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Summary

As the ear has dual functions for audition and balance, the eye has a dual role in detecting light for
a wide range of behavioral and physiological functions separate from sight [1-11]. These responses
are driven primarily by stimulation of photosensitive retinal ganglion cells (pRGCs) that are most
sensitive to short-wavelength (~480 nm) blue light and remain functional in the absence of rods and
cones [8-10]. We examined the spectral sensitivity of non-image-forming responses in two
profoundly blind subjects lacking functional rods and cones (one male, 56 yr old; one female, 87 yr
old). In the male subject, we found that short-wavelength light preferentially suppressed melatonin,
reset the circadian pacemaker, and directly enhanced alertness compared to 555 nm exposure, which
is the peak sensitivity of the photopic visual system. In an action spectrum for pupillary constriction,
the female subject exhibited a peak spectral sensitivity (Amax) 0f 480 nm, matching that of the pPRGCs
but not that of the rods and cones. This subject was also able to correctly report a threshold short-
wavelength stimulus (~480 nm) but not other wavelengths. Collectively these data show that pRGCs
contribute to both circadian physiology and rudimentary visual awareness in humans and challenge
the assumption that rod- and cone-based photoreception mediate all “visual” responses to light.
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Results and Discussion

Two blind subjects (one male, 56 yr old; one female, 87 yr old) without light perception were
studied in parallel experiments. The female subject was a member of a family expressing an
autosomal-dominant cone-rod dystrophy, which is described as a severe, early-onset phenotype
with patients progressing to no perception of light by the fifth decade of life [12, 13]. The male
subject had retinitis pigmentosa, a progressive disease of the retinal photoreceptors, and he
reported losing light perception in his mid-30s. He had bilateral posterior subcapsular cataracts.
Both subjects met all clinical criteria of blindness arising from degenerative retinal disease.
These include pupils that are unreactive to light after standard penlight examination and self-
reported inability to perceive light. Fundus photography and ocular coherence tomography
failed to identify an outer retina in the female subject (an absence consistent with blindness),
and electroretinography demonstrated no detectable rod or cone function (Figure 1). A
fundoscopic examination of the male subject also revealed atrophy of the retinal pigment
epithelium layer throughout the fundi, and visually evoked potentials were negative, again
consistent with total visual loss.

Both subjects reported having no sleep disorders and normal age-appropriate 24-hr sleep/wake
patterns, as confirmed by quantitative assessments of circadian rest-activity behavior carried
out with wrist actigraphy while they lived at home [14, 15]; these results are consistent with a
functionally intact retinohypothalmic tract [1, 16] (Figure 2). A normal circadian phase was
further confirmed using urinary 6-sulphatoxymelatonin (aMT6s) rhythms in the male subject
[3] (Figure 2; also, Supplemental Data available online).

In experiment 1, conducted with the male subject, we aimed to test the spectral sensitivity of
the circadian, neuroendocrine, and neurobehavioral axes (Figure 3 and Figure S1). First, we
confirmed that he retained a normal melatonin-suppression response to bright-white light
exposure [1] on two separate occasions three years apart (see Supplemental Data). We then
conducted a 14 day inpatient study to compare the effects of 6.5 hr exposure to 460 nm and
555 nm monochromatic light on circadian phase resetting, melatonin suppression, and
enhancement of arousal [17, 18]. In order to compare the relative contribution of the
photosensitive retinal ganglion cells (pRGCs) and classical (rod/cone) photoreceptors, we
chose two light sources that would differentially stimulate these systems: a monochromatic
“blue” light source with a peak emission (Amax) at 460 nm and hence close to the Apqx OFf human
pRGCs (~480 nm) [11, 19], and a monochromatic light source with a Ay at 555 nm
corresponding to the peak of human photopic vision. Given that this subject exhibited a 24-hr
sleep-wake pattern and an entrained aMT6s rhythm, we predicted that the pRGC/melanopsin-
driven system would be intact and that the short-wavelength stimulus would elicit full
circadian, neuroendocrine, and neurobehavioral responses, whereas the lack of classical
photoreception would preclude any response to mid-wavelength 555 nm light.

In a randomized, single-blind design, we exposed the subject to an equal photon density (2.8
x 1013 photons/cm?/s) of 555 nm and 460 nm monochromatic light for 6.5 hr, timed to start

1.25 hr before the prestudy bedtime [17, 18]. The subject was seated 90 min prior to and during
light exposure, and for 60 min afterward, and was administered a pupil dilator (1 drop per eye,
0.5% cyclopentolate HCI; Cyclogyl, Alcon Laboratories, Texas) and kept in darkness for 15

min prior to lights on (see Supplemental Data). As hypothesized because of the absence of a
functional cone response, ocular exposure to 555 nm light had no effect on plasma melatonin,
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whereas 460 nm light suppressed melatonin by 57% (Figure 3A). Exposure to 460 nm light
also caused a —1.2 hr phase delay in the timing of the circadian melatonin rhythm, whereas
555 nm light caused a minimal phase shift (0.4 hr). In addition, the blue light preferentially
increased alpha activity (8-10 Hz) in the waking electroencephalogram (EEG) recordings,
indicating a more alert state [18, 20] (Figure 3B), and appeared to decrease subjective sleepiness
and improve auditory performance during the latter half of the light exposure (Figure S1),
consistent with the short-wavelength sensitivity for the acute effects of light in sighted subjects
under similar conditions [17, 18, 21]. It is interesting to note that the blue light did not cause
a suppression of delta and theta activity in the waking EEG, as we have previously observed
in sighted subjects [18], and it is tempting to suggest that the lack of rod-cone photoreception
in this subject may account for the altered EEG response at those particular frequencies, as we
recently speculated [22]. Further data are required, however, to confirm this hypothesis.
Nevertheless, the short-wavelength near-maximal sensitivity to light at this photon density for
a range of responses indicates that this blind subject has a fully functional non-rod, non-cone
photoreceptor system mediating the circadian, neuroendocrine, and neurobehavioral effects
of light, presumably via intact melanopsin-containing pRGCs.

In experiment 2, we investigated the spectral sensitivity of pupil construction in the female
subject by using analytical-photobiological action-spectroscopy techniques. On the basis of
her 24 hr sleep/wake pattern and our previous studies on rodents [9, 23], we reasoned that she
should also possess some pupil reactivity to bright light, despite the clinical reports that she
was unresponsive to the brief light exposure from either a penlight or indirect ophthalmoscopic
examination. Quantitative pupillometry, employing monochromatic light at a broad range of
wavelengths and irradiances (1011-106 log photons/cm?/s) with an exposure duration of 10
s, showed that the subject possessed a functioning pupillomotor system responsive to bright
light. The pupil-constriction response was spectrally tuned, peaking (Amax) at 476 nm.
Irradiance-response curves showed a high statistical fit of their derived half-saturation
constants to a vitamin A opsin-pigment nomogram (R? = 0.89, compared to R2 = 0.35 for rod
and R? < 0.01 for all three cone classes), suggesting that pupil constriction was being driven
by a single photopigment (Figure 4). The spectral maxima of 476 nm corresponds well to the
action spectra for pRGCs in both human (483 nm) and nonhuman primates (482 nm) [10,
24], but not the Apax 0f human rods (~498 nm) or short, medium, and long-wavelength cones
(Amax ~420, 534, and 563 nm, respectively) [25] (Figure 4). When the pupil-action spectrum
was corrected for preretinal lens absorption [26], the peak spectral sensitivity shifted slightly
from 476 nm to 480 nm. Consistent with the results from experiment 1, these data show that
this subject possesses both an intact retinopretectal projection (pupillary constriction) and a
retinohypothalamic projection (circadian entrainment), and that these responses to light

are driven exclusively by short-wavelength-sensitive pPRGCs in subjects lacking rods and cones
and do not require input from the photopic system [24]. Notably, the confirmation of a pupil
response following longer-duration exposure than typically used in brief penlight examinations
questions the relevance of this technique, given that unreactive pupils are considered clinically
to be a sine qua non of profound blindness of retinal origin despite earlier evidence for short-
wavelength sensitivity in human pupil responses [27, 28].

The recent finding in primates that the pPRGCs project to the dorsal lateral geniculate nucleus
(dLGN) [10]—the thalamic relay that provides a direct input to the visual cortex—led us to
explore the possibility that these photoreceptors might contribute to an individual's ability to
detect or even experience some awareness of light. We therefore tested whether the female
subject could report whether a given light stimulus was present in the first or second of two
temporal intervals in a two-alternative forced-choice paradigm (2AFC). After some initial
hesitancy about being asked to report the presence of visual stimuli of which she was nominally
unaware, she was able to correctly identify the interval in which a 481 nm test light appeared
(p <0.001) but failed (p > 0.05) to detect light at longer or shorter wavelengths (420, 460, 500,
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515, 540, 560, and 580 nm) (Figure 4). These detection probabilities remained unchanged when
corrected for multiple testing (Bonferroni). Furthermore, she reported that the presence of the
detectable stimuli (481 nm) elicited in her a percept that she described as “brightness.”
Although superficially these responses resemble cortical blindsight in that she was able to
detect a stimulus with a rate of success above chance [29], these data represent a markedly
different phenomenon because subjects with damage to the primary visual cortex (V1) have
no conscious perception of the stimulus presented [29].

Could these responses to light have arisen from a small number of surviving rods and/or cones
rather than from the pRGCs? Although visually evoked potentials (VEP), electroretinogram
(ERG), and ocular coherence tomography (OCT) analysis cannot preclude the persistence of
aresidual population of rods and/or cones, there was no functional evidence of any significant
rod or cone involvement. Both the Amax OF ~480 nm and the correspondence of the action
spectrum to a single opsin- and vitamin A-based photopigment template strongly implicate
phototransduction by the pRGC subsystem alone.

The question remains, however, which neuronal pathways and brain structures mediate these
“nonvisual” effects of light. Neuroanatomical investigations in rodents show that melanopsin-
containing ganglion cells project to a range of retinorecipient nuclei, including major
projections to (1) the hypothalamic suprachiasmatic nuclei (SCN), the site of endogenous
circadian pacemaker; (2) the intergeniculate leaflet of the thalamus, an area that is closely
linked to normal circadian function and conveys photic and nonphotic signals to the SCN; (3)
the ventrolateral preoptic area, an area that controls the switch between sleep and wake states;
(4) the olivary-pretectal nucleus, implicated in the pupillary constriction response; and (5) the
superior colliculus, which mediates visual and auditory sensorimotor reponses [30, 31]. As
indicated previously, a subset of melanopsin-containing ganglion cells also project to the dLGN
[10, 31] and in primates have a peak spectral sensitivity (Amax) 0f 482 nm [10], thereby possibly
providing the neuroanatomical substrate in support of the identical short-wavelength sensitivity
for the visual awareness response observed in the female subject. Moreover, recent imaging
studies in humans are beginning to identify brain regions associated with light-induced
improvements in performance and cognition [32-34] and show preferential short-wavelength
activation of the thalamus and the anterior insula, structures strongly implicated in arousal and
memory function [34].

Our data strengthen the conclusion that the clinical diagnosis of "complete” blindness (i.e.,
visual and circadian) should assess the state of both the image-forming and the non-image-
forming photoreceptive systems [1]. If blind individuals are found to be light sensitive, this
knowledge will help ensure that they expose their eyes to sufficient daytime light to maintain
normal circadian entrainment and sleep/wake rhythmicity. This evaluation is particularly
critical prior to bilateral enucleation because, if light-responsive eyes are removed or
individuals do not expose their eyes to a robust light-dark cycle, the patients may develop a
debilitating circadian-rhythm sleep disorder [3, 14]. Patients with diseases of the inner retina
that result in retinal ganglion cell death (e.g., glaucoma) are at particular risk and should be
counseled about the effects of pPRGC loss. Where complete blindness results, appropriately
timed melatonin treatment may be warranted in order to establish entrained circadian
rhythmicity [35, 36].

Conclusions

We have shown that circadian, neuroendocrine, and neurobehavioral responses to light, and

even visual awareness of light, are retained in visually blind subjects lacking functional outer
retinae, confirming in humans the recent remarkable discovery of a novel photoreceptor system
in the mammalian eye. These findings question the traditional view that rod- and cone-based
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photoreception mediate all “visual” responses to light (such as pupillary constriction and visual
awareness) and suggest that these and “nonvisual” circadian and neuroendocrine responses to
light in humans are driven primarily by a non-rod, non-cone, short-wavelength-sensitive
photoreceptor system located in the ganglion cell layer.

Supplemental Data

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Neuroophthalmology and Ocular Anatomy of the Blind Female Subject and a Normal Control
The left panel shows fundoscopy findings of the 87-year-old blind female subject (A) and a
representative ocular-coherence tomogram for the peripheral retina (C) and central macula
region (D) of the left eye, compared with a normal age-matched sighted control (B, E, and F).
Her retina is abnormally thin (less than 160 microns) and there is no identifiable outer nuclear
layer or photoreceptor layer, suggesting that photoreceptors are absent, and the choroid has
abnormally high reflectivity (Ch) in contrast to the normal age-matched subject (E and F),
where stratification within the neurosensory retina, particularly the outer nuclear layer (ONL),
can be seen. By contrast, the ganglion cell and nerve fiber layers of the inner retina of the blind
woman are of normal thickness, and there is no cellular disruption, allowing clear recognition
and delineation of normal histo-architecture in both retinal periphery and macula. In (G),
comparison of the normal macula profile in an age-matched individual (within green limits, as
shown in OCT image in [F]) illustrates loss of normal macular contour in the blind subject
(black line, as derived from [D]). The normal distribution percentile correlates the color-coded
areas of the figure to percentages of age-matched people who might possess retinae within that
region. V = vitreous, NR = neurosensory retina.

The right panel shows electroretinographic responses from the female subject (A, C, and E)
and an age-matched, normal eye (B, D, and F) for dark-adapted (rod-photoreceptor
predominant) responses (A and B); dark-adapted, light-adapted (mixed photoreceptor)
responses (C and D); and light-adapted (cone predominant) responses (E and F) to 30 Hz flicker
stimuli. White-light stimuli at 3.0 cd s/m? intensity were used for all tests and began at the start
of recordings in all cases. The traces for the blind subject show no detectable
electroretinographic responses (Note: [C]shows a drifting baseline.).
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Figure 2.

Entrained Rest-Activity and Urinary 6-Sulphatoxymelatonin Rhythms in Two Blind Subjects
The daily activity rhythm (black) and light (lux) exposure (yellow) patterns of the female (A)
and male (B) subjects, recorded at home for 3—4 weeks with wrist actigraphy (Actiwatch-L,
Minimitter, New York). Data are double-plotted, with consecutive days plotted next to and
beneath each other. The gray bars represent an arbitrary “night” from 23:00-6:00 hr for visual
reference.

Analysis of actigraphy data indicated that both the female and male subject had sleep onset
(mean * standard deviation [SD] sleep onset =21:50 + 1:09 hr and 23:22 + 0:24 hr, respectively)
and sleep offset (8:38 = 1:29 hr and 6:31 £ 0:26 hr, respectively) times that fell within the range
of actigraphically derived sleep times for blind subjects with previously confirmed normally
phased circadian sleep and urinary 6-sulphatoxymelatonin rhythms (mean + 2SD sleep onset
=23:31 + 2:26 hr, sleep offset = 7:11 + 2:24 hr) [3, 14]. The urinary 6-sulphatoxymelatonin
(aMT6s) rhythm peak time (o) in the male subject confirmed the presence of a normally phased
nighttime 24 hr rhythm (mean + SD = 3:00 + 1:17 hr) that exhibited a normal phase angle (3:38
hr) with respect to the sleep/wake cycle based on previous studies in entrained blind subjects
(mean £2SD phase angle, sleep onset —aMT6s peak = 4:38 + 2:28 [3, 14]). The raw urinary
data are shown in [C] with the normal peak-time range for the aMT6s rhythms shown in gray
(1:42-6:36 hr) [3].
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Figure 3.

Short-Wavelength Light Sensitivity for Melatonin Suppression and Enhancement of EEG
Alpha Power in a Blind Man

The direct effects of exposure to green (555 nm) and blue (460 nm) monochromatic light on
the male subject for melatonin suppression (A) and waking-EEG power density (B) as an
objective correlate of alertness. Exposure to 555 nm light caused no suppression of melatonin
as compared to the corresponding clock time the previous day, whereas exposure to 460 nm
light suppressed melatonin (total suppression by AUC = 57%) and maintained the suppression
effect throughout the entire 6.5-hr exposure (A). The 460 nm light also caused an elevation of
alpha activity (8-10 Hz) in the waking EEG, indicative of a more alert state (B). Only alpha
frequencies exhibited a wavelength-dependent difference during the second half of the light
exposure (C). These data are consistent with the short-wavelength sensitivity for the acute
effects of light in sighted subjects under similar conditions [17, 18, 21].
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Figure 4.
Short-Wavelength Light Sensitivity for Pupillary Constriction and Light Detection in a Blind
Woman

Irradiance-response curves (IRCs) were conducted at eight wavelengths for both eyes (squares
indicate left eye, triangles indicate right eye) (A, left panel). Responses are plotted as
percentage of maximum response obtained. IRCs were fitted with a four-parameter sigmoid
function, with R? values >0.90 in all cases. The resulting action spectrum of pupil responses
(A, right panel) provided a poor fit to rod and cone photopigments (rod RZ = 0.35; SW cone,
MW cone, LW cone RZ = 0). An optimum fit to the pupil response to light was provided by
an opsin/vitamin A-based template with Amax 476 nm (R? = 0.89), corresponding closely to
the pRGC system. Note: Data shown were not corrected for preretinal lens absorption. When
this correction was applied, the Ay, shifted from 476 nm to 480 nm.
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(B) shows the results of the psychophysical testing in the same subject that indicated conscious
perception of light at 481 nm (***p < 0.001) but failure (p > 0.05) to detect light at longer or
shorter wavelengths (420, 460, 500, 515, 540, 560, and 580 nm). These results mirror the
spectrally tuned response of the pupil, and suggest that the subject's detection and awareness
of light also arise from pRGCs. Each histogram represents the percentage of correct responses
out of 20 trials for both left and right eyes (360 trials in total).
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