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Toxic Metals in Aquatic Ecosystems:
A Microbiological Perspective
Timothy Ford1 and David Ryan2
1Department of Environmental Health, Harvard School- of Public Health, Boston, Massachusetts;
2Department of Chemistry, University of Massachusetts, Lowell, Massachusetts

Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This
paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of
Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments
provides a microbiologically rich aggregate-based system. Data indicate that toxic metals are concentrated on aggregate material and bioaccumulate
in the food chain. A provisional model is presented for involvement of microbial aggregates in metal-cycling in Lake Chapala. -Environ Health
Perspect 1 03(Suppl 1 ):25-28 (1995)
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Introduction
Understanding the distribution of toxic met-

als in aquatic ecosystems is important to our

assessments of environmental and human
health risks from natural waters. It is becom-
ing increasingly apparent that microbial
processes may be important and even domi-
nating factors in the distribution of specific
metals ( 1). Our understanding of
microbe-metal interactions has been limited
by the complexity of both the microbiology
and chemistry of natural systems. Laboratory
studies, however, indicate the potential for
significant interaction, at least within soil
and sediment ecosystems. There is consider-
able information on specific interactions
between microorganisms and iron and man-

ganese and on the importance of these inter-
actions in the biogeochemical cycling of
these elements (2). The following discussion
will focus on the cycling of toxic metals and
the potential role of microbe-metal interac-
tions in these processes.

Metal-Microbe Interactions
Interactions between microorganisms and
metals can be conveniently divided into
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three distinct processes (3), all of which
may be important with respect to metal
distribution in natural waters: a) intracellu-
lar interactions, b) cell-surface interac-
tions, and c) extracellular interactions.

Intracellular Interactions
Assimilation of metals may be important to
the microbe in detoxification, enzyme
function, and physical characteristics of the
cell. Probably the most widely recognized
microbial interaction with toxic metals in
the aquatic environment, is the microbial
methylation of mercury. A considerable
number of studies have addressed the
importance of this interaction in the
volatilization and subsequent bioaccumula-
tion of the lipid-soluble, methylated form
of mercury (4,5). However, it is still
unclear how significant microbial methyla-
tion of mercury is in the bioaccumulation
of this metal. Pure-culture experiments
have shown that many bacteria and fungi
have the capability to methylate mercury
(5). However, in the environment, sulfate-
reducing bacteria appear to dominate in
this process (6). The mechanism is
thought to involve intracellular methyla-
tion by nonenzymatic transfer of methyl
groups from methylcobalamin (vitamin
B12) (4). For the microorganism, this is
probably a detoxification mechanism, as it
results in volatilization of the mercury, and
hence removal from the immediate envi-
ronment of the sulfate-reducing bacteria.
The eventual fate of the methyl mercury is
then dependent on rates of microbial
demethylation, a process that occurs closer
to the sediment-water interface.

Although receiving less attention than
mercury, methylation of other toxic metals,

with subsequent volatilization, may also
occur in the aquatic environment.
Methylation has been shown for tin,
arsenic, lead, selenium, tellurium, thallium,
and antimony (7). Gilmour and co-work-
ers (8,9) correlated production of mono-
methyl tin in sediment samples with
numbers of sulfate-reducing and sulfide-
oxidizing bacteria. In addition, they iso-
lated Desulfovibrio spp. from the sediments
that were able to methylate tin in culture
medium at rates similar to those for sedi-
ment methylation. Methylation of arsenic
by fungi was studied extensively as a result
of poisoning from fungal transformations
of arsenic in paints (10).

Cell-Surface Interactions
A number of authors have shown that
metal binding to cell surfaces is an impor-
tant factor in the distribution of metals in
natural waters (11,12). Algal surfaces con-
tain functional groups (e.g., carboxylic,
amino, thio, hydroxo, and hydroxy-car-
boxylic groups) that can interact with
metal ions (12). Gram-negative bacteria
possess lipopolysaccharides and phospho-
lipids in their cell walls, with phosphoryl
groups as the most abundant electronegative
sites available for metal binding (13,14).
Gram-positive bacterial cell walls possess tei-
choic acids and peptidoglycan, providing
carboxyl and phosphoryl groups that are
potential sites for metal binding (15).

For both gram-negative and positive
bacteria, metal binding to cell-surface func-
tional groups is thought to be an important
step to intracellular accumulation of trace
metals required for enzyme function. In
addition, certain bacteria appear capable of
using toxic metal species as electron
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acceptors, with both selenate and chromate
reportedly reduced under anaerobic condi-
tions (16,17).

Etraeliular Interacdon
Extracellular interactions with toxic metals
range from the potential to leach metals
from sediments by production of acidic
metabolites to the formation of colloidal-
sized extracellular polysaccharide (EPS)
metal complexes implicated in mobiliza-
tion and transport of toxic metals in soils
(18,19). Indirectly, toxic metals closely
associated with iron oxide (Cd and Zn)
have been shown to be solubilized by enzy-
matic reduction of the ferric iron (20).
Insoluble complexes may also be formed by
the activity of microorganisms. Metal
sulfides are extremely insoluble and there-
fore production of sulfide by the sulfate-
reducing bacteria may be instrumental in
immobilizing certain metals (1).

EPS-metal interactions are of particular
interest in their ability to mobilize and
transport metals. The ability to essentially
bind toxic metals in the colloidal fraction
of the organic carbon pool is important in
the cycling of metals in any aquatic system.
In soilwater, colloidal transport theories
suggest that metals bound to colloids may
move at faster rates through the soil than
other metal species that are more readily
adsorbed to soil particles. This may be due
to simple size exclusion principles and/or
the hydrophilic nature of many bacterial
polysaccharides (21). Modeling rates of
metal contaminant movement to ground-
water is therefore complicated by these
interactions. Within the water column,
dynamics of metal distribution and cycling
rates are altered by an association with this
colloidal fraction.

Many microorganisms produce EPS
(often containing proteins) that strongly
binds metals. Interactions between EPS
and metal ions are generally considered a
direct consequence of negatively charged
functional groups on the exopolymer.
These include pyruvyl, phosphoryl,
hydroxyl, succinyl, and uronyl groups. A
pH-dependent binding of positively
charged cations can rapidly occur with sta-
bility constants in excess of those generally
measured for humic substances and other
naturally occurring ligands (Table 1).

In addition to the above, we do not
fully understand the role of siderophores in
toxic metal cycling. Siderophores are low
molecular weight organic compounds pro-
duced by a number of microorganisms to
sequester iron and are thought to be highly
specific. However, Cu(II) complexation

Table 1. Conditional stability constants (Kc) of bacter-
ial EPS-metal complexes.

Bacterium Metal Kc, X108
Thermus sp.a Cu 0.7
Deleya marinas Cu 24.0
D. marinaa Mn 9.0
D. marina Ni 14.0
Pedomicrobium Mn 19.0
manganicum b

Sediment bacterium, Cu 7.3
bHumic acids Cu 6.6

Humic acids metals" 0.0032-0.0063
Fulvic acids "metals" 0.005-0.01

aFrom Ford and Mitchell ( 1). bFrom Mittelman and
Geesey (22). CFrom ranges given in Thurman (23). [Note:
differences may partially reflect different measurement
techniques used in Thurman (23), compared to Ford
and Mitchell (1) and Mittelman and Geesey (22), see
original papers.]

with both hydroxamate and catecholate
siderophores has been reported and may be
important in sequestering copper for pro-
duction of the tyrosinase enzyme (24). In
addition, it has been suggested (25) that
hydroxamate siderophores may play an
important role in the reduction of copper
toxicity to cyanobacteria. The authors
speculated that the geometry of the copper-
siderophore complex made it unlikely that
it would be assimilated by cyanobacterial
cells, as it would not be recognized by the
iron transport system.
Ongoing Research
Our research has focused primarily on
EPS-metal interactions and the reader is
referred to the following publications for
more detailed information (1,3,26-28).
Our laboratory has also been closely
involved with metal-transformation stud-
ies, with the work of Gilmour and Henry
(5). Current research is designed to charac-
terize both metal distributions and micro-

bial communities in natural waters. One
particular example is our studies on Lake
Chapala, Mexico, the principal water
source for the Guadalajaran metropolitan
area. We have been measuring water col-
umn (dissolved and particulate) concentra-
tions of arsenic, lead, cadmium, copper,
zinc, nickel, and chromium, throughout
the lake, its inlet, and outlet. In addition,
we have measured toxic metal concentra-
tions in sediments, plants, and fish. As
expected, there is considerable bioaccumu-
lation in fish tissues of certain metals, in
particular copper and zinc, which bioaccu-
mulate differently in different fish species
(Table 2). From a microbiological perspec-
tive, however, association of metals with
particulate material may prove to be of
greatest interest. Lake Chapala is in many
ways limnologically unique. Constant
resuspension of sediments results in mini-
mal accumulation of toxic metals in the
sediments and an extremely high turbidity
[down to 0.2 m secchi transparency (29)],
which effectively minimizes primary pro-
ductivity. The extremely high turbidity
results from clay-based particulates that
consist primarily of CaCO3, adsorbed
organic material, and microbiota.
Heterotrophic activity associated with this
particulate material is thought to be high
(OT Lind, personal communication). A
significant proportion of toxic metals asso-
ciated with this fraction. Neutron activa-
tion analysis was used to obtain data for a
large range of elements; however, of the
toxic metals, only chromium and zinc could
be directly partitioned between dissolved
and aggregate phases, and in some cases
selenium and arsenic. Using surficial sedi-
ment data, which provides concentrations
similar in magnitude to aggregate data due
to the constant resuspension, we have also
provisionally estimated the potential

Table 2. Trace metal analysis of liver and muscle tissue from Lake Chapala fish (ppm dry weight).

No Species Tissue Cd Cr Cu Pb Ni Zn
1 Tilapia Liver <3 15 2067 <100 <40 96

Muscle NA 0.33 2.8 3.5 0.22 35.4
2 Tilapia Liver 0.5 4.8 2890 13.5 1.85 102

Muscle NA <0.1 13.6 1.7 0.32 38.1
3 Tilapia Liver <1.7 4.04 1820 2.1 1.7 117

Muscle NA 0.42 7.5 7.2 0.24 35.2
4 Carp Liver 2.1 8 163 32 13.9 1443

Muscle NA <0.1 2.23 0.9 <0.3 55.1
5 Carp Liver 1.4 1.31 104 2.62 0.46 1150

Muscle NA <0.1 3.23 8.8 2.6 186
6 Carp Liver <0.5 1.46 126 2.1 0.47 685

Muscle NA <0.1 6.2 <9 3 298

NA, not analyzed.

Environmental Health Perspectives26



MICROBE-METAL INTERACTIONS

Table 3. Partitioning of toxic metals between dissolved and aggregate phase (concentrations given as pg 1-1 lake water; concentration factors calculated on a ppm basis).

As Cr Se Zn Cu Cd Pb Ni

West Site Dissolved 34.00 2.00 1.10 36.00 NA NA NA NA
Aggregate 0.43a 7.17 0.13a 10.41
Concfac 121 34487 1100 2779
% agg 1.24 78.20 10.27 22.42

Center Site Dissolved 36.00 2.30 1.00 37.00 16.60 NA 13.50 12.10
Aggregate 0.74a 4.56 0.01 a 6.31 1.86a 1.90a 1.68a
Conc fac 271 26093 180 2245 1476 1852 1826
% agg 2.02 66.48 1.35 14.57 10.09 12.34 12.19

East Site Dissolved 34.00 2.80 1.00 32.00 16.50 2.50 12.80 18.30
Aggregate 0.50 7.28 0.04a 13.97 4.1 Oa 0.05a 5.30a 4.88a
Conc fac 94 16665 230 2799 1594 120 2656 1710
% agg 1.45 72.22 3.46 30.39 19.91 1.84 29.30 21.06

Abbreviations: Conc fac, concentration factor; % agg, percent aggregrate associated. 'Surficial sediment data, included for comparison with aggregate data and used for cal-
culating concentration factors and partitioning when aggregate analysis was below detection.

magnitude of partitioning for cadmium,
nickel, lead, and copper. These data are
summarized in Table 3. For all metals,
concentration factors on a part per million
basis are high. As would be expected in a
high pH lake, metals tend to associate with
particulate material. However, on a per-liter
basis, only chromium will be greatly under-
estimated by water column analysis alone.
Chromium is concentrated on particles by
factors up to 35,000-fold, which is equiva-
lent to 79% of the chromium per liter of
water.

Lake Chapala provides a unique system
for investigating the potential for interac-
tion between toxic metals and the particu-
late microbiota. We are interested in the
role of bacterial exopolymers within these
particulates in retaining toxic metals in sus-
pension. We have isolated a number of
bacterial species from unfiltered Lake
Chapala water to characterize their
exopolymers. Bacterial isolation proce-
dures, exopolymer preparation, and chemi-

cal analyses have been described in detail
previously by Ford and others (30).
Exopolymers from six different Lake
Chapala isolates were characterized using
Pyrolysis-Mass Spectrometry. Specific
marker fragments for acetyl groups were
found for all isolate exopolymers. These
marker fragments have been associated
with metal-binding function (30).
Particulate material may also provide
anaerobic microenvironments within the
water column, as suggested by a number of
authors (31), which may provide condi-
tions for metal transformations. These are
mechanisms that have all been investigated
in the laboratory using pure cultures of
bacteria (26) or carefully controlled sedi-
ment core experiments (5,18). We are now
designing experiments to compare water
column particulate-metal interactions with
these laboratory studies using Lake Chapala
samples. The aim of this research is to be
able to augment current models of metal
transport in surface waters [i.e., the model

of removal rates of metals by settling parti-
cles described by Sigg and co-workers,
(32)] with a microbiological factor. It may
then be possible to insert rates of these
important processes into a conceptual
model such as that presented for Lake
Chapala in Figure 1.

Lake Surface

Free Metal

Microbial
Dagradatlon

MetallClayllcrobial Focal Pellet
Agregatei

Zooplankton
Flsh?

Milcrobil
Sedimentatlen Dogradatlon/

Js Sedi-men Olan

eeRosuspenslon

Lake Sediments

Figure 1. Conceptual model of metal cycling in Lake
Chapala, Mexico.
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