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Abstract

Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of
which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known
susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and
fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously
described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA
was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up
to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report ‘‘allelic
heterogeneity’’ at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease
and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to
T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control
subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.
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Introduction

Recent genome wide association (GWA) and candidate gene

studies across human autoimmune disease revealed a shared

genetic architecture [1]. These include PTPN22, associated with

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),

T1D, and Graves’ Disease (GD) [2], STAT4, associated with SLE

and RA [3], and the IL7R and KIAA0350 gene regions, which are

shared between T1D and MS [4–6]. The IL2RA gene region is

shared among T1D [7–9], MS [6,10], GD [11], SLE [12] and RA

[13,14]. This overlap of risk loci among autoimmune diseases

raises the possibilities that either (1) the same alleles, (2) non-

shared, disease-specific alleles, or perhaps (3) a combination of

shared and disease-specific alleles confer risk to each of the

individual diseases.

In the IL-2RA gene region, a GWA study for MS risk alleles

and a large-scale fine-mapping study in T1D provided compelling

evidence for a shared autoimmunity locus. A GWA study for MS

susceptibility genes performed by The International Multiple

Sclerosis Genetics Consortium [6] highlighted two SNPs in the IL-

2RA gene: rs12722489 (Odds Ratio (OR) for minor allele = 0.80;

95% confidence interval (c.i.) = 0.74–0.86, P = 2.9661028) and

rs2104286 (OR = 0.84; 95% c.i. = 0.79–0.90; P = 2.1661027).

These are in moderate linkage disequilibrium (LD) with each

other (r2 = 0.62; [6]). The MS association at IL2RA has recently

been replicated in over 600 multiplex families from Canada

(rs12722489, P = 0.009; OR = 0.81; 95% c.i. = 0.70–0.93) and

1,146 subjects with MS and 1,309 healthy controls from Australia

(rs2104286, P = 0.033; OR = 0.86; 95% c.i. = 0.75–0.99). In an

extension analysis [15] using data from 12,360 subjects previously
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reported and new data from 11,019 unrelated MS subjects, 13,616

controls and 2,811 trio families (8,433 individuals) from across

Europe, the association for MS risk at the two IL2RA variants

became unequivocal (rs12722489, OR = 0.81 (95% c.i. 0.77–0.85),

P = 2.24610215; relative risk, RR, = 0.81 (95% c.i. 0.72–0.91),

P = 5.4761024; rs2104286, OR = 0.80 (95% c.i. 0.77–0.84),

P = 2.38610223; RR = 0.78 (95% c.i. 0.71–0.86)). Furthermore,

this study demonstrated that rs2104286 is the primary association,

and thus accounts for the association signal observed at

rs12722489 [15].

For T1D susceptibility, two associations are known to exist at

IL2RA. In a large-scale fine-mapping study of over 300 SNPs in

the IL2RA-RBM17 region in our T1D collection, we localized the

association to T1D susceptibility to two groups of SNPs located in

the 59 region and intron 1 of IL2RA; any one or more SNPs from

each group could potentially be the causal variant(s) [8]. The

minor alleles at rs41295061 and rs11594656 were found to confer

protection to T1D in a case-control DNA collection of 5,312 T1D

subjects and 6,855 controls (rs41295061, OR, = 0.65, rs11594656,

OR = 0.87) and 2,612 families with T1D (rs41295061, RR = 0.70,

rs11594656, RR = 0.89) [8].

The IL-2/IL-2RA(CD25) pathway plays an essential role in

regulating immune responses [16]. IL-2 is central for both

expansion and apoptosis of T cells, while high concentrations of

soluble IL-2RA (sIL-2RA) are found in sera from healthy subjects

and are increased in subjects with autoimmune disease, inflam-

mation and infection [17–22]. Interestingly, we have previously

shown that T1D-associated variants correlate with reduced levels

of sIL-2RA [8].

Our knowledge of the IL-2R pathway and its central role in

regulating immune responses prompted us to examine whether

disease susceptibility at IL2RA to T1D and MS is due to shared or

distinct genetic variants. First, we demonstrate extensive allelic

heterogeneity between T1D and MS, including an allelic variant

that is associated with susceptibility to one autoimmune disease but

protection to the other. By extending previous genotype/phenotype

correlations at IL2RA, we provide insight into both common and

distinct functional mechanisms. Second, we extend our findings on

the correlation between sIL-2RA levels and IL2RA genotype [8].

Using regression analyses, we show that sIL-2RA levels are

determined by independent groups of SNPs, similar to what we

show for disease susceptibility. Taken together, we demonstrate

heterogeneity in the production of sIL-2RA in association with the

genetic heterogeneity reported here. The approach described in this

work will be instrumental for future investigations of complex causal

mechanisms involved in human disease.

Results/Discussion

The most associated IL2RA SNP for MS susceptibility is

rs2104286 located in intron 1 of IL2RA [6,15,23,24]. In the MS

case-control and family collections we have analyzed, rs2104286

has an OR of 0.85 (95% c.i. 0.79–0.92, P = 6.2761027) (Table 1,

Figure 1, Tables S1, S2, and S3). For T1D susceptibility, Lowe et al.

[8] reported independent associations with two groups of

indistinguishable SNPs, marked by rs41295061 (‘Group I’) and

rs11594656 (‘Group II’) located in the 59 region of the IL2RA gene.

Here, we test these two SNPs for MS susceptibility. Single locus tests

show no evidence of association between MS susceptibility and

Group I (rs41295061; P = 0.10, Table 1). We note that assuming an

effect size of rs41295061 as observed for T1D susceptibility (OR in

the order of 0.6), the power to detect this effect is 97% in the parent/

child trios and 100% in the MS case-control collection, given a

significance level of 0.05 (Table S4, S5).

Furthermore, Group II is associated with MS (rs11594656;

P = 7.6761024 (Table 1, Figure 1). Surprisingly, at rs11594656,

the minor allele A is associated with protection from T1D

(OR = 0.87), but susceptibility to MS (OR = 1.17, Table 1) in the

MS case-control collection. The lack of association in the parent/

child trio collection may be due to low statistical power, which is

only 31% for a variant with OR = 1.1 for this sample size and

P,0.05 (Table S6).

The lack of MS association to Group I SNPs and the opposing

effects associated with Group II SNPs indicates the presence of

allelic heterogeneity between T1D and MS at Group I and Group

II SNPs. In addition, we note that the MS-association observed at

rs11594656 presents an independent MS-association from

rs2104286 (Table S7). Taken together, rs2104286 marks an

independent association from Group II SNPs (marked by

rs11594656); we term this association ‘Group III’. Table S8

shows all IL2RA region SNPs in LD with rs2104286.

In order to explore the association of Group III SNPs to T1D

susceptibility, we performed forward logistic regression analysis of

the Group I, II and III SNPs in 6,425 T1D cases and 6,862

controls with complete genotyping data. The results are consistent

with our previous study [8]: Group I has the strongest association

with T1D (rs41295061, P = 6.43610225; Table 1). The first

selected SNP in the regression analysis is rs41295061 and the

second SNP to be added to the model including rs41295061 is

rs11594656 (P = 2.07610210, Table S9). Interestingly, Group III

also shows association with T1D (rs2104686, P = 1.27610213,

Table 1). When we add rs2104286 to the model that includes both

rs41295061 and rs11594656, this SNP adds to the model

(P = 1.3061025; Table S10). These data indicate that rs2104286

(marking Group III) is independently associated with T1D. At

rs2104286, it is the minor allele G of rs2104286 that confers

protection from both MS and T1D (Table 1, Figure 1). We note

here that the major allele at all T1D-associated loci discovered so

far at IL2RA encodes the susceptibility allele.

Defining the heterogeneous genetic basis at IL2RA is critical for

the success of functional studies aiming to connect the risk alleles

Author Summary

Multiple sclerosis (MS) and type 1 diabetes (T1D) are
common, organ-specific inflammatory disorders that
continue to increase in global prevalence. The processes
leading to both T1D and MS are genetically determined
and are thought to involve an autoimmune mechanism.
After decades of research into the genetic basis of both MS
and T1D, the Human Leukocyte Antigen Complex was the
only known susceptibility locus for both T1D and MS. The
sequencing of the human genome followed by the
generation of the haplotype map, a catalogue of common
genetic variation, has allowed the elucidation of allelic
variants that define disease risk. Our groups have
performed genome-wide association scans and candidate
gene studies in both T1D and MS; the final results have
identified loci outside the HLA harboring fully replicated
risk alleles. Here, we show that the IL-2RA gene encoding a
critical regulator of immune responses, the alpha chain of
the interleukin-2 receptor, harbors variants that differen-
tially confer risk to MS and T1D. In addition, several
independent variants correlate with levels of soluble
interleukin-2 receptor in the serum. This finding has critical
implications for the field of complex disease genetics as it
emphasizes the caution that must be taken when
interpreting results for such a complex region with
multiple susceptibility alleles.

IL2RA Variants in MS and T1D
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with immunophenotypes and autoimmune mechanisms controlled

by this locus. In a collection of T1D plasma samples, Lowe et al.

[8] reported a correlation between the T1D IL2RA susceptibility

alleles and decreased levels of sIL-2RA. This raised the possibility

of a link between T1D susceptibility and the levels of this

biomarker of peripheral inflammation [17]. Here, we investigate

the correlation of sIL-2RA and the newly identified Group III

SNPs, marked by rs2104286, which associates with both MS and

T1D. In a replication study of up to 69 healthy control samples

and 285 MS case samples we first confirm the previously observed

correlation between rs11594656 with sIL-2RA levels; however, the

low minor allele frequency of rs41295061 results in statistical

power that was too low to detect the association with sIL-2RA in

these sample collections (Table 2; Tables S11, S12). Most

interestingly, however, an additional correlation between genotype

and sIL-2RA level is observed at rs2104286 in our healthy control,

MS and T1D collections, where the minor allele associates with

decreased sIL-2RA levels. Given that the minor allele at

rs2104286 associates with protection from both MS and T1D,

this finding is unexpected because decreased sIL-2RA levels

correlate with T1D susceptibility alleles at rs41295061 and

rs11594656. This led us to investigate whether the three SNPs

were marking independent associations with sIL-2RA levels,

similarly to what we have observed for disease susceptibility at

Figure 1. Association of IL2RA SNPs with multiple sclerosis and type 1 diabetes. (A) Linkage disequilibrium (r2 values) between the SNPs in
this study. r2 values are based on 6,317 control subjects from Great Britain. (B) Disease associations (Odds Ratios of minor allele) with MS and T1D are
shown for the three SNPs in this study. (C) The SNPs that are perfect proxies (r2 = 1) for the SNPs studied are shown. These perfect proxy SNPs are
based on the analysis of 32 CEPH individuals. MS, multiple sclerosis. T1D, type 1 diabetes.
doi:10.1371/journal.pgen.1000322.g001
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IL2RA. Indeed, using regression analyses in the T1D case

collection, we show that the associations between sIL-2RA levels

and rs11594656, rs41295061 and rs2104286 (Table 2) are

independent from each other (Tables S14, S15).

Our combined genetic analyses of IL2RA variants in MS and T1D

result in the discovery of a third, novel group of associated SNPs with

T1D (Group III) and identifies a remarkable degree of allelic

heterogeneity at this autoimmune susceptibility locus. This demon-

strates the presence of (1) a T1D allele not associated with MS

(rs41295061 marking Group I), (2) an allele conferring susceptibility

to T1D but protection from MS (rs11594656 marking Group II) and

(3) an allele shared between T1D and MS (rs2104286 marking Group

III). The discovery of allelic heterogeneity between MS and T1D at

IL2RA may only be a small window into the complexities that the

IL2RA region harbors: GWA studies for both RA and SLE have also

observed associations at IL2RA (Figure S1, Table S16); the overlap of

associations among these and other diseases should be the focus of

future studies. While any of the tested SNPs may be in LD with the

true causal variant, the allelic heterogeneity we observe between MS

and T1D provides strong evidence for the necessity of performing

fine-mapping studies in each disease individually that associates with

IL2RA. Another example of such allelic heterogeneity has been

observed at the shared autoimmunity locus PTPN22 encoding a

lymphotyrosine phosphatase. While T1D, RA and CD all show

disease associations that map to the same R620W variant (rs2476601)

[25–27], it is the 620W variant that associates with risk to T1D and

RA, but protection from CD [28]. We note that R620W has not

shown association with MS susceptibility in the populations analyzed

thus far [29,30], but studies employing larger sample sizes will need to

further address this variant in MS.

Our analysis of how disease susceptibility correlates with sIL-

2RA levels suggest discordance between sIL-2RA level and disease

susceptibility and calls for studies addressing causality of sIL-2RA

in autoimmune disease. It is plausible that the three independent

genetic associations marked by Group I to III SNPs present

independent biological pathways that contribute to disease

susceptibility. These pathways may involve transcriptional regu-

lation of IL2RA, levels of surface expression of IL-2RA, in addition

to serum sIL-2RA levels. In light of multiple, independent

associations present at IL2RA, the genotype/phenotype correla-

tions observed here and previously [8] may require extension to

haplotype/phenotype correlations in sample sizes an order of

magnitude greater than are currently available. Nevertheless, these

data represent a comparative study between MS/T1D suscepti-

bility and production of sIL-2RA and show that multiple variants

contribute independently not only to disease susceptibility but also

to an individual’s sIL-2RA level.

Materials and Methods

Subjects
All case and control subjects were of self-reported white

ethnicity and were enrolled under study protocols approved by

the Institutional Review Board of each institution that contributed.

MS and T1D cases: Trio families and MS cases were collected

as described in our recent investigation of patients with MS [31].

Subjects with MS all meet McDonald criteria for MS. T1D

subjects were recruited as part of the Juvenile Diabetes Research

Foundation/Wellcome Trust Diabetes and Inflammation Labora-

tory’s British case collection (Genetic Resource Investigating

Diabetes) [8], which is a joint project between the University of

Cambridge Department of Pediatrics and the Department of

Medical Genetics at the Cambridge Institute for Medical

Research. Most cases were ,16 years of age at the time of

collection. All were under age 17 years at diagnosis, resided in

Great Britain, and were of European descent (self-reported).

Healthy Control Subjects: Healthy adult control subjects were

recruited through the Brigham and Women’s Hospital and the

University of California at San Francisco, as previously described

[6]. They consisted of unrelated individuals who were self-reported

Table 2. sIL-2RA concentrations in the sera of healthy controls and MS cases and plasma samples of T1D subjects.

SNP Healthy controls MS cases T1D cases

N
Mean levels [ng/ml]
(95% c.i.) P N

Mean levels [ng/ml]
(95% c.i.) P N

Mean levels [ng/ml]
(95% c.i.) P*

rs41295061

C/C 61 2.029 (1.843–2.214) 254 2.341 (2.248–2.433) 697 2.630 (2.555–2.705)

C/A 7 1.946 (1.505–2.387) 0.98 28 2.351 (1.985–2.716) 0.68 263 2.938 (2.806–3.066) 2.761028

A/A 1 2.328 3 3.656 (2.096–5.215) 18 1.886 (1.316–2.456)

rs11594656

T/T 40 1.770 (1.624–1.915) 163 2.222 (2.122–2.321) 821 2.486 (2.410–2.562)

T/A 26 2.430 (2.088–2.772) 1.361023 78 2.392 (2.223–2.562) 5.261024 283 3.062 (2.923–3.203) 3.8610219

A/A 3 1.910 (1.039–2.780) 21 2.972 (2.515–3.428) 153 3.039 (2.839–3.238)

rs2104286

A/A 44 2.205 (1.971–2.439) 163 2.399 (2.289–2.510) 619 2.811 (2.713–2.909)

A/G 22 1.805 (1.579–2.033) 4.661023 86 2.017 (2.029–2.302) 6.061022 462 2.574 (2.476–2.673) 1.061026

G/G 5 1.463 (0.669–2.257) 26 1.654 (1.084–2.224) 86 2.281 (2.030–2.532)

Analyses of log10-transformed sIL-2RA concentrations of healthy control, MS and T1D datasets. The analysis of sIL-2RA levels for rs41295061 and rs11594656 in up to
1,257 T1D cases presents a subset of a previously published data set [8]. Analyses were performed using a 2-degree of freedom test. We note that the healthy control
and MS case collection present random population samples, but that individuals from the T1D case collection were chosen based on their genotype at both rs41295061
and rs11594656 to achieve representation of all genotypes for both SNPs [8]. This selection allowed the study of the correlation between sIL-2RA levels and the
relatively rare minor allele at rs41295061, currently the most strongly associated T1D SNP (MAF = 0.09). N, number of samples.
*T1D analyses were adjusted for covariates associated with log10-transformed sIL-2RA concentrations (Table S13).
doi:10.1371/journal.pgen.1000322.t002
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as being of non-Hispanic white origin and having no history of

chronic inflammatory disease. In addition, we included data from

1,679 control individuals collected throughout the USA as part of

a GWAS of bipolar disorders sponsored by the NIMH (http://

zork.wustl.edu/nimh). The GB control subjects were obtained

from two collections, with 5,239 obtained from the British 1958

Birth Cohort, all born during one week in 1958 (National Child

Development Study) and the remaining 1,445 controls selected

from the UK Blood Services (UKBS) control collection [6]. All GB

control subjects were of white ethnicity.

Genotyping
SNPs were genotyped using the iPLEX Sequenom MassAR-

RAY platform, TaqMan (Applied Biosystems), or MIP technology

(Affymetrix) in accordance with the manufacturer’s instructions.

We analyzed only SNPs with high quality data (.95% genotype

call rate, Hardy-Weinberg equilibrium in controls or unaffected

parent P-value.0.001). MS collections were genotyped at the

Broad Institute: rs41295061 and rs11594656 were genotyped

using iPLEX Sequenom MassARRAY platform. The previously

published data for the MS cases and healthy controls from the

USA as well as the MS cases from GB were obtained from MIP

technology [6]. GB healthy controls and GB T1D case were

genotyped for rs2104286 using TaqMan genotyping at the

Diabetes and Inflammation Laboratory. The previously published

T1D data for rs41295061 and rs11594656 were obtained from

TaqMan and MIP technology [8].

sIL-2RA Measurements
ELISA measurement of sIL-2RA was performed according to the

manufacturer’s recommendations (BD Biosciences). Serum samples

were diluted 1:20 using PBS supplemented with 10% FBS.

Microtiter plates were read using a Biorad Benchmark microplate

reader. T1D plasma samples, healthy control and MS subject serum

samples were stored at 280uC prior to analyses. A log10

transformation of total sIL-2RA concentration was used to provide

a Normally distributed outcome. For T1D plasma samples, the

analysis was adjusted for independently associated covariates,

namely, age, duration of T1D and plasma storage duration. The

healthy control subject population consisted of 60.3% females,

29.7% males, with an average age of 43 (range = 20–68) and an

average sample storage duration of 2.1 years (range = 1.27–3.15).

The MS subject population consisted of 74.2% females, 25.8%

males, with an average age of 43 (range = 18–73) and an average

sample storage duration of 2.4 (range = 1.1–3.3).

Statistical Analysis
All statistical analyses were performed in either the Stata or R

statistical systems. Single locus tests, logistic regression analyses, 2-

d.f. locus-based tests were performed as described in [8]. Briefly,

logistic regression analyses for the GB case-control collection were

adjusted for 12 broad geographical regions within GB to minimize

any confounding due to variation in allele frequencies across the

country [32]. A multiplicative allelic effects model was assumed as

it was not significantly different from the full genotype model for

any of the SNPs (except for rs2104286 in the USA case-control

collection, for which a full model was chosen as it was significantly

different from the multiplicative model; P = 6.5761023). SNPs

were modeled as a numerical indicator variable coded 0, 1 or 2,

representing the number of occurrences of the minor allele. In the

forward logistic regression analysis, we start by assessing the

evidence against the most significant SNP being alone sufficient to

model the association [33]. No specific mode of inheritance for the

most associated SNP (A.a) or any additional SNP with significant

independent effects of disease susceptibility was assumed, so

genotype risks of A/A and A/a were modeled relative to the a/a

genotype. Combined P values for the USA and GB case-control

were stratified by population. Measures LD, D’ r2 were calculated

using the Haploview package [34]. Power calculations were

performed using the method described in [35].

Supporting Information

Figure S1 Comparison of IL2RA variants genotyped in T1D,

MS, RA and SLE. Minor allele associations with disease are

shown. Odds ratios and 95% confidence intervals of association

results are shown from the current study and previously published

studies [8,12,14].

Found at: doi:10.1371/journal.pgen.1000322.s001 (0.11 MB

DOC)

Table S1 Single-locus test P values for rs2104286, rs11594656

and rs41295061 in 2,115 MS cases and 6,902 healthy controls

with complete genotype information (analysis stratified by

population). MAF, minor allele frequency. OR, odds ratio.

Found at: doi:10.1371/journal.pgen.1000322.s002 (0.03 MB

DOC)

Table S2 Single-locus test P values for rs2104286, rs11594656

and rs41295061 in 1,183 MS cases and 582 healthy controls from

the USA with complete genotype information. MAF, minor allele

frequency. OR, odds ratio.

Found at: doi:10.1371/journal.pgen.1000322.s003 (0.03 MB

DOC)

Table S3 Single-locus test P values rs2104286, rs11594656 and

rs41295061 in 932 MS cases and 6,320 healthy controls from GB

with complete genotype information. MAF, minor allele frequen-

cy. OR, odds ratio.

Found at: doi:10.1371/journal.pgen.1000322.s004 (0.03 MB

DOC)

Table S4 Power calculations to detect variants with odds ratios

ranging from 1.1 to 1.4 and a minor allele frequency (MAF) of

0.10 using 1,250 parent/child trios. MAF, minor allele frequency.

OR, odds ratio.

Found at: doi:10.1371/journal.pgen.1000322.s005 (0.03 MB

DOC)

Table S5 Power calculations to detect the effect of variants with

odds ratios ranging from 1.1 to 1.3 and a minor allele frequency

(MAF) of 0.10 using 2,400 MS cases and 9,100 healthy controls.

MAF, minor allele frequency. OR, odds ratio.

Found at: doi:10.1371/journal.pgen.1000322.s006 (0.03 MB

DOC)

Table S6 Power calculations to detect the effect of variants with

odds ratios (OR) ranging from 1.1 to 1.4 and a minor allele

frequency (MAF) of 0.25 using 1,250 parent/child trios.

Found at: doi:10.1371/journal.pgen.1000322.s007 (0.03 MB

DOC)

Table S7 Regression analysis (a) adding rs11594656 and

rs41295061 to rs2104286 and reverse regression analysis (b)

adding rs2104286 to rs11594656 and rs41295061 for 2,115 MS

cases and 6,902 controls with complete genotype information

(analysis stratified by population). 1 Results for a model assuming

multiplicative effects and 2 for a model assuming genotype effects

(full model) are shown. OR, odds ratio; Pdiff = P value for tests

between multiplicative and full models.

Found at: doi:10.1371/journal.pgen.1000322.s008 (0.05 MB

DOC)
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Table S8 LD between rs2104286 and all common variants

located between 5.904,506 bp and 6.403,954 bp on chromosome

10. Positions are given using NCBI build 36. rs and in-house (DIL)

SNP numbers are shown. LD measures are calculated based on 32

CEPH individuals; genotyping data are obtained from HapMap

(www.hapmap.org) and [8].

Found at: doi:10.1371/journal.pgen.1000322.s009 (0.12 MB

DOC)

Table S9 Regression analysis adding rs2104286 and rs11594656

to rs41295061 and regression analysis adding rs41295061 to

rs2104286 and rs11594656 in 6,425 T1D cases and 6,862

controls. 1 Results for a model assuming multiplicative effects

and 2 for a model assuming genotype effects (full model) are

shown. OR, odds ratio; Pdiff = P value for tests between

multiplicative and full models.

Found at: doi:10.1371/journal.pgen.1000322.s010 (0.05 MB

DOC)

Table S10 Regression analysis (a) adding rs2104286 to

rs41295061 and rs11594656 and reverse regression analysis (b)

adding rs41295061 and rs11584656 to rs2104286 in 6,425 T1D

cases and 6,862 controls. 1 Results for a model assuming

multiplicative effects and 2 for a model assuming genotype effects

(full model) are shown. OR, odds ratio; Pdiff = P value for tests

between multiplicative and full models.

Found at: doi:10.1371/journal.pgen.1000322.s011 (0.06 MB

DOC)

Table S11 Power calculations to detect the effect of variants

with a minor allele frequency of 0.10 using 70 subjects. Power

calculations were performed using the method described in [35].

Found at: doi:10.1371/journal.pgen.1000322.s012 (0.04 MB

DOC)

Table S12 Power calculations to detect the effect of variants

with a minor allele frequency of 0.10 using 280 subjects. Power

calculations were performed using the method described in [35].

Found at: doi:10.1371/journal.pgen.1000322.s013 (0.04 MB

DOC)

Table S13 Covariates associated with sIL-2RA concentrations in

T1D analysis. We adjusted for the covariates year of birth, duration

of disease and duration of storage of the plasma sample prior to

processing, as these were all independently associated with log10-

transformed sIL-2RA concentrations. Covariates were selected

using forward and then reverse regression. The following covariates:

gender, broad geographical region and the age and month when the

plasma sample was collected all had P-values.0.05 when added to

the selected covariates. Year of birth, duration of disease and the

duration of storage of the plasma sample prior to processing were

independently associated (P.0.05) and together account for 10.3%

of the total variation with log10-transformed sIL-2RA concentration

with the direction and magnitude shown in the table below. *%CV

is the variation accountable by each covariate.

Found at: doi:10.1371/journal.pgen.1000322.s014 (0.04 MB

DOC)

Table S14 Regression analysis adding rs2104286 and rs41295061

to rs11594656 and the reverse regression analysis adding

rs11594656 to rs2104286 and rs41295061 in complete data for

1,167 T1D cases using log10-transformed sIL-2RA concentrations.

1 Results for a model assuming multiplicative effects and 2 for a

model assuming genotype effects (full model) are shown. Pdiff = P

value for tests between multiplicative and full models.

Found at: doi:10.1371/journal.pgen.1000322.s015 (0.06 MB

DOC)

Table S15 Regression analysis (a) adding rs2104286 to

rs11594656 and rs41295061 and reverse regression analysis (b)

adding rs11594656 to rs2104286 and rs41295061 and adding

rs41295061 to rs2104286 and rs11594656 in complete data for

1,167 T1D cases using log10-transformed sIL-2RA concentrations.

Found at: doi:10.1371/journal.pgen.1000322.s016 (0.07 MB

DOC)

Table S16 r2 values for the four SNPs associated with T1D, MS

or RA and the four SNPs studied in a GWA study for SLE

susceptibility loci [8,12,14]. r2 values are based on a maximum of

32 CEPH individuals. Allele frequencies are shown in the top

diagonal line.

Found at: doi:10.1371/journal.pgen.1000322.s017 (0.05 MB

DOC)
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