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In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experi-
ence an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not.
An ideal quantum simulator would be controllable, and builtusing existing technology. In some cases, mov-
ing away from gate-model-based implementations of quantumcomputing may offer a more feasible solution for
particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the
ground state properties of sparse Hamiltonians consistingof one- and two-local interaction terms, using sparse
Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated
with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought
adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which
then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the
Hamiltonian being simulated. Given a ground state, this scheme can be used to verify theQMA-complete
problemLOCAL HAMILTONIAN , and is therefore likely more powerful than classical computing.

PACS numbers: 03.67.Ac, 03.67.Lx

I. INTRODUCTION

Computer simulation of quantum mechanical systems
is an indispensable tool in all physical sciences deal-
ing with nanoscale phenomena. Except for specific and
rare cases1, classical computers have not been able to
efficiently simulate quantum systems, as in all known
techniques at least one of the computational resources
required to perform the simulation scales exponentially
with the size of the system being simulated.

Numerous classical approximative methods, such as
density functional theory (DFT2) and quantum Monte
Carlo (QMC3) have been developed to address various
aspects of the efficiency problem, but no known polyno-
mially scaling methods are universally applicable. Each
suffers from particular deficiencies such as the fermionic
sign problem of QMC or the approximate exchange-
correlation functionals of DFT. Quantum computers on
the other hand, as conjectured by Feynman4, may be
used to simulate other quantum mechanical systems ef-
ficiently. Feynman’s conjecture was subsequently ex-
panded leading to the rapidly growing area of study
known asquantum simulation5–13.

Quantum simulation is expected to be able to pro-
duce classically unattainable results in feasible run times,
using only a modest number of fault tolerant (or error
corrected) quantum bits. For example, calculating the
ground state energy of the water molecule to the level
of precision necessary for experimental predictions (≈ 1
kcal/mol) — a problem barely solvable on current su-
percomputers14 — would require roughly 128 coherent
quantum bits (before error correction)9, and on the or-
der of billions of quantum gates15. To date, several ex-
perimental implementations of quantum simulation algo-

rithms have been done for small systems11,16,17.

Theoretical quantum simulation falls into two main
categories: dynamic evolutionand static properties.
Both categories rely heavily on the Trotter decompo-
sition to handle non-commuting terms in the Hamilto-
nian when mimicking the unitary time propagator of the
system to be simulated. To approximate evolution un-
der a HamiltonianH =

∑k
i=1Hi consisting ofk non-

commuting but local terms{Hi}ki=1, one applies the se-
quence of unitary gates{e−iHit/n}ki=1 a total ofn times.
As the number of repetitionsn tends to infinity the ap-
proximation error caused by the non-commutativity van-
ishes and the approximation converges to the exact re-
sult5. If each time slice requires a constant number
of gates independent of the parametert/n, then reduc-
ing the approximation error by repeating the sequence
n times can become expensive for high accuracy appli-
cations15.

Constructing a practical method of quantum simula-
tion is a significant challenge. Gate-model based sim-
ulation methods (with quantum error correction) can
provide a scalable solution but are well out of reach
of present-day experiments, except for small systems.
On the other hand, some experimental implementations
seem to be well suited to operate as adiabatic processors.
For these setups, moving away from the gate model may
offer a less resource-intensive, and consequently a more
feasible solution for simulating medium-sized quantum
systems. This paper addresses the problem by present-
ing a hybrid model of quantum simulation, consisting of
an adiabatically controlled simulation register coupled
to a single gate-model readout qubit. Our scheme can
simulate the constant observables of arbitrary spin graph
Hamiltonians. It allows the measurement of the expec-
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tation value of any constantk-local observable using a
k+1-local measurement Hamiltonian. Fault tolerance of
the adiabatic model of quantum computing is a topic of
growing interest. Its robustness in the presence of noise
has been studied in18,19. We only consider the simulation
protocol here, and don’t study the adiabatic error cor-
rection that would be required for a practical large scale
implementation.

In most quantum computing architectures, the natural
interactions are two-local. However, under certain condi-
tionsk-local interactions can be well approximated using
techniques such as perturbative Hamiltonian gadgets20–23

or average Hamiltonian methods24 — this provides even
the possibility of utilizing gate model fault tolerance to
protect the slower adiabatic evolution, an approach that
seems promising. We note that reference25 considered
the mapping of a givenn-qubit target Hamiltonian with
k-local interactions onto a simulator Hamiltonian with
two-local interactions.

Structure of this paper: We will continue by giving
an overview of the simulator design, including initializa-
tion, adiabatic evolution and measurement. The follow-
ing section investigates the performance of the method
in simulating a small system in the presence of noise.
Finally, we will present our conclusions. Appendix A
further details the specifics of our method (including the
numeric simulation of the technique).

II. SIMULATOR OVERVIEW

We consider the simulation of systems represented by
finite collections of spins acted on by a time-independent
Hamiltonian described by a graphG = (V,E) —
e.g. the Heisenberg and Ising models. Each graph ver-
tex v ∈ V corresponds to a spin acted on by a local
HamiltonianLv, and each edgee ∈ E to a two-local in-
teractionKe between the involved vertices. The Hamil-
tonianHT we wish to simulate is given by

HT =
∑

v∈V

Lv +
∑

e∈E

Ke. (1)

The simulator consists of an adiabatically controlled
simulation registerS with HamiltonianHS , and a probe
registerP which will be acted on by gate operations and
measured projectively. We will engineer the probeP
such that it behaves as a controllable two-level system
with the orthonormal basis{|p0〉, |p1〉}. Without loss of
generality, the probe Hamiltonian can be expressed as
HP = δ|p1〉〈p1|, whereδ is the spectral gap between the
probe’s ground and first excited states.

Initialization: We will first set the simulation register
HamiltonianHS toHS,I and prepareS andP in their re-
spective ground states. The HamiltonianHS,I has a sim-
ple ground state which can be (i) computed classically
and (ii) prepared experimentally in polynomial time —

such as a classical approximation to the ground state of
the simulated system. The simulator Hamiltonian is thus
initially given by

H0 = HS,I ⊗ 11P + 11S ⊗HP . (2)

Adiabatic evolution:According to the adiabatic the-
orem26, a quantum system prepared in an energy eigen-
state will remain near the corresponding instantaneous
eigenstate of the time-dependent Hamiltonian govern-
ing the evolution if there are no level crossings and the
Hamiltonian varies slowly enough. By adjusting the
simulator parameters, we adiabatically changeHS from
HS,I to HS,T , the fully interacting Hamiltonian of the
system to be simulated.

Let us denote the ground state ofHS,T as|s0〉. At the
end of a successful adiabatic evolutionP is still in its
ground state|p0〉, andS is in (a good approximation to)
the ground state of the simulated system,|s0〉. Hence the
simulator is now in the ground state|g〉 = |s0〉 ⊗ |p0〉 of
its instantaneous Hamiltonian

H1 = HS,T ⊗ 11P + 11S ⊗HP . (3)

The computational complexity of preparing ground
states of quantum systems has been studied20–22. It is
possible to prepare a desired ground state efficiently pro-
vided that the gap between the ground and excited states
is sufficiently large26 (see alternative methods in27). This
depends on the initial and final Hamiltonians and on the
adiabatic path taken. In general, finding the ground state
energy of a Hamiltonian, even when restricted to certain
simple models, is known to be complete for QMA, the
quantum analogue of the class NP20–22. In fact there are
physical systems such as spin glasses in nature which
may never settle into their ground states.

However, a host of realistic systems (e.g. insulators,
molecular systems) can on physical grounds be expected
to retain a large energy gap and should thus be amenable
to quantum simulation algorithms which rely on adia-
batic state preparation.

Measurement:The measurement procedure begins by
bringingS andP adiabatically into interaction. The sim-
ulator Hamiltonian becomes

H2 = H1 +A⊗ |p1〉〈p1|
︸ ︷︷ ︸

HSP

, (4)

where the operatorA corresponds to an observable of
the simulated system that is a constant of motion, i.e. ,
commutes withHS,T . Hence the total energy itself can
always be measured by choosingA = HS,T . Other such
observables depend on the particular system and often
can be analytically constructed given the Hamiltonian.

Let us useamin to denote the lowest eigenvalue ofA. If
amin + δ > 0, then|g〉 is also the ground state ofH2 and
in the absence of noise the transitions from the ground
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state are perfectly suppressed during the adiabatic evolu-
tion (see Appendix A for proof). Assuming thatA can be
decomposed into a sum of two-local operators, the inter-
action termHSP involves three-local interactions. These
terms can be implemented using either Hamiltonian gad-
get techniques or average Hamiltonians (see Appendix A
for details).

After the adiabatic evolution, at timet = 0, we apply
a Hadamard gate to the measurement probe which puts
it into a superposition of its two lowest states. This is no
longer an eigenstate ofH2, and the system will evolve as

|ψ(t)〉 = 1√
2
|s0〉 ⊗ (|p0〉+ e−iωt|p1〉), (5)

whereω := (a0 + δ)/~, anda0 := 〈s0|A|s0〉 is the
expectation value we wish to measure. We have thus
encoded the quantitya0, a property of the ground state
of HS,T , into the time dependence of the probeP .

After a timet, we again apply a Hadamard gate to the
probe, resulting in the state

|ψ(t)〉 = |s0〉 ⊗ (cos (ωt/2) |p0〉+ i sin (ωt/2) |p1〉) ,
(6)

and then measure the probe. The probability of finding it
in the state|p0〉 is

P0(t) =
1

2
(1 + cos(ωt)) = cos2 (ωt/2) . (7)

If we have non-demolition measurements (see e.g.28) at
our disposal, then measuring the probe does not disturb
the state of the simulator which can be reused for another
measurement.

One repeats the measurement with different values
of t until sufficient statistics have been accumulated to
reconstructω and hencea0 — this is reminiscent of
Ramsey spectroscopy29 and hence should seem natural
to experimentalists. In essence, we have performed Ki-
taev’s phase estimation algorithm30, using the interaction
HamiltonianHSP instead of a controlled unitary.

If the ground state subspace ofHS,T is degenerate and
overlaps more than one eigenspace ofA, or the simula-
tion registerS has excitations to higher energy states at
the beginning of the measurement phase, the probability
of finding the probe in the state|p0〉 is given by a super-
position of harmonic modes. For example, for a thermal-
ized state with inverse temperatureβ, we obtain

P0(t) =
1

2

(

1 +
1

∑

xy e
−βEx

∑

kl

e−βEk cos(ωk,lt)

)

,

(8)
where the first summation index runs over the energy
eigenstates and the second over the eigenstates ofA in
which energy has valueEk, andωk,l = (ak,l + δ)/~.

III. EFFECTS OF NOISE

Any large scale implementation of the proposed
method would most likely require adiabatic error correc-
tion31–33. However, for small systems this might not be
necessary indicating that our method is feasible for im-
mediate experimental technologies. For this reason, we
will examine how robust a small scale implementation of
our protocol would be.

To assess the effects of noise on the simulation
method, we performed a numerical simulation of the
simplest nontrivial implementation of the hybrid simu-
lator, consisting of two simulator qubits and one probe
qubit, with a randomly chosenHT . Each qubit was cou-
pled to its own bosonic heat bath with an Ohmic spectral
density using the Born-Markov approximation34. The
qubit-bath couplings were chosen such that the resulting
single-qubit decoherence timesT1 andT2 are compati-
ble with recent superconducting flux qubit experiments
with fully tunable couplings (see for example35). The
noise model is described further in Appendix A. The ob-
servableA was chosen to beHS,T , the simulated Hamil-
tonian itself, which means that the ground state energy
was being measured.

We simulated measurements on 40 evenly distributed
values of the time delayt. At eachti we performed 50
measurements, and averaged the results to get an esti-
mate ofP0(ti). An exponentially decaying scaled cosine
function was then fitted to this set of data points to ob-
tain an estimate forω and thus fors0. The fit was done
using the MATLABLSQNONLIN algorithm, guided only
by fixed order-of-magnitude initial guesses for the pa-
rameter values.
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FIG. 1. Measurement procedure under Markovian noise. The
continuous curve represents the probability of finding the probe
in the state|p0〉, the circles averaged measurement results and
the dotted line a least squares fit to them.~ω0 = h · 25 MHz is
the energy scale of the Hamiltonians involved.

The results of the simulation are presented in Fig. 1.
The noise, together with the slight nonadiabaticity of the



4

evolution, cause excitations out of the ground state which
result in a signal consisting of multiple harmonic modes.
However, the ground state mode still dominates and with
a realistic level of noise and relatively modest statistics
we are able to reconstructω to a relative precision of bet-
ter than0.01. This includes both the uncertainty due to
finite statistics, and the errors introduced by the environ-
ment through decoherence and the Lamb-Stark shift.

In an experimental implementation there may also be
other noise sources not considered here related to the
measurement process itself, as well as systematic (hard-
ware) errors in the quantum processor (qubits, couplers
etc.). Nonetheless, our results indicate that a simple
experimental implementation of the simulation scheme
could be possible using existing hardware. For future
implementations, there exist fault tolerant constructions
for adiabatic quantum computing27,31–33,36.

IV. CONCLUSION

The presented simulation scheme differs significantly
from existing gate-model methods. Instead of a series
of coherent gate operations, it uses an adiabatic control
sequence which may require less complicated control
hardware. At the measurement stage we require single-
qubit gate operations and measurements, but only on the
probe qubit. These operations should be relatively simple
to implement compared to a full Trotter decomposition
of the simulated Hamiltonian. Without error correction
our method has limited scalability, but it might outper-

form gate-model simulators in some small-to-medium-
sized problems. A simple experimental implementation
could be feasible with present-day technology. In order
to simulate a system ofn qubits with a two-local Hamil-
tonian described by the graphG, ideally our scheme re-
quires one probe qubit for the readout andn simulation
qubits. Additionally, if Hamiltonian gadgets are used to
implement three-local interactions, one ancilla qubit is
required for each two-local term in the simulated observ-
able (represented by an edge in the corresponding graph).
In practice the number of ancillas may be slightly higher
if more involved types of gadgets are used to implement
the three-local interactions. The total number of qubits
required thus scales asO(n) for sparse graphs andO(n2)
for maximally connected ones.
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Appendix A: Supporting material

Here we provide supplementary information on the adiabaticquantum simulation method. In addition, we have
created a MATLAB-based numerical simulation of a simple instance of the hybrid simulator subject to Markovian
noise. The full source code of the simulation is available onrequest.

1. Gadgets

One possible way to effect the 3-local Hamiltonians we require in our construction is to approximate them with
2-local interactions.

a. Perturbative gadget

This Gadget Hamiltonianconstruction was proposed in20 and has since been used and extended by others21,22.
These papers contain further background details includingnotation.

We label the working qubits1–3. The effective 3-local interaction is well approximated onqubits 1, 2 and 3
(within ǫ) in a low energy subspace — constructed by adding a penalty Hamiltonian to an ancillary (mediator) qubitm.
The mediator qubitm doubles the size of the state space and the penalty Hamiltonian splits the Hilbert space into low
and high energy subspaces, separated by an energy gap∆ (which is inversely proportional to a polynomial inǫ — in
our case reduced to∆ ≥ ǫ−3). The details of the gadget we develop for use in this work follow.
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We will apply a HamiltonianHp to the mediator qubitm as well as a HamiltonianV to qubits1–3 andm. The
HamiltonianHp + V has a ground state that isǫ-close to the desired operatorJA1 ⊗A2 ⊗A3 ⊗ |0〉〈0|.

Hp := ∆|1〉〈1|m (A1)

V (J,∆(ε)) := y +∆1/3|0〉〈0|m −∆1/3A1 ⊗A2 +
∆2/3

√
2
(A2 −A1)⊗ σx + JA3 ⊗ (1−∆2/3|1〉〈1|m) (A2)

wherey is some Hamiltonian already acting on qubits1− 3 as well as a possible larger Hilbert space. Note the gadget
above assumesA2

i = 1, ∀i = 1, 2, 3.
The so calledself-energy expansion(A3) under appropriate conditions is known to provide a series approximation

to the low-lying eigenspace of an operator. To verify that the HamiltonianHp + V gives the desired approximation,
one relies on expansion of the self energy to4th order (here the higher order terms give rise to effective interactions
greater than second order):

Σ−(z) = 〈0|V |0〉+ 〈0|V |1〉〈1|V |0〉
z −∆

+
〈0|V |1〉〈1|V |1〉〈1|V |0〉

(z −∆)2
+O

(‖V ‖4
∆3

)

, (A3)

where the operator is written in the{|0〉, |1〉} basis ofm. One considers the range|z| ≤ 2|J | + ǫ and notes that
‖Σ−(z)− JA1 ⊗A2 ⊗A3‖ = O(ǫ) and applies the Gadget Theorem20.

Before concluding this section, we note that care must be taken when adiabatically evolving gadgets. Reference37

contains a proof that the linear path Hamiltonian is universal for adiabatic quantum computation. Universality (and
hence a non-exponentially contracting gap) remains when the locality of the construction is reduced using perturbative
gadgets21.

b. Exact diagonal gadget

Modern experimental implementations of adiabatic quantumcomputers typically are limited to only being able to
couple spins with one type of coupling (e.g.σz ⊗ σz). In such a case, the standard gadget Hamiltonian approach will
not work as these gadgets require multiple types of couplers23. We will now provide a new type of gadget Hamiltonian
which creates an effective, exactσz ⊗ σz ⊗ σz interaction in the low energy subspace using justσz ⊗ σz and local
terms.

Let us first assume that we have access to a penalty functionHAND (x∗, x1, x2), wherexi ∈ {0, 1} such that
HAND = 0 any timex∗ = x1x2 and is greater than some large constant∆ for all x∗ 6= x1x2. By solving a system of
constraints, such a penalty function is possible to write asa sum of two-local terms:

HAND (x∗, x1, x2) = ∆(3x∗ + x1x2 − 2x∗x1 − 2x∗x2). (A4)

The Boolean variables{xi} can be represented on qubits using the correspondencexi ≃ x̂i = |1〉〈1|i. Furthermore,
we haveσz = 1− 2|1〉〈1| as usual. This gives us

H = σz
1σ

z
2σ

z
3 = 1− 2x̂1 − 2x̂2 − 2x̂3 + 4x̂1x̂2 + 4x̂1x̂3 + 4x̂2x̂3 − 8x̂1x̂2x̂3

=̂1− 2x̂1 − 2x̂2 − 2x̂3 + 4x̂1x̂2 + 4x̂1x̂3 + 4x̂2x̂3 − 8x̂∗x̂3 +HAND (x∗, x1, x2), (A5)

where (A5) holds in the low energy subspace after the introduction of an ancilla qubit∗. By writing the Boolean
operators in terms of Pauli matrices, we obtain

H =

(
3

4
∆− 1

)

1+

(

2− ∆

2

)

σz
∗+

(
∆

4
− 1

)

(σz
1 + σz

2)+σ
z
3−

∆

2
σz
∗ (σ

z
1 + σz

2)−2σz
∗σ

z
3+

(
∆

4
+ 1

)

σz
1σ

z
2+(σz

1 + σz
2)σ

z
3 .

We have hence provided a method which allows one to create diagonal k-local couplings using one- and two-local
couplings. This method opens the door to simulate a wider range of Hamiltonians using current and next generation
quantum computing technology. In addition, it should also prove useful in future investigations into the fault tolerance
of the proposed protocol, in a way similar to the comparison in10.
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2. Average Hamiltonian Method

An alternate method of generating the special Hamiltonianswe require is to make use of the time average of a
series of simpler generating Hamiltonians24. It has long been known that by regularly switching between aset of fixed
Hamiltonians{Hi}, it is possible to approximate time evolution under any other HamiltonianH , provided thatH is
contained within the algebra generated by{Hi}. This fact lies at the heart of both average Hamiltonian theory and
geometric control theory. Over the years many methods have been developed for making the approximations accurate
to high order, however here we will focus only on approximations correct to first order.

In order to construct an average Hamiltonian we will make useof a first order approximation to the Baker-Campbell-
Hausdorff formula:

log(eAeB) ≈ A+B +
1

2
[A,B]. (A6)

From this we obtain formulae for approximating the exponential of both the sum and the Lie bracket ofA andB to
first order.

eA+B ≈ eAeB, (A7)

e[A,B] ≈ eAeBe−Ae−B. (A8)

These equations can be related to time evolution under some Hamiltonians,Hi, by replacing A and B with operators
of the formiHit/~. Clearly by applying these rules recursively, it is possible to generate any Hamiltonian in the Lie
algebra generated by the initial set of static Hamiltonians. We note that the combination of any pairwise entangling
Hamiltonian, such as an Ising Hamiltonian together with tunable local Z and X fields is sufficient to generate the full
Lie algebrasu(2N ) for an N qubit system, and so can be used to approximate an arbitrary Hamiltonian.

Although the time-varying Hamiltonian means that the system does not have a ground state in the normal sense,
the average energy of the system is minimized when the systemis within O(t) of the ground state of the target
average Hamiltonian. As a result of this, if the time scale for switching between Hamiltonians is small compared to
the time scale for the adiabatic evolution of the system, thesystem will behave as if it was experiencing the average
Hamiltonian.

3. Noise model

The noise model used in our MATLAB simulation consists of a separate bosonic heat bath coupled to each of the
qubits. The baths have Ohmic spectral densities,

J(ω) = ~
2ωΘ(ω)Θ(ωc − ω), (A9)

where the cutoffωc was chosen to be above every transition frequency in the system, and are assumed to be uncorre-
lated. Each bath is coupled to its qubit through an interaction operator of the form

D = λ(cos(α)σz + sin(α)σx). (A10)

Using the Born-Markov approximation we obtain an evolutionequation which is of the Lindblad form34. Denoting
the level splitting of a qubit by~∆, we obtain the following uncoupled single-qubit decoherence times:

T−1
1 = λ2 sin2(α)2π∆coth(β~∆/2), (A11)

T−1
2 =

1

2
T−1
1 + λ2 cos2(α)4π/(~β), (A12)

whereβ = 1
kBT . GivenT1, T2, T and∆, we can solve the bath coupling parametersλ andα separately for each qubit,

and then use the same noise model in the fully interacting case. The values used for the parameters are presented
in Table I. The single-qubit decoherence timesT1 andT2 were chosen to be compatible with recent coupled-qubit
experiments with fully tunable couplings such as35. The bath temperatureT and the energy scale~ω0 of HT , the
Hamiltonian to be simulated, were likewise chosen to match the temperatures and coupling strengths found in contem-
porary superconducting qubit experiments. To simulate manufacturing uncertainties, the actual values of theT1 and
Tφ parameters for the individual qubits were drawn from a Gaussian distribution with a small standard deviation.
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TABLE I. Noise model parameters

T1 ∼ N(1.0, 0.1) µs

Tφ ∼ N(1.3, 0.1) µs

T−1

2
= 1

2
T−1

1
+ T−1

φ

T 20 mK

ωc 20ω0

ω0 2π · 25 MHz

4. Measurement

The pre-measurement system Hamiltonian is

H1 = HS,T ⊗ 11+ 11⊗HP . (A13)

The operatorsHS andHP can be expanded in terms of their eigenvalues and eigenstates using the (possibly degener-
ate) spectral decomposition

HS =
∑

kj

sk|sk,j〉〈sk,j |, s0 < s1 < . . . (A14)

and correspondingly forHP .
Let the states of systemsS andP begin in their ground state subspaces, the full normalized state|g〉 of the simulator

belonging to the ground state subspace of the non-interacting HamiltonianH1:

|g〉 ∈ span{|s0,k〉 ⊗ |p0,l〉}k,l. (A15)

S andP are brought adiabatically into interaction with each other. The Hamiltonian becomes

H2 = H1 +A⊗ (11P −Πp0
)

︸ ︷︷ ︸

HSP

, (A16)

where the operatorA corresponds to an observable of the simulated system that commutes withHS , and

Πp0
=
∑

m

|p0,m〉〈p0,m| (A17)

is the projector to the ground state subspace ofHP . BecauseA andHS commute, they have shared eigenstates:

HS |sk,j〉 = sk|sk,j〉, (A18)

A|sk,j〉 = ak,j |sk,j〉. (A19)

a. Ground state lemma

We will now show that HamiltoniansH1 andH2 have the same ground state subspace given thatamin+p1−p0 > 0
whereamin isA’s lowest eigenvalue.

Lemma 1. LetH1 andH2 be the finite dimensional Hamiltonians defined previously in(A13) and(A16), andamin +
p1 − p0 > 0. Now, iffH1|⋆〉 = λ|⋆〉, whereλ is the smallest eigenvalue ofH1, thenH2|⋆〉 = κ|⋆〉, whereκ is the
smallest eigenvalue ofH2.

Proof. Firstly, we have

〈g|H1|g〉 = s0 + p0,

〈g|HSP |g〉 = 0.
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Now, expanding an arbitrary normalized state|φ〉 in the eigenbases ofHS andHP ,

|φ〉 =
∑

xyij

cxyij|sx,i〉|py,j〉,

we get

〈φ|H1|φ〉 =
∑

xyij

|cxyij|2(sx + py)

≥
∑

xyij

|cxyij|2(s0 + p0) = s0 + p0,

〈φ|HSP |φ〉 = 〈φ|
∑

xyij

cxyijA|sx,i〉(11P −Πp0
)|py,j〉

= 〈φ|
∑

xij

∑

y≥1

cxyijax,i|sx,i〉|py,j〉

=
∑

xij

∑

y≥1

|cxyij |2ax,i

≥ amin

∑

xij

∑

y≥1

|cxyij |2 ≥ 0 if amin ≥ 0.

Hence, ifA’s lowest eigenvalueamin ≥ 0 then |g〉 is the ground state ofH2 = H1 + HSP as well. IfA is not
nonnegative, we can perform the transformation

H ′
S = HS + amin1,

H ′
P = HP − aminΠp0

,

A′ = A− amin1.

This leavesH2 invariant, but makesA′ nonnegative. As long asamin + p1 − p0 > 0 then{|p0,m〉}m still span the
ground state subspace ofH ′

P and the above analysis remains valid.

b. Ground state degeneracy and excitations

If the ground state subspace ofHS,T is degenerate and overlaps more than one eigenspace ofA, or the simulation
registerS has excitations to higher energy states at the beginning of the measurement phase, we need a more involved
analysis of the measurement procedure. Assume the pre-measurement-phase state of the simulator is given by

ρ0 =

(
∑

klmn

cklmn|sk,l〉〈sm,n|
)

⊗
(

a 0

0 1− a

)

. (A20)

All three terms inH2 commute given that[HS , A] = 0. Hence

eqH2 = (eqHS ⊗ 11P )(11S ⊗ eqHP )(eqHSP )

= (eqHS ⊗ eqHP )(eqA ⊗ (11P −Πp0
) + 11S ⊗Πp0

). (A21)

As a result of the measurement procedure right before the actual measurement the state is given by

ρ1(t) = HP e
−itH2/~HPρ0HP e

itH2/~HP

= HP e
−itHSP /~

(
∑

klmn

cklmne
−it(sk−sm)/~|sk,l〉〈sm,n|

)

⊗ 1

2

(

1 eitδ/~(2a− 1)

e−itδ/~(2a− 1) 1

)

eitHSP /~
HP

=
∑

klmn

(

cklmne
−it(sk−sm)/~|sk,l〉〈sm,n|

)

⊗ 1

2
HP

(

1 eitωm,n(2a− 1)

e−itωk,l(2a− 1) e−it(ak,l−am,n)/~

)

HP , (A22)
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whereωk,l = (ak,l + δ)/~ andHP is the Hadamard gate operating on the probe. Projecting the probe to the ground
state subspace, we getΠp0

ρ1(t)Πp0
=

=
∑

klmn

(

cklmne
−it(sk−sm)/~|sk,l〉〈sm,n|

)

⊗ 1

4
(1 + e−it(ak,l−am,n)/~ + 2 cos(ωm,nt)(2a− 1))|0〉〈0| (A23)

Thus the probability of finding the probe in the ground state subspace is given by a superposition of harmonic modes:

P0(t) = Tr(Πp0
ρ1(t)Πp0

) =
1

2
(1 +

∑

kl

cklkl cos(ωk,lt)(2a− 1)). (A24)
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