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ABSTRACT

High-throughput gene-expression studies result
in lists of differentially expressed genes. Most
current meta-analyses of these gene lists include
searching for significant membership of the
translated proteins in various signaling pathways.
However, such membership enrichment algorithms
do not provide insight into which pathways caused
the genes to be differentially expressed in the first
place. Here, we present an intuitive approach for
discovering upstream signaling pathways respon-
sible for regulating these differentially expressed
genes. We identify consistently regulated signature
genes specific for signal transduction pathways
from a panel of single-pathway perturbation experi-
ments. An algorithm that detects overrepre-
sentation of these signature genes in a gene group
of interest is used to infer the signaling pathway
responsible for regulation. We expose our novel
resource and algorithm through a web server
called SPEED: Signaling Pathway Enrichment using
Experimental Data sets. SPEED can be freely
accessed at http://speed.sys-bio.net/.

INTRODUCTION

Signal transduction pathways integrate information about
the cellular environment and regulate the activity of a
multitude of transcription factors, thereby controlling
cellular processes, such as migration, proliferation and dif-
ferentiation through context-dependent gene expression.

While the techniques to measure transcript levels on a
genome scale have matured and become affordable, it is
not yet possible to get a global picture of the activity of
signaling pathways in a high-throughput manner.
Typical strategies to analyze gene-expression profiles

include searches for overrepresented biological functions,
molecular mechanisms or pathways that the regulated
genes are involved in, often utilizing annotation databases
like Gene Ontology (1) and pathway databases such as
KEGG (2). While these strategies have proven very
useful to systematically organize the results, it is often
forgotten that these analyses mainly detect pathways
that are regulated in response to the perturbation—and
not the cause of the observed regulatory pattern. If, for
example, the MAPK signaling pathway has been found
overrepresented in the regulated genes it only shows that
the pathway is regulated in response to a perturbation, but
not that the MAPK signaling pathway caused the gene
regulation. Although genes regulated by a signaling
pathway may involve genes that encode for members of
the same pathway (feedback regulators), they may also
regulate genes that are members of other pathways (tran-
scriptional cross-talk) (3). Thus, pathway membership of
regulated genes is unlikely to unveil the regulating
pathway, and other strategies have to be employed in
order to probe the origin of a certain gene-expression
pattern.
One such computational strategy that is often used is

the search of overrepresented binding sites in the promoter
region of the regulated genes. This strategy is indeed
suitable for finding the transcription factors causing the
regulation. However, the method is seriously hampered by
the poor specificity of computational prediction of
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transcription factor binding sites, due in large part to the
high degeneracy and low information content of the
recognized binding sequences (4). In the future, develop-
ment in experimental strategies such as ChIP-chip
or ChIP-seq will likely improve this situation. Still,
links between signaling pathways and the transcription
factors are only known for a limited number of cases.
Thus, even if one has discovered which transcription
factor is causing the regulation, in most cases one still
cannot pin down the signaling pathway upstream of this
transcription factor.
In order to infer signaling pathways that caused the

regulation of a group of genes, we developed Signaling
Pathway Enrichment using Experimental Data sets
(SPEED), a data collection and algorithm that allows
for identifying signaling pathways that cause an
observed regulatory pattern. The key idea behind
SPEED is that the same signaling pathway typically regu-
lates a similar (small) core set of genes in most cell types,
while different signaling pathways typically regulate differ-
ent core sets of genes. We term such a set of consistently
regulated genes ‘signature genes’ for that particular
pathway. A list of regulated genes in an experiment can
then be compared to a catalog of signature genes for dif-
ferent signaling pathways. In the following section, we
present the SPEED web server with application to the
analysis of two acute myeloid leukemia (AML) data sets.

MATERIALS AND METHODS

Selection and preprocessing of gene-expression data

Gene-expression data sets were identified manually in
the gene-expression omnibus (GEO) database based on
their abstracts. We concentrated our search on single-
perturbation experiments measured within 4 h after treat-
ment to limit secondary effects. This time span represents
the shortest interval, which still allowed collection of a
sufficient number of data sets in most pathways. If,
however, not enough such data sets were available for a
particular pathway, long-term experiments such as stable
overexpression or knockdown experiments were included
if their effect on signature genes was assumed to be
prominent.
Custom R-scripts were written to download and process

the selected expression data sets automatically. Data for
each micro-array experiment within the data set were sub-
jected to quantile normalization and log-transformation if
needed. Finally, a LOESS model for the standard devi-
ation as a function of expression value was trained either
on replicate experiments (when available) or on all experi-
ments and was used to compute Z-scores. Z-score (x) =
(x��)/�, where m is the sample mean and � is the
standard deviation. The probes were annotated with
Entrez Gene identifiers using GEOquery.

Implementation

SPEED runs on an Apache server with the pre-processed
micro-array data stored in an SQLite 3.0 database (see
Supplementary Figure S2 for database schema). The
SPEED algorithm is implemented in Python 2.5 with

dependency on the scipy 0.7.0 (http://www.scipy.org/)
package. Graphical output is dynamically generated
using the Google Chart API (http://code.google.com/
apis/chart/).

Clustering

Hierarchical clustering was performed using the statistical
package R, clusters were linked using Ward’s method.
The distance between two pathways was defined as:
�log [# common signature genes/min (# signature genes
for each set)].

Validation using literature gene lists

Gene lists were extracted directly from the manuscripts or
supplementary data and were not further processed (see
Supplementary Table S1 for references). Raw data were
not available for these lists. Every significant hit in
SPEED had a false discovery rate (FDR)< 0.05.

FANTOM4 data processing

The FANTOM4 data set was downloaded as tab
delimited text files from the Center for Information
Biology gene EXpression (CIBEX) database
(http://cibex.nig.ac.jp/cibex2/ExperimentMiame.do?query
ExperimentalDesignAccession=CBX47). Each of the 52
transcription factor knockdowns in THP-1 cell line were
conducted in three replicates. Probe expression values
were divided by appropriate controls and the ratios were
log (base 2) transformed. Probes were only considered
valid if the transcript was expressed in all three replicates
for at least half of the 52 transcription factor knockdowns.
Valid probe IDs were converted to Entrez Gene IDs
and used as background. Genes with at least 2-fold differ-
ential median expression were considered for input to
SPEED.

RESULTS

We define signature genes as genes that are consistently
regulated by a particular pathway across many experi-
ments. Overrepresentation of such signature genes in a
list of differentially expressed genes can then hint at the
signaling pathway that caused the regulation. We set up a
pipeline to compile publicly available expression data
sets from pathway perturbation experiments, store them
into a database, extract signature genes, and finally detect
significant overlap with a user-supplied gene group via a
web server (http://speed.sys-bio.net/, see schematics in
Figure 1).

Compilation of a database to define signature genes for
signaling pathways

In order to extract signature genes, we selected a set of 11
signaling pathways: TGF-b, H2O2, TLR, IL-1, MAPK,
PI3K, MAPK+PI3K, Wnt, JAK-STAT, TNF-a and
VEGF. For each signaling pathway, we manually
searched the GEO database (5) for gene-expression data
sets where this signaling pathway is specifically perturbed
(see ‘Materials and Methods’ for selection criteria). The
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data sets were automatically downloaded from GEO (6),
annotated and normalized. The expression changes per
probe were then transformed into Z-scores per gene
(see ‘Materials and Methods’ section for details).
Subsequently, the gene ID, expression rank and Z-score
rank were stored in the SPEED database. Currently, 215
sets of micro-array experiments are stored in the database,
resulting in almost 6 million expression values for 21 485
human genes.
From this database, signature genes for each pathway

can be extracted. We define three criteria for a signature
gene: it has to be (i) expressed and (ii) regulated (iii) across
several experiments for each pathway. As the stored
micro-array data originates from different sources and
even platforms, we chose to apply thresholds based on
percentiles to select the signature genes. For each of the
data sets, genes are defined as expressed if their expression
value rank is higher than a pre-determined threshold
[criteria (i); default: top 50%). Next, regulated genes are
extracted based on the rank of their Z-score [criteria (ii);
default: top 1%). Finally, genes are selected as signature
genes if they are expressed and regulated in more than a
pre-determined percentage of data sets for a pathway
[criteria (iii); default: >20%). Users can adjust these par-
ameters to create lists of signature genes on the fly.
The mean number of signature genes per pathway using

the default parameters is 139. The signature gene lists for
any given parameter set can be downloaded as tab de-
limited text directly from the SPEED web server.
Figure 2 lists the mean number of signature genes per
pathway for various parameters.

TGFb JAK-STAT MAPK

Select Perturbation Experiment Datasets

Preprocess Expression Data

BCOR
BMP2

NEDD9
SMAD7

...

DUSP1
JUN
MYC

WEE1
...

BCL6
IL15

SOCS3
STAT1

...

Identify Signature Genes Per Pathway

Differentially Expressed

Across
Experiments

Compare Input Genes to Signature Genes

Significantly
Enriched

Input
Genes

Input
Genes

Input
Genes

Figure 1. Overview of the SPEED algorithm. The SPEED algorithm is
based on the identification of signature genes that are consistently
regulated by specific signaling pathways using publicly available micro-
array data. Gene-expression data sets from single-pathway perturbation
experiments were manually selected from the GEO database. Next, gene-
expression values from the selected database were automatically processed
using custom R-scripts, and expression changes were stored as Z-score
rank percentiles in the SPEED database. The SPEED web server extracts
signature genes per pathway on the fly based on user-specified parameters
describing the level of differential expression (Z-score percentile; ex: top
1%) and the level of consistency across experiments (percentage of experi-
mental data sets where a gene is differentially expressed; ex: at least 20%).
Users can compare their own gene sets against the extracted signature
genes to identify modulated upstream signaling pathways.

1% 5% 10% 50%

20%

40%

60%

Absolute Z-Score Percentile

P
er

ce
nt

 O
ve

rla
p 

A
cr

os
s 

E
xp

er
im

en
ts 138.75

(83%, 98%)

736.25

(85%, 96%)

1857.0

(69%, 97%)

9802.0

(73%, 96%)

26.25

(77%, 96%)

103.0

(82%, 97%)

279.0

(84%, 97%)

5976.25

(52%, 96%)

4.0

(38%, 99%)

19.75

(69%, 98%)

46.75

(76%, 99%)

2408.75

(75%, 98%)

Average Signature Gene Counts

lo
g 1

0 
sc

al
e

Figure 2. Average number of SPEED signature genes. SPEED signa-
ture genes are sensitive to user-specified parameters. Average signature
genes per pathway without the uniqueness constraint are listed as a
function of Z-score percentile and percent overlap across experiments.
The heat map corresponds to log10 of the average number of signature
genes. The sensitivity and specificity is noted in parenthesis. The values
for the default parameter set of Z-score percentile �1% and percent
overlap �20% are boxed. Our choice of default parameter set, as well
as recommended parameters (in black text) are determined ad hoc based
on their biological meaning, resulting number of signature genes and
performance metrics. Only the default pathways are considered here
and bottom 50% expressed genes are discarded for all calculations.
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Overlap of signature genes across pathways

Since signaling pathways form highly interconnected
networks, the definition of distinct signaling pathways is
difficult and often arbitrary. We therefore analyzed the
overlap between signature genes between all pairs of
pathways and noticed that there is considerable overlap.
In order to group similar pathways, we performed hier-
archical cluster analysis (Figure 3). Clustering revealed
that the major clusters separate pathways involved in
immune response from pathways controlling cell cycle
and cell growth. Furthermore, VEGF signaling seems
very closely related to pathways from both clusters
(MAPK+PI3K signaling and TNF-a signaling). Also, sig-
naling triggered by IL-1 and TNF-a shows strong overlap
in the signature genes, probably due to the shared down-
stream IKK-b/NF-kB signaling cascade (7). We therefore
added a feature in SPEED to select only those signature
genes that are unique to each pathway. We note, however,
that under such a uniqueness constraint the signature
genes depend strongly on the thresholds chosen, and the
predictive power of the algorithm does not improve
(Figure 2; Supplementary Figure S1). Additionally, since
we expect a strong crosstalk between pathways,
non-unique signature genes seem to be a more biologically
reasonable choice. We also decided to give the user the
possibility to restrict their analysis on a subset of
pathways. The default setting restricts the analysis on
four major pathways JAK-STAT, MAPK+PI3K,
TGF-b and TLR. While users have complete control in
their choice of parameters, the selected parameters should

be biologically reasonable (Figure 2 describes our recom-
mended parameters).

Detecting overrepresented signature genes

In order to detect overrepresented signature genes, we
apply Fisher’s exact test with a multiple hypothesis cor-
rection. For each pathway, it is tested whether the corres-
ponding signature genes are overrepresented in the
user-supplied list. A P-value is provided to indicate the
significance for the overrepresentation. To adjust for
multiple hypotheses, an FDR for the P-value (8) is also
provided. Users can restrict the analysis to a subset of
genes in the database by submitting a list of background
genes. For example, if one submits a list of differentially
expressed genes from a micro-array study, we would rec-
ommend using all significantly expressed genes from that
micro-array study as background.

Validation

In order to test how well SPEED can predict modulated
signaling pathway activity, we collected gene lists from
literature with known signaling pathway perturbation.
Note that gene-expression data from these literature
sources was not integrated into SPEED. A result was con-
sidered to be true positive if the top-ranked pathway pre-
diction matched the actual perturbed pathway and the
FDR was below 0.05. Table 1 describes the validation
results for the default pathways (see Supplementary
Table S1 for details). The overall sensitivity, calculated
as the fraction of all literature sources with correct
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Figure 3. Signaling pathway crosstalk demonstrated by overlapping signature genes. The percent overlap between signature genes between all pairs
of pathways is displayed as a heat map with higher overlap suggesting greater crosstalk between the respective signaling pathways. Pathway similarity
is calculated as the negative log of the percent overlap and similar pathways are grouped using hierarchical clustering. Two major clusters are
realized, separating pathways involved in immune response (JAK-STAT, TLR, IL-1 and TNF-a) from pathways controlling cell cycle.
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pathway predictions, using default parameters was
found to be 78%. Since traditional signaling pathway
membership analyses do not aim at predicting causal
pathways, SPEED outperforms GATHER (9), which cor-
rectly predicts the upstream pathway with a sensitivity
of 29%.

Due to limited number of available positive sets in lit-
erature, we also conducted leave-one-out cross validation
to get a better estimate of sensitivity. Once again, we con-
sidered a result to be true positive if the top-ranking pre-
dicted pathway was indeed the one that was perturbed.
Using default parameter values, the sensitivity was
calculated to be 83% of 130 tests. The classification
problem here is not binary and therefore the expected sen-
sitivity for random predictions is far <50%. In order to
estimate the specificity, the fraction of negative input sets
correctly identified as negative, we ran SPEED on 200
negative sets comprised of randomly selected genes from
the database. The size of the negative sets was randomly
chosen between 50 and 200 genes. The overall specificity
and precision (the proportion of true positive results
against all positive results) was calculated to be 98 and
96%, respectively. Figure 2 notes the sensitivity and spe-
cificity for different parameters.

Comparison with pathway membership databases

Validation using the literature derived gene sets indicated
a difference between genes regulated by a pathway and
gene products that are members of the pathway. To
verify the disparity between regulated genes and
pathway members, we searched regulated genes from
each SPEED experimental data set for overrepresentation
of acting pathway members in KEGG Pathway (2),
BioCarta and Panther (10) databases. 39% of all data
sets had significant enrichment of the acting pathway
members as determined by KEGG Pathway. 9 and 24%
of all data sets had significant enrichment of the corres-
ponding pathway in BioCarta and Panther, respectively.
These findings suggest some degree of transcriptional
feedback where genes regulated by a pathway translate
to protein members within the same pathway. However,
only 4 and 7% of all data sets had the acting pathway
ranked as the top one in KEGG and Panther, respectively.
No experimental data set had the acting pathway ranked
as the top one in BioCarta (see Supplementary Tables S4

and S5 and Figures 3 and 4, for detailed results). The low
top-rank percentage reasserts the unfavorable use of
pathway membership databases for identifying pathways
regulating a list of genes. Consequently, the SPEED data
sets and signature genes are fundamentally different than
lists of pathway members found in existing membership
databases.

Web server

The scope of the SPEED web server is the identification
of causal signaling pathways given a list of input human
genes. Thus, we implemented the web server with an
unencumbered user interface where the user can input
gene lists in widely adopted formats including Entrez
Gene ID, gene symbol, Uniprot, GI number, Refseq,
Ensembl and IPI. Any other gene identifiers can be
easily converted to those formats using available conver-
sion tools such as Clone ID converter (11), DAVID bio-
informatics resources (12) or the UniProt ID mapping
service (13). Upon submission, the user is directed to the
output page where the results are presented as a list of
signaling pathways ordered by their significance with
number of signature genes present in the input, P-values
and FDRs for each pathway. Graphical outputs, such as a
pie chart representing the distribution of signature genes
in the input list and a bar chart describing the relative
FDRs, further aid in interpretation of the results
(Figure 4). The symbols of the signature genes present in
the input are provided with hyperlinks to the respective
NCBI Entrez Gene web page. Separate web pages are
provided for database access to retrieve signature genes
as tab delimited text or to browse through experimental
details such as cell type, perturbation strategy and length
of perturbation with hyperlinks to the original gene-
expression data sources.
In addition to the web interface, we provide download

options for the raw data as tab delimited text or as an
SQLite database, which is a single cross-platform disk
file, together with Python source code to facilitate local
programmatic access to SPEED functionality. All SPEED
code is open-source and free to use.
In the following sections, we demonstrate the

functionality of SPEED through analysis of two AML
data sets.

Table 1. Validation of the SPEED algorithm on gene lists from independent literature sources

Pathway Test sets Correct top-ranking events (sensitivity) Significantly overrepresented events (sensitivity)

SPEED (%) GATHER (%) SPEED (%) GATHER (%)

JAK-STAT 10 8 (80) 1 (10) 10 (100) 7 (70)
TGF-b 5 4 (80) 2 (40) 5 (100) 2 (40)
MAPK+PI3K 6 4 (67) 1 (17) 6 (100) 6 (100)
TLR 6 5 (83) 3 (50) 6 (100) 3 (50)

Total 27 21 (78) 7 (29) 27 (100) 18 (65)

SPEED results from 27 literature-derived gene lists for the four default pathways are summarized. As compared to traditional signaling pathway
membership analysis using GATHER, SPEED correctly predicts the perturbed signaling pathway as the top-ranking result at a higher rate (78%
compared to 29%). SPEED also outperforms GATHER in identifying the correct pathway as one of the significantly overrepresented pathways
(FDR � 0.05 for SPEED and no threshold for GATHER).
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Identification of signaling pathways downregulating genes
in high-risk AML patients with CEBPa mutations

Patients with AML harbor mutations in one or more
genes such as FLT3, NPM1, c-KIT and CEBPa (14).
Some mutations like internal tandem duplication in
FLT3 (FLT3-ITD) are associated with high-risk AML
patients and confer poor outcomes (14). Marcucci et al.
(14) conducted a study to search for prognostic markers in
cytogenetically normal AML patients with high-risk mo-
lecular features (FLT3-ITD and/or NPM1 wild-type) with
or without CEBPa mutations. The study identified 928
genes that were downregulated in CEBPa mutants as
compared to wild-type. We searched the downregulated
genes for enriched pathway annotations using GATHER
(9) and DAVID (12), using standard parameters (Bayes
factor �6 and corrected P-value � 0.05 for GATHER and
DAVID, respectively). No pathways were identified as
containing a significant number of members in the input
gene list, which suggests that the downregulated genes
have little effect on signaling pathways.
As previously noted, searching for membership enrich-

ment does not provide insight into the signaling pathways
that causally regulate a list of genes. We searched the same
list of downregulated genes using SPEED (default param-
eters with all pathways selected) and identified TNF-a as

the top-ranking pathway (Figure 4). Interestingly, the top
three pathways, TNF-a, IL-1 and TLR, form a single
cluster (Figure 3).

Predicting signaling pathways upstream of 24
transcription factors in THP-1 cells

In the recently published FANTOM4 study, the consor-
tium knocked down 52 transcription factors in the AML
cell line THP-1 (15) and measured changes in the tran-
scriptome. We reasoned that if the target genes of the
transcription factors overlap significantly with signature
genes of a signaling pathway, the pathway is likely to be
upstream of that transcription factor. We therefore used
this data to see whether SPEED can be used to systemat-
ically infer relationships between signaling pathways, tran-
scription factors and regulated genes. We extracted 52 lists
of differentially expressed genes corresponding to each
transcription factor knockdown (see ‘Materials and
Methods’ section for details) and ran SPEED to identify
upstream signaling pathways. SPEED identified at least
one signaling pathway upstream of 24 transcription
factors. Table 2 describes the top-ranking signaling
pathway for each transcription factor (see
Supplementary Tables S2 and S3 for all predictions).
While for some of the factors, the identified pathway is

TNFa
IL-1
TLR

MAPK_PI3K
TGFB

JAK-STAT
VEGF

PI3K_only
MAPK_only

H2O2
Wnt

0.0 7.4 14.9 22.3

Total genes in list: 800
Total genes in background: 21485

Pathway Genes in List Genes in Background FDRP-Value
TNFa
IL-1
TLR
MAPK_PI3K
TGFB
JAK-STAT
VEGF
PI3K_only
MAPK_only
H2OS
Wnt

52
31
28
21
23
20
13
13
41

9
7

259
141
181
118
142
114
56
67

559
60
83

1.09e-23
8.45e-16
1.63e-10
2.38e-09
2.81e-09
7.36e-09
1.03e-07
9.48e-07
3.12e-05
0.000354

0.035

4.91e-23
2e-15

2.88e-10
3.15e-09
3.37e-09
5.63e-09
9.19e-08
6.01e-07
1.85e-05
0.000269

0.0239

VEGF
JAK-STAT

TGFB

MAPK_PI3K

TLR
IL-1

PI3K_only
MAPK_only

H2O2
Wnt

TNFa

-log 10 (FDR) per pathway Signature genes in list
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known to be upstream (indicated in the table), for others
our results are predictions that may provide starting
points for experiments.

DISCUSSION

The analysis of gene lists obtained from high-throughput
experiments is a classical problem in bioinformatics. Most
approaches, however, search for overrepresented func-
tions, processes or pathways in the regulated gene group
and are thus only suitable to identify the affected signaling
pathways and not the pathways that caused the observed
changes in gene expression. With SPEED, we focus on
targets of signaling pathways by automatically deriving
signature genes, i.e. genes that are typically regulated in
a variety of cell types when the activity of a specific
pathway is altered. While existing web servers also
compare user gene lists with disease related or
single-experiment signatures derived from micro-array
data (16–21), SPEED, to our knowledge, is the only web
server that integrates heterogeneous micro-array data for
the purpose of identifying causal signaling pathway rela-
tionships. Additionally, SPEED signature gene lists can be
readily incorporated into established gene list comparison
tools like Gene Set Enrichment Analysis (22).

The number of pathways in SPEED is currently
limited by publicly available gene-expression data from
pathway perturbation experiments. Currently, SPEED
contains 11 signaling pathways. However, the presence
of pathway perturbation data in GEO suggests that
these 11 pathways are of special interest to researchers
and are thus the major signaling pathways responsible
for many phenotypes studied using gene-expression
technologies. Nevertheless, we expect that the number
of SPEED pathways will increase in the future as micro-
arrays continue to become more affordable.
Furthermore, we can readily incorporate quantitative
next-generation sequencing data as the field matures.
To facilitate user suggestions, we have included a form
on the web server for recommending new pathways or
data.

It is important to note that not all pathway perturbation
data should be included in SPEED. The reliability and
biological meaning of SPEED signatures crucially
depends on the nature of the experiments. For example,
we aimed at selecting experiments that measured gene

expression at early time points in order to reduce any
indirect or long-term effects. To further reduce indirect
effects, we selected experiments such that single
pathways were primarily perturbed. While some perturb-
ations may affect more than a single pathway, the repro-
ducibility over multiple experiments via the overlap
parameter can account for noise in the data as long as
the pathway is the primarily perturbed one. However, if
pathways are strongly coupled or converge on the same
transcription factors, such as the MAPK and PI3K/AKT
pathways (23), it is necessary to combine them into a
single pathway description. The SPEED pathway labeled
MAPK+PI3K is an example of combining coupled
pathways.
Validation using literature-derived gene lists indicated

that SPEED performs well in predicting upstream causal
pathway-perturbation events with a sensitivity of 78%.
However, it is possible that other cellular processes also
regulate the same genes as SPEED signaling pathways and
are the actual causal influences. Since the predicted signal-
ing pathways are derived based on correlations with gene
signatures, results should be considered as a starting point
for further investigation into the actual events leading to
the regulated set of genes.
The identification of signaling pathways that cause

observed changes in gene expression is important, since
aberrant signaling pathways have been implicated in
diseases such as diabetes (24) and several cancers
(25,26). We exemplify the utility of SPEED by identifying
upstream signaling pathways in two AML studies. For
high-risk AML patients with and without CEBPa muta-
tions, SPEED identified TNF-a signaling as the top can-
didate that caused the observed differences between the
two groups of patients. Given that high-risk AML
patients with CEBPa mutations have better clinical
outcomes, SPEED results may be taken as a starting
point to narrow down the search for the differences in
outcome by focusing on differences in TNF-a signaling.
Using micro-array data from knockdown of transcrip-

tion factors in an AML cell line, we aimed at identifying
links between transcription factors and upstream signaling
pathways. We searched for associations between signature
genes of signaling pathways and the targets of the tran-
scription factors. For 24 factors, we could establish such
associations, of which some are already known, whereas
others, like MAPK+PI3K to ZNF238, are novel

Table 2. Identification of signaling pathways upstream of transcription factor in THP-1 cells

Top-ranked pathway Transcription factor

MAPK+PI3K CEBPA (27), EGR1, (28), ETS2 (29), FLI1 (30), MLLT3, MYBL2 (31), NFE2L1, NFYA, NRASa, SP1 (32), ZNF238
JAK-STAT FOXJ3, FOXP1, GFI1 (33), MXI1, RUNX1 (34), STAT1 (35), YY1
TLR BMI1, CEBPG, GATA2 (36), IRF8 (37), SPI1 (38)
TGF-b MYB (39)

SPEED was run programatically on lists of differentially expressed genes following 52 transcription factor knockdowns. For 24 transcription factors,
the corresponding differentially expressed gene lists had an overrepresentation of at least one upstream signaling pathway. The top-ranking signaling
pathway with a minimum FDR of 0.05 is listed for each of the 24 transcription factors. Literature references for transcription factors known to be
associated with identified signaling pathways are noted.
aAlthough NRAS is not a transcription factor, the significant overlap with MAPK+PI3K signature genes serves as validation of the SPEED
algorithm because NRAS is upstream of both the MAPK and PI3K signaling pathways (25,26).
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predictions. Thus, SPEED facilitates completing the
picture of cell signaling events leading to differential ex-
pression of genes via a layer of transcription factors.
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