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Adiabatic Quantum Simulators

J.D. Biamonté;2 V. Bergholm? J.D. Whitfield! J. Fitzsimons:4 and A. Aspuru-Guzik[{
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20xford University Computing Laboratory, Oxford OX1 3QD, UK
3Department of Materials, University of Oxford, Oxford OXRH UK
“Institute for Quantum Computing, University of Waterloat&loo, Ontario, Canada

In his famous 1981 talk, Feynman proposed that unlike atassbmputers, which would presumably experi-
ence an exponential slowdown when simulating quantum phene, a universal quantum simulator would not.
An ideal quantum simulator would be controllable, and busling existing technology. In some cases, mov-
ing away from gate-model-based implementations of quamtmputing may offer a more feasible solution for
particular experimental implementations. Here we comsideadiabatic quantum simulator which simulates the
ground state properties of sparse Hamiltonians consisfioge- and two-local interaction terms, using sparse
Hamiltonians with at most three-local interactions. Prtips of such Hamiltonians can be well approximated
with Hamiltonians containing only two-local terms. Theigtgr holding the simulated ground state is brought
adiabatically into interaction with a probe qubit, follogvby a single diabatic gate operation on the probe which
then undergoes free evolution until measured. This allowesto recover e.g. the ground state energy of the
Hamiltonian being simulated. Given a ground state, thieswhcan be used to verify tt@MVA-complete
problemLocAL HAMILTONIAN , and is therefore likely more powerful than classical cotimmu

PACS numbers: 03.67.Ac, 03.67.Lx

I. INTRODUCTION rithms have been done for small systémi8§:.1’

Theoretical quantum simulation falls into two main

Computer simulation of quantum mechanical systemsategories: dynamic evolutionand static properties
is an indispensable tool in all physical sciences dealBoth categories rely heavily on the Trotter decompo-
ing with nanoscale phenomena. Except for specific angition to handle non-commuting terms in the Hamilto-
rare casés classical computers have not been able tohian when mimicking the unitary time propagator of the
efficiently simulate quantum systems, as in all knownsystem to be simulated. To approximate evolution un-
techniques at least one of the computational resourceder a Hamiltoniand = ¥ | H; consisting ofk non-
required to perform the simulation scales exponentiallycommuting but local term§H; }*_,, one applies the se-
with the size of the system being simulated. quence of unitary gatgg—*#:*/"}%_ atotal ofn times.

Numerous classical approximative methods, such aés the number of repetitions tends to infinity the ap-
density functional theory (DFJ and quantum Monte proximation error caused by the non-commutativity van-
Carlo (QM) have been developed to address variougshes and the approximation converges to the exact re-
aspects of the efficiency problem, but no known polyno-sulf. If each time slice requires a constant number
mially scaling methods are universally applicable. Eachof gates independent of the paramettér, then reduc-
suffers from particular deficiencies such as the fermionidng the approximation error by repeating the sequence
sign problem of QMC or the approximate exchange-n times can become expensive for high accuracy appli-
correlation functionals of DFT. Quantum computers oncations®.

the other hand, as conjectured by Feynfpanay be Constructing a practical method of quantum simula-
used to simulate other quantum mechanical systems efon is a significant challenge. Gate-model based sim-
ficiently. Feynman’s conjecture was subsequently exylation methods (with quantum error correction) can
panded leading to the rapidly growing area of studyprovide a scalable solution but are well out of reach
known asquantum simulatiotr?, of present-day experiments, except for small systems.
Quantum simulation is expected to be able to pro-On the other hand, some experimental implementations
duce classically unattainable results in feasible rungime seem to be well suited to operate as adiabatic processors.
using only a modest number of fault tolerant (or errorFor these setups, moving away from the gate model may
corrected) quantum bits. For example, calculating theoffer a less resource-intensive, and consequently a more
ground state energy of the water molecule to the levefeasible solution for simulating medium-sized quantum
of precision necessary for experimental predictieasd(  systems. This paper addresses the problem by present-
kcal/mol) — a problem barely solvable on current su-ing a hybrid model of quantum simulation, consisting of
percomputeré — would require roughly 128 coherent an adiabatically controlled simulation register coupled
quantum bits (before error correctiSnand on the or- to a single gate-model readout qubit. Our scheme can
der of billions of quantum gaté% To date, several ex- simulate the constant observables of arbitrary spin graph
perimental implementations of quantum simulation algo-Hamiltonians. It allows the measurement of the expec-
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tation value of any constarit-local observable using a such as a classical approximation to the ground state of

k+ 1-local measurement Hamiltonian. Fault tolerance ofthe simulated system. The simulator Hamiltonian is thus

the adiabatic model of quantum computing is a topic ofinitially given by

growing interest. Its robustness in the presence of noise

has been studied3&1®. We only consider the simulation Hy=Hs;®1p+1s® Hp. 2

protocol here, and don't study the adiabatic error cor-

rection that would be required for a practical large scale Adiabatic evolution:According to the adiabatic the-

implementation. orent®, a quantum system prepared in an energy eigen-
In most quantum computing architectures, the naturatate will remain near the corresponding instantaneous

interactions are two-local. However, under certain condi-€igenstate of the time-dependent Hamiltonian govern-

tionsk-local interactions can be well approximated usinging the evolution if there are no level crossings and the

techniques such as perturbative Hamiltonian gadg@és Hamiltonian varies slowly enough. By adjusting the

or average Hamiltonian meth@ds— this provides even ~simulator parameters, we adiabatically chadfyefrom

the possibility of utilizing gate model fault tolerance to s, to Hs r, the fully interacting Hamiltonian of the

protect the slower adiabatic evolution, an approach thagystem to be simulated.

seems promising. We note that refereoeonsidered Let us denote the ground state/df r as|so). At the

the mappmg of a given_qubit target Hamiltonian with end of a successful adiabatic evolutiéhis still in its

k-local interactions onto a simulator Hamiltonian with ground statép), andS is in (a good approximation to)

two-local interactions. the ground state of the simulated systésp). Hence the
Structure of this paper: We will continue by giving ~ Simulator is now in the ground stafg) = |so) @ |po) of

an overview of the simulator design, including initializa- its instantaneous Hamiltonian

tion, adiabatic evolution and measurement. The follow-

ing section investigates the performance of the method Hy=Hsr®1p+1s® Hp. ®3)

in simulating a small system in the presence of noise.

Finally, we will present our conclusions. AppendiX A

further details the specifics of our method (including the

numeric simulation of the technique).

The computational complexity of preparing ground
states of quantum systems has been stégi&d It is
possible to prepare a desired ground state efficiently pro-
vided that the gap between the ground and excited states
is sufficiently largé® (see alternative method#). This
. SIMULATOR OVERVIEW depends on the initial and final Hamiltonians and on the
adiabatic path taken. In general, finding the ground state
energy of a Hamiltonian, even when restricted to certain
imple models, is known to be complete for QMA, the
quantum analogue of the class##2 In fact there are
Ithsical systems such as spin glasses in nature which
may never settle into their ground states.

However, a host of realistic systems (e.g. insulators,
molecular systems) can on physical grounds be expected
to retain a large energy gap and should thus be amenable
to quantum simulation algorithms which rely on adia-

o batic state preparation.
Hr = Z Lo+ Z Ke. (1) MeasurementThe measurement procedure begins by
vev ek bringingS andP adiabatically into interaction. The sim-

The simulator consists of an adiabatically controlledulator Hamiltonian becomes
simulation registeS with HamiltonianH g, and a probe

We consider the simulation of systems represented b
finite collections of spins acted on by a time-independen
Hamiltonian described by a grapf = (V,FE) —
e.g. the Heisenberg and Ising models. Each graph ve
tex v € V corresponds to a spin acted on by a local
HamiltonianZ,,, and each edge € FE to a two-local in-
teractionk . between the involved vertices. The Hamil-
tonian Hy we wish to simulate is given by

registerP which will be acted on by gate operations and Hy = Hi + A® |p1){p1l, (4)
measured projectively. We will engineer the proBe Heop

such that it behaves as a controllable two-level system

with the orthonormal basi§|py), |p1)}. Without loss of ~ where the operatod corresponds to an observable of

generality, the probe Hamiltonian can be expressed athe simulated system that is a constant of motion, i.e. ,

Hp = §|p1){p1], whered is the spectral gap between the commutes withHs . Hence the total energy itself can

probe’s ground and first excited states. always be measured by choosiAg= Hg . Other such
Initialization: We will first set the simulation register observables depend on the particular system and often

HamiltonianH s to Hg ; and preparé& andP intheirre-  can be analytically constructed given the Hamiltonian.

spective ground states. The Hamiltonidp ; has a sim- Let us useimin to denote the lowest eigenvaluef If

ple ground state which can be (i) computed classicallyamin + § > 0, then|g) is also the ground state éf; and

and (ii) prepared experimentally in polynomial time — in the absence of noise the transitions from the ground



state are perfectly suppressed during the adiabatic evolu- 1. EFFECTSOF NOISE
tion (see AppendikA for proof). Assuming thatcan be
decomposed into a sum of two-local operators, the inter- Any large scale implementation of the proposed
action term//s p involves three-local interactions. These method would most likely require adiabatic error correc-
terms can be implemented using either Hamiltonian gadtjon31-33 However, for small systems this might not be
get techniques or average Hamiltonians (see Appéndix Aecessary indicating that our method is feasible for im-
for details). mediate experimental technologies. For this reason, we
After the adiabatic evolution, at time= 0, we apply  will examine how robust a small scale implementation of
a Hadamard gate to the measurement probe which putsur protocol would be.
it into a superposition of its two lowest states. Thisisno To assess the effects of noise on the simulation
longer an eigenstate f,, and the system will evolve as method, we performed a numerical simulation of the
. simplest nontrivial implementation of the hybrid simu-
_ —iwt lator, consisting of two simulator qubits and one probe
[ () = \/§|SO> @ (Ipo) + e [p1)), ©) qubit, with a randomly choseA . Each qubit was cou-
pled to its own bosonic heat bath with an Ohmic spectral
wherew := (ag + )/, andag := (so|A|so) is the  density using the Born-Markov approximat®n The
expectation value we wish to measure. We have thugubit-bath couplings were chosen such that the resulting
encoded the quantity,, a property of the ground state single-qubit decoherence timé$ and7’, are compati-

of Hg r, into the time dependence of the praBe ble with recent superconducting flux qubit experiments
After a timet, we again apply a Hadamard gate to theWith fully tunable couplings (see for examg®e The
probe, resulting in the state noise model is described further in Appendix A. The ob-
servabled was chosen to b& s 1, the simulated Hamil-
[(t)) = |so) @ (cos (wt/2) |po) + isin (wt/2) |p1)), tonian itself, which means that the ground state energy

(6) was bei.ng measured. o
and then measure the probe. The probability of finding it e Simulated measurements on 40 evenly distributed
in the statepo) is values of the time delay. At eacht; we performed 50 _
measurements, and averaged the results to get an esti-
mate of P, (¢;). An exponentially decaying scaled cosine
(14 cos(wt)) = cos® (wt/2).  (7)  function was then fitted to this set of data points to ob-
tain an estimate fow and thus forsg. The fit was done

If we have non-demolition measurements (see )t using the MATLABLSQNONLIN algorithm, guided only
By fixed order-of-magnitude initial guesses for the pa-

our disposal, then measuring the probe does not distur ¢ I
the state of the simulator which can be reused for anothd ?MEEr Values.

Py(t) =

DN | =

m easu re m e nt Ramsey measurement of the probe

One repeats the measurement with different value: T E ‘ T
of ¢ until sufficient statistics have been accumulated tc osf 7 t
reconstructw and henceag — this is reminiscent of o8t
Ramsey spectroscofyand hence should seem natural o7l
to experimentalists. In essence, we have performed Ki os|
taev’s phase estimation algoritBPnusing the interaction 05

HamiltonianH s p instead of a controlled unitary.

If the ground state subspacef@k, r is degenerate and
overlaps more than one eigenspacelpbr the simula-
tion registerS has excitations to higher energy states at
the beginning of the measurement phase, the probabilit
of finding the probe in the statg,) is given by a super- T T TR )
position of harmonic modes. For example, for a thermal-
ized state with inverse temperatufewe obtain

0.4

0.3

0.2

0.1r

FIG. 1. Measurement procedure under Markovian noise. The
continuous curve represents the probability of finding ttudp

1 1 - i
_ 1 —BEx in the statgpo), the circles averaged measurement results and
Ro(t) 2 (1 + Do e—BE= %: € cos(wr.it) |, the dotted line a least squares fit to thémy = h - 25 MHz is

Y (8) the energy scale of the Hamiltonians involved.

where the first summation index runs over the energy
eigenstates and the second over the eigenstatdsitf The results of the simulation are presented in Eig. 1.
which energy has valugy, andwy; = (ar,; + 9)/A. The noise, together with the slight nonadiabaticity of the
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evolution, cause excitations out of the ground state whicHorm gate-model simulators in some small-to-medium-
result in a signal consisting of multiple harmonic modes.sized problems. A simple experimental implementation
However, the ground state mode still dominates and witlcould be feasible with present-day technology. In order
a realistic level of noise and relatively modest statisticsto simulate a system of qubits with a two-local Hamil-
we are able to reconstruetto a relative precision of bet- tonian described by the gragh ideally our scheme re-
ter than0.01. This includes both the uncertainty due to quires one probe qubit for the readout andimulation
finite statistics, and the errors introduced by the environqubits. Additionally, if Hamiltonian gadgets are used to
ment through decoherence and the Lamb-Stark shift. implement three-local interactions, one ancilla qubit is
In an experimental implementation there may also berequired for each two-local term in the simulated observ-
other noise sources not considered here related to thable (represented by an edge in the corresponding graph).
measurement process itself, as well as systematic (hardia practice the number of ancillas may be slightly higher
ware) errors in the quantum processor (qubits, couplerg more involved types of gadgets are used to implement
etc.). Nonetheless, our results indicate that a simpléhe three-local interactions. The total number of qubits
experimental implementation of the simulation schemerequired thus scales é§n) for sparse graphs ari@(n?)
could be possible using existing hardware. For futurefor maximally connected ones.
implementations, there exist fault tolerant construction

for adiabatic quantum computifg'=33:36
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Appendix A: Supporting material

Here we provide supplementary information on the adiabliEntum simulation method. In addition, we have
created a MATLAB-based numerical simulation of a simpldanse of the hybrid simulator subject to Markovian
noise. The full source code of the simulation is availableeguest.

1. Gadgets

One possible way to effect the 3-local Hamiltonians we regjin our construction is to approximate them with
2-local interactions.

a. Perturbative gadget

This Gadget Hamiltoniarconstruction was proposed?hand has since been used and extended by #¥érs
These papers contain further background details includatgtion.

We label the working qubit§—3. The effective 3-local interaction is well approximated gqubits 1, 2 and 3
(within €) in a low energy subspace — constructed by adding a penattyiltdéamian to an ancillary (mediator) qubit.
The mediator qubitn doubles the size of the state space and the penalty Hanailt@piits the Hilbert space into low
and high energy subspaces, separated by an energ¥ ¢apich is inversely proportional to a polynomial éin— in
our case reduced th > ¢~3). The details of the gadget we develop for use in this worlotal



We will apply a HamiltonianH,, to the mediator qubit: as well as a Hamiltonial’” to qubits1-3 andm. The
HamiltonianH, + V has a ground state thatdsclose to the desired operatdrl; @ Az ® As ® [0)(0].

H, := A1), (A1)
2/3
V(J,A)) :=y + AY20)(0], — AY3A; @ As + 7% (Ag — A1) ® 0, + JA3 @ (1 — A?B|1)(1], ) (A2)

wherey is some Hamiltonian already acting on qubits 3 as well as a possible larger Hilbert space. Note the gadget
above assumed? =1, Vi = 1,2, 3.

The so calleaself-energy expansio@3) under appropriate conditions is known to provide aesedpproximation
to the low-lying eigenspace of an operator. To verify that ifamiltonianH, + V' gives the desired approximation,
one relies on expansion of the self energyt order (here the higher order terms give rise to effectiveraxtions
greater than second order):

S () — Vi) + <o|vl1i<1A|V|o> N (0|V|1)(<Zl|_V|Al)>2<1|V|O> Lo (|X|34) | A3)

where the operator is written in thHg0), |1)} basis ofm. One considers the randge| < 2|J| + € and notes that
Z_(2) — JA; ® Ay ® A3]| = O(e) and applies the Gadget Theor®m

Before concluding this section, we note that care must bentakhen adiabatically evolving gadgets. Referéhce
contains a proof that the linear path Hamiltonian is uniakfsr adiabatic quantum computation. Universality (and
hence %non-exponentially contracting gap) remains whelottality of the construction is reduced using perturleativ
gadgets-.

b. Exact diagonal gadget

Modern experimental implementations of adiabatic quantomputers typically are limited to only being able to
couple spins with one type of coupling (ead. ® o.). In such a case, the standard gadget Hamiltonian approiéich w
not work as these gadgets require multiple types of couisleve will now provide a new type of gadget Hamiltonian
which creates an effective, exatt ® o, ® o, interaction in the low energy subspace using just o, and local
terms.

Let us first assume that we have access to a penalty funéfigm (., z1,x2), wherez; € {0,1} such that
Hanp = 0 any timez,, = 2122 and is greater than some large constarfor all z,. # x;x2. By solving a system of
constraints, such a penalty function is possible to writa asm of two-local terms:

Hanp (%4, 21, 22) = A8y + 2122 — 22,21 — 22,22). (A4)

The Boolean variablegr; } can be represented on qubits using the correspondeneer; = |1)(1|,. Furthermore,
we haver® = 1 — 2|1)(1| as usual. This gives us

H = crfagag =1- 2571 - 25&2 - 25&3 + 45&12&2 + 45&12&3 + 4572573 - 85715725&3
=1 - 252‘1 — 252‘2 — 2@3 + 4@1@2 + 4,@1.”2‘3 + 4.”2'2.”2‘3 - 8.%*@3 + HAND ($*,$1,1‘2), (A5)

where [(AB) holds in the low energy subspace after the inttbdn of an ancilla qubit. By writing the Boolean
operators in terms of Pauli matrices, we obtain

3 A A A A
H= (ZA - 1) 1+<2 - 5) Ui-f—(z - 1) (of + 0§)+0§—50f (o} +0§)—20§0§+(Z + 1) oi05+(0f + 03)03.

We have hence provided a method which allows one to creatpu# k-local couplings using one- and two-local
couplings. This method opens the door to simulate a widegegaf Hamiltonians using current and next generation
guantum computing technology. In addition, it should alsavp useful in future investigations into the fault tolecan

of the proposed protocol, in a way similar to the comparigé® i



2. Average Hamiltonian Method

An alternate method of generating the special Hamiltonimaesequire is to make use of the time average of a
series of simpler generating Hamiltonidhdt has long been known that by regularly switching betwesetaf fixed
Hamiltonians{ H; }, it is possible to approximate time evolution under any otti@miltonianH, provided thatH is
contained within the algebra generated{dy;}. This fact lies at the heart of both average Hamiltonian themd
geometric control theory. Over the years many methods heee developed for making the approximations accurate
to high order, however here we will focus only on approximasi correct to first order.

In order to construct an average Hamiltonian we will makeafsefirst order approximation to the Baker-Campbell-
Hausdorff formula:

log(ee®)~ A+ B + %[A, B]. (AB)

From this we obtain formulae for approximating the expoiatiof both the sum and the Lie bracket dfand B to
first order.

eATB x efeB, (A7)

A,B] A_B —Ae—B. (A8)

6[ ~eee

These equations can be related to time evolution under sameltdnians,H;, by replacing A and B with operators
of the formiH,t/h. Clearly by applying these rules recursively, it is possiiol generate any Hamiltonian in the Lie
algebra generated by the initial set of static Hamiltoniae note that the combination of any pairwise entangling
Hamiltonian, such as an Ising Hamiltonian together withahle local Z and X fields is sufficient to generate the full
Lie algebrasu(2?) for an N qubit system, and so can be used to approximate anaaytiHamiltonian.

Although the time-varying Hamiltonian means that the systives not have a ground state in the normal sense,
the average energy of the system is minimized when the sysstemithin O(t) of the ground state of the target
average Hamiltonian. As a result of this, if the time scalesiwitching between Hamiltonians is small compared to
the time scale for the adiabatic evolution of the systemstrstem will behave as if it was experiencing the average
Hamiltonian.

3. Noise model

The noise model used in our MATLAB simulation consists of pagate bosonic heat bath coupled to each of the
gubits. The baths have Ohmic spectral densities,

J(w) = F*wO(w)O(w. — w), (A9)

where the cutoftu. was chosen to be above every transition frequency in themsystnd are assumed to be uncorre-
lated. Each bath is coupled to its qubit through an intevaatiperator of the form

D = A(cos(a)o, + sin(a)oy). (A10)

Using the Born-Markov approximation we obtain an evolutamuation which is of the Lindblad fodh Denoting
the level splitting of a qubit byrA, we obtain the following uncoupled single-qubit decoherstimes:

Ty = A?sin®(a)2mA coth(BhA/2), (A11)

TQ’1 = %Tfl + A\ cos?(a)dn/(hB), (A12)

wheres = k,%T GivenTy, T», T'andA, we can solve the bath coupling parameteasida separately for each qubit,
and then use the same noise model in the fully interacting.cage values used for the parameters are presented
in Table[]. The single-qubit decoherence tin¥\8sand T, were chosen to be compatible with recent coupled-qubit
experiments with fully tunable couplings suck%asThe bath temperaturg and the energy scalev, of Hr, the
Hamiltonian to be simulated, were likewise chosen to matettémperatures and coupling strengths found in contem-
porary superconducting qubit experiments. To simulateufeanturing uncertainties, the actual values of Theand

T, parameters for the individual qubits were drawn from a Gianssistribution with a small standard deviation.



TABLE I. Noise model parameters

Ty ~ N(1.0,0.1) us
Ty ~ N(1.3,0.1) us
Tyt =it 4 del

T 20 mK
We 20wo
wo 27 - 25 MHz

4. Measurement

The pre-measurement system Hamiltonian is
Hi=Hsr®1+1® Hp. (A13)

The operatoréis andHp can be expanded in terms of their eigenvalues and eigessisitey the (possibly degener-
ate) spectral decomposition

Hg = Zsk|5k,j><8k7j|’ So<s1< ... (A14)
kj

and correspondingly foH p.
Let the states of systentsand P begin in their ground state subspaces, the full normalizgd|g) of the simulator
belonging to the ground state subspace of the non-intagaki@miltonianH; :

|9) € span{[so,x) @ [po,i) }k,1- (Al15)
S and P are brought adiabatically into interaction with each otiére Hamiltonian becomes
H,=H+A® (1p —1II,,), (Al6)
— ————
Hsp

where the operatod corresponds to an observable of the simulated system thanhabes withH g, and

HPO = Z |p0,m><p0.,m| (A17)

is the projector to the ground state subspacH pf Becaused and Hg commute, they have shared eigenstates:

Hs|sk,j) = sklsk,j), (A18)
Alsk,j) = ak,jlsk,5)- (A19)

a. Ground state lemma
We will now show that Hamiltonian&/; andH> have the same ground state subspace givemthat py —po > 0
whereamin is A’s lowest eigenvalue.

Lemmal. LetH; and H, be the finite dimensional Hamiltonians defined previousfAT3) and (A16), andamin +
p1 —po > 0. Now, iff H1|[x) = A|x), where) is the smallest eigenvalue éf;, then Ha|x) = k|*), wherex is the
smallest eigenvalue df.

Proof. Firstly, we have

(9|H1lg) = s0 + po,
(9|Hsplg) = 0.



Now, expanding an arbitrary normalized stite in the eigenbases dfs and Hp,
16) =D Coyilsei) Py.i)»
zyij
we get
(SIHLIB) = D leayis| (50 + py)
zyLj

>3 leayis|* (50 + po) = s0 + po,

Ty

(@|Hsp|d) = (@] Y coyijAlsei)(Lp — Thy, ) |py,;)

Ty

= (B1) ) Coyijailse.i)|py.s)

zij y>1

= leayij*aa

zij y>1

> aminzz |Czyij|2 >0 if amin > 0.

zi) y>1

Hence, if A’s lowest eigenvaluamin > 0 then|g) is the ground state off, = H; + Hgp as well. If A is not

nonnegative, we can perform the transformation

HIS = Hgs + aminl,
H}—’ == HP - amian07
A/ =A-— amin]_.
This leavesH, invariant, but makes!’ nonnegative. As long &@min + p1 — po > 0 then{|po )} still span the
ground state subspace Hf, and the above analysis remains valid. O

b. Ground state degeneracy and excitations

If the ground state subspace B 1 is degenerate and overlaps more than one eigenspateosfthe simulation
registerS has excitations to higher energy states at the beginnirtgeaftieasurement phase, we need a more involved
analysis of the measurement procedure. Assume the praimeasnt-phase state of the simulator is given by

0
pPo = <Z Cklmn|8k,z><5m,n|> ® (g L a) . (A20)
klmn

All three terms inH; commute given thgtds, A] = 0. Hence

edH2 — (eqHs ® ]]_P)(]]_S ® equ)(eqHsp)

= (e @ ) (e @ (Lp — 1L, ) + Ls @ Iy, ). (A21)
As a result of the measurement procedure right before thmbtteasurement the state is given by

p1(t) = Hpe "H2/"Hp poHpe 2/ " H p

i - o 1 1 eit(;/h(2a _ 1) )
— Hpe itHsp/h Ckimn€ it(sk—sm)/R| g Smanl | ® = ) eitHsp /Mg
i k;n ; ) smal 2 \e /M2 — 1) 1 P
- _ 1 1 eithv”(Qa— 1)
— Zt(s sm)/h 1
= klz (Cklmne k |Sk,l><3m,n|) & 2HP <e““’kvl(2a _ 1) e*it(ak,l*am,n)/fl HP7 (A22)
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wherewy,; = (ar,; + §)/h andHp is the Hadamard gate operating on the probe. Projectingriteo the ground
state subspace, we dé, p1(¢)I1,, =

) 1 )
= 3 (cutmne™ O M) (sl ) @ G0 e 42 cos(um nf) (20~ 1)[0)0] - (A23)

klmn

Thus the probability of finding the probe in the ground statespace is given by a superposition of harmonic modes:

Py(t) = Tr(IL,, p1 ()ID,,) = %(1 + ) crin cos(wrt)(2a — 1)). (A24)
kl

*
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