165b

immunoreactivity in the glaucomatous retinas compared to
normal retinas (Figure 5H,Q verses Figure 5E,N,
respectively).

DISCUSSION
We demonstrate in this report that VEGF-A165b is present in
the rat. In particular, we show that VEGF-A165b is present in
the retina and localized primarily to the RGC layer and the

Figure 4. Western blot analysis of VEGF-A165b expression in the
glaucomatous retina. A: VEGF-A165b expression following five days
of elevated IOP. Retinal VEGF-A165b monomer and dimer were
detected at 22.5 and 45 kDa, respectively. B: Glaucomatous/control
ratio of normalized VEGF-A165b densitometry readings in the retina
following five days of elevated IOP. Expression of the 22.5 kDa
VEGF-A165b was increased significantly in the glaucomatous retinas
compared to the controls. C: VEGF-A165b expression following 10
days of elevated IOP. VEGF-A165b monomer and dimer were
observed at 22.5 and 45 kDa in the retina, respectively. D:
Glaucomatous/control ratio of normalized VEGF-A165b

densitometry readings in the retina following 10 days of elevated
IOP. Both 22.5 kDa and 45 kDa VEGF-A165b were expressed at
comparable levels in the control and glaucomatous retinas. The
positive control was the brain while the negative control was VEGF-
A164 recombinant protein. The loading control was α-tubulin.

inner nuclear layer. Our findings for VEGF-A165b show a
distribution similar to that seen for VEGF-A164 in this report
and previous reports about VEGF-A164 by others [28,29].
Using back labeling techniques, we find that RGC express
VEGF-A165b. Our data show that VEGF-A165b levels are
increased early in the cause of experimental glaucoma but
return to baseline at a later time point. IHC results show that
this increase is primarily due to increased expression in the
RGC layer and in the INL.

Our results demonstrate that the levels for the pro-
angiogenic VEGF-A164 do not change in the glaucomatous
retina compared to control retinas in the rat after five days or
10 days of elevated IOP. Consistent with previous studies, we
observe that VEGF-A164 is expressed in the RGC and INL of
the retina [28,29].

VEGF-A165 is the most abundantly expressed pro-
angiogenic isoform in the retina [17]. Both VEGF-A165 and
VEGF-A165b mRNA are produced from the VEGF-A pre-
mRNA via alternative splicing [15,18]. VEGF-A165 and
VEGF-A165b share a 96.4% homology and differ only in the
last six amino acids in their amino acid sequence in humans
[18]. However, while VEGF-A165 is pro-angiogenic, VEGF-
A165b has an inhibitory effect on angiogenesis both in vitro and
in vivo [18,19]. For example, VEGF-A165b inhibits
neovascularization in the mouse retina following oxygen-
induced retinopathy [21]. More recently, other inhibitory
splice variants of VEGF-A have also been identified [19,20].
It has been suggested that the relative levels of the pro-
angiogenic and anti-angiogenic VEGF-A isoforms determine
whether angiogenesis will be stimulated or inhibited in a tissue
[20]. For instance, the expression of the pro-angiogenic
VEGF-A isoforms increases in the vitreous of human patients
with diabetic retinopathy whereas the expression of the anti-
angiogenic VEGF-A isoforms remains unchanged compared
to the normal vitreous [20]. Among the anti-angiogenic
VEGF-A isoforms, VEGF-A165b is observed to be the
dominant isoform [15,18].

What molecular mechanism is responsible for the
upregulation of VEGF-A165b mRNA in the glaucomatous
retina? Although the precise answer remains unknown,
proposed mechanisms include differential promoter selection,
alternate regulation of mRNA stability, and regulation of
alternative splicing [15,30-33]. In alternative splicing, as the
VEGF-A gene is being transcribed, the emerging pre-mRNA
is instantaneously processed by several RNA-binding proteins
and splice factors [15]. These proteins bind to the auxiliary
sequences on the pre-mRNA and determine which exons will
be spliced [34]. It is thought that several signal transduction
pathways, which are activated in response to changes in the
environment (e.g., receptor-mediated pathways, neuronal
activity, cellular stress-like hypoxia) affect alternative
splicing by altering the relative levels of RNA-binding
proteins and splice factors or the localization of splice factors
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within the cell [15,35,36]. More recently, microRNAs have
also been shown to alter alternative splicing [37]. For
example, in muscle and neuronal development, microRNAs
lead to the inclusion of alternative exons by suppressing a
repressor protein of alternative splicing [38,39]. In addition,
transcriptional events may also affect the regulation of
alternative splicing. For instance, the speed of RNA
polymerase II can influence the choice of splice sites and
recruitment of regulatory factors [40].

In conclusion, we report an increase in the retinal levels
of the anti-angiogenic VEGF-A165b but not the pro-angiogenic
VEGF-A164 in our experimental glaucoma model. The
combination of these findings suggests that the elevation of
VEGF-A165b levels and/or the unchanged levels of VEGF-
A164 contribute to the lack of neovascularization in the retina
in glaucoma.
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