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Environment-Assisted Quantum Walks in Photosynthetic Energy Transfer

Masoud Mohseni,1 Patrick Rebentrost,1 Seth Lloyd,2 and Alán Aspuru-Guzik1

1Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138
2Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139

(Dated: May 23, 2008)

Energy transfer within photosynthetic systems can display quantum effects such as delocalized excitonic
transport. Recently, direct evidence of long-lived coherence has been experimentally demonstrated for the dy-
namics of the Fenna-Matthews-Olson (FMO) protein complex [Engel et al., Nature 446, 782 (2007)]. However,
the relevance of quantum dynamical processes to the exciton transfer efficiency is to a large extent unknown.
Here, we develop a theoretical framework for studying the role of quantum interference effects in energy trans-
fer dynamics of molecular arrays interacting with a thermal bath within the Lindblad formalism. To this end,
we generalize continuous-time quantum walks to non-unitary and temperature-dependent dynamics in Liou-
ville space derived from a microscopic Hamiltonian. Different physical effects of coherence and decoherence
processes are explored via a universal measure for the energy transfer efficiency and its susceptibility. In par-
ticular, we demonstrate that for the FMO complex an effective interplay between free Hamiltonian and thermal
fluctuations in the environment leads to a substantial increase in energy transfer efficiency from about 70% to
99%.

PACS numbers: 03.65.Yz, 05.60.Gg, 71.35.-y, 03.67.-a

I. INTRODUCTION

Photosynthesis is the natural mechanism for the capture and
storage of energy from sunlight by living organisms. Exci-
tation energy is absorbed by pigments in the photosynthetic
antennae and subsequently transferred to a reaction center
where an electron-transfer event initiates the process of bio-
chemical energy conversion. In certain bacterial systems and
higher plants light harvesting efficiency is indeed above 99%
[1]. Although this phenomenon has been studied for decades
[2, 3, 4, 5], a full description of the underlying mechanism
leading to this remarkably high efficiency is yet not available.
It has already been demonstrated experimentally that the ex-
citation energy transfer within chromophoric arrays of photo-
synthetic complexes could involve quantum coherence under
certain physical conditions. In particular, this phenomenon
has been observed via electronic spectroscopy of delocalized
exciton states of light-harvesting complexes [2, 4] and the
Fenna-Matthews-Olson (FMO) protein complex [5].

The energy transfer mechanism in multichromophoric ar-
rays can often be described by a semiclassical Förster theory
which involves incoherent hopping of the excitations between
energy levels [6, 7, 8]. In this method, the Coulomb inter-
action among different sites is treated perturbatively to cal-
culate the probability of exciton hopping. The more general
approach for including coherent effects is given by Redfield
theory which provides a microscopic description of excitation
dynamics via a master equation in a reduced space of excitons
in the weak phonon coupling and Born-Markov approxima-
tion [9]. An equivalent approach to Redfield theory for calcu-
lating the diffusion constant of excitons was proposed by Sil-
bey and Grover [10]. Alternative methods to explore coherent
and incoherent exciton transfer were also introduced using a
stochastic model (Haken and Strobl [12]), and a generalized
master equation formalism (Kenkre and Knox [13, 14]).

In order to study the nonlinear spectroscopy of molecular
aggregates, Zhang et al. [15] introduced a modified Red-

field equation for statically disordered exciton systems which
treats the diagonal elements of exciton-bath coupling in a non-
perturbative fashion. This approach was later used to model
energy transfer dynamics in light-harvesting complexes of
higher plants [4]. Yang and Fleming provide a comprehen-
sive comparison of Förster, standard Redfield, and modified
Redfield theories in Ref. [16]. A generalized theory for mul-
tichromophoric Förster resonance energy transfer which in-
cludes coherence effects within donors and acceptors, while
considering donor-acceptor interactions according to the stan-
dard Förster model was also proposed by Jang, Newton, and
Silbey [17, 18, 19]. In another study, the effects of geom-
etry and trapping on energy transfer were examined in sim-
ple chromophoric arrays within the Haken-Strobl model [20].
Recently, direct evidence of quantum coherence in the dy-
namics of energy transfer has been observed experimentally
in the FMO complex [21] and also in the reaction center of
purple bacteria [22]. These previous studies led us to further
explore and characterize quantum interference, decoherence
effects, and their interplay within the dynamics of photosyn-
thetic complexes as potential mechanisms for the enhance-
ment of the energy transfer efficiency. Here, we develop a
quantum walk approach, based on a quantum trajectory pic-
ture in the Born-Markov and secular approximations, as a nat-
ural framework for incorporating quantum dynamical effects
in energy transfer, as opposed to a classical random walk pic-
ture that can effectively describe the excitation hopping in the
Förster model.

The concept of quantum walks originated by Feynman
works in connection with diffusion in quantum dynamics, in
particular to model the dynamics of a quantum particle on
a lattice [23], and also path integral formalism for discretiz-
ing the Dirac equation [24]. Continuous-time quantum walks
were also used by Klafter and Silbey to find hopping time dis-
tribution functions in exciton dynamics [25]. The formal dis-
crete and continuous-time approaches to quantum walks were
developed later, e.g., see Refs. [26, 27], including some in-
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vestigations of model decoherence effects [28]. Purely uni-
tary continuous-time approaches to quantum walks were em-
ployed in the context of quantum information science, where
they yield potential exponential speedups over classical al-
gorithms [29, 30]. The quantum walks are of particular in-
terest as potential computational tools [31], and applications
to quantum cellular automata [32], quantum optical systems
[33], and coherent excitation transport [34].

In this work, we develop a theoretical framework for study-
ing the role of quantum coherence in energy transfer dynam-
ics in molecular systems within the Born-Markov approxima-
tion in the Lindblad formalism. Our approach is essentially
equivalent to a Redfield theory with the secular approxima-
tion. However, our approach naturally leads to quantum tra-
jectory picture in a fixed-excitation reduced Hilbert space that
can be described by the concept of directed quantum walks
in Liouville space. Quantum walks in actual physical sys-
tems differ from idealized models of quantum walks in sev-
eral significant ways. First, Hamiltonians of physical systems
typically possess energy mismatches between sites that lead
to Anderson localization [36]. Second, actual quantum walks
are subject to relatively high levels of environment-induced
noise and decoherence. The key result of this paper is that
the interplay between the coherent dynamics of the system
and the incoherent action of the environment can lead to sig-
nificantly greater transport efficiency than coherent dynamics
on its own. We introduce the concepts of energy transfer effi-
ciency (ETE) and its susceptibility and robustness and explore
the dynamical effects of coherent evolution and environmental
effects at various temperatures from a microscopic Hamilto-
nian formalism. For the FMO protein, we show that a Grover-
type quantum search [37] cannot explain the high ETE of this
complex. However, we demonstrate that a directed quantum
walk approach can be used for studying the energy transfer
efficiency as a function of temperature, reorganization energy,
trapping rate, and quantum jumps from sites to sites. More-
over, we explore similar dependencies for the susceptibilities
of ETE with respect to basic processes contributing to the
FMO dynamics including the free Hamiltonian, the phonon
bath jumps, dephasing in the energy basis, transfer to the ac-
ceptor, and exciton decay. We demonstrate that the efficiency
increases from 70% for a purely unitary quantum walk to 99%
in the presence of environment-assisted quantum jumps.

This article is organized as follows. In Sec. II, we develop a
Lindblad master equation in the site basis for studying energy
transfer of multichromophoric channel systems in the Born-
Markov approximation. In Sec. III, we introduce a quan-
tum walks formalism in Liouville space to describe the energy
transfer pathways. The definition of ETE is presented in Sec.
IV. In Sec. V, we apply our theoretical approach for studying
the dynamics of FMO complex. Some concluding remarks are
given in Sec. VI.

II. LINDBLAD MASTER EQUATION FOR
MULTICHROMOPHORIC SYSTEMS

The Fenna-Matthews-Olson protein acts as an energy trans-
fer channel in the biological process of photosynthesis con-
necting the base plate of the antenna complex to the reaction
center of green sulfur bacteria. This type of functional role
of an interacting multichromophoric system can be formal-
ized by the Hamiltonian for an consisting of ND donors, NC
channel chromophores, and NA acceptors as:

HS =
N∑
m=1

εma
†
mam +

N∑
n<m

Vmn(a†man + a†nam). (1)

The a†m and am are the creation and annihilation operators
for an electron-hole pair (exciton) at chromophore m and εm
are the site energies (not including the BChl a transition fre-
quency 12500cm−1) and N = ND + NC + NA. The Vmn
are Coulomb couplings of the transition densities of the chro-
mophores, often taken to be of the Förster dipole-dipole form,
Vmn ∼ 1

R3
mn

(µm · µn − 3
R2

mn
(µm ·Rmn)(µm ·Rmn)), with

Rmn the distance between site m and n and µm the transi-
tion dipole moment of chromophore m [2]. Note that in sys-
tems where chromophores are closely packed (e.g., the FMO
complex of green sulfur bacteria [21]) or the site energies are
(almost) resonant (e.g., the LH1 ring of purple bacteria [2]),
εm can be of the same order of magnitude as Vmn. Such cases
require a non-perturbative treatment of the coupling. In this
work, the Vmn include all intra-donor/channel/acceptor cou-
plings and inter-chromophoric couplings for donor-channel
and channel-acceptor. Here, we ignore the Vmn for inter
donor-acceptor coupling due to large spatial separation, as for
example chlorosomes and reaction center in the green sulfur
bacteria [38]. Thus, excitation transfer from donor to acceptor
always occurs via the channel. We also assume that for donor-
channel and channel-acceptor coherent couplings are weak,
i.e., Vmn � εm for couplings into and out of the channel.
This implies that the energy transfer to and from the channel
can be described by semi-classical Förster theory.

In this work, we study the role of the FMO protein acting as
an energy transfer channel in green sulfur bacteria. Thus, we
focus on the dynamics of a chromophoric channel of NC sites
with denoting the free Hamiltonian in the reduced channel
Hilbert space as HC . The Hamiltonian HC is formally equiv-
alent to the Hamiltonian of Eq. (1) with N = NC . We con-
sider only the zero and single excitation manifolds given by
the states |0〉 and |m〉 = a†m|0〉. We denote the eigenbasis of
the HamiltonianHC as exciton basis |M〉 =

∑
m cm(M)|m〉,

where HC |M〉 = εM |M〉. Here, the effect of the donor is
modeled by a static initialization of the channel. To account
for the channel-acceptor coupling we introduce an effective
non-Hermitian channel-acceptor Hamiltonian, −iHC→A =
−i
∑NC

m=1 κma
†
mam, which can be obtained by a projector-

operator method analogous to Ref. [39], with the acceptor
transfer rates κm = 2π

∫
dεa |Vma|2 δ(εm− εa)D(εa), where

D(εa) denotes the density of states for the acceptor.
In general, the multichromophoric channel is subject to a

thermal phonon bath and a radiation field. The interaction
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Hamiltonian can be written as HI = Hp + Hr, with the
phonon coupling

Hp =
NC∑
m,n

qpmna
†
man, (2)

where qpmn is an operator acting in the bath Hilbert space.
The exciton-phonon and exciton-thermal photon interaction
Hr describes the coupling of the bath operators qrm to the tran-
sition dipole moment of each chromophore, i.e.,

Hr =
NC∑
m

qrm(a†m + am). (3)

The phonon terms qpmna
†
man induce relaxation and dephasing

without changing the number of excitations. In other words,
the state of the multichromophoric system remains in a fixed
excitation manifold under the evolution generated byHp. The
Hr Hamiltonian leads to transitions between exciton mani-
folds. Generally, one can also consider diagonal static disor-
der in the Hamiltonian as: Hd =

∑NC

m=1 δεma
†
mam. This dis-

order can be generated for example by variation in the struc-
ture of the protein environment in the time scales which are
usually much slower than excitation transfer time scale of∼ 1
ps [42].

The dynamics of the system to second order in the system-
bath coupling, can be described by the Lindblad master equa-
tion in the Born-Markov and secular approximations as [40]:

∂ρ(t)
∂t

= − i
~

[HC +HLS , ρ(t)] +Lp(ρ(t)) +Lr(ρ(t)). (4)

where HLS are the Lamb shifts due to phonon and photon-
bath coupling. The respective Lindblad superoperatorsLp and
Lr are given by (k = p, r):

Lk(ρ) =
∑
ω

∑
m,n

γkmn(ω)[Akm(ω)ρAk†n (ω) (5)

−1
2
Akm(ω)Ak†n (ω)ρ− 1

2
ρAkm(ω)Ak†n (ω)],

For Hp the corresponding Lindblad generators are Apm(ω) =∑
Ω−Ω′=ω c

∗
m(MΩ)cm(MΩ′)|MΩ〉〈MΩ′ |, where the summa-

tion is over all transitions with frequency ω in the single-
excitation manifold and |MΩ〉 denotes the exciton with fre-
quency Ω. The secular approximation is valid when the rele-
vant time scale of the intrinsic evolution of the system, 1

|ω−ω′| ,
is much faster than the relaxation time scale. For example, an
energy difference of 200cm−1 between excitons, e.g., in the
FMO complex, translates to a time scale of 0.16 ps which is
much smaller than the typical 1 ps time scale of energy re-
laxation in the single-excitation manifold. The rates γpmn are
given by the Fourier transform of the bath correlation func-
tion as γpmn(ω) = δmn

∫
dteiωt〈qpmm(t)qpmm(0)〉, where we

assume that off-diagonal fluctuations are small compared to
diagonal fluctuations [5]. The rate can be further simplified

to the site-independent expression γp(ω) = 2π[J(ω)(1 +
n(ω))+ J(−ω)n(−ω)] where n(ω) = 1/[exp( ~ω

kT ) − 1] is
the bosonic distribution function at temperature T . Here, we
assume an Ohmic spectral density with J(ω) = 0 for ω < 0
and J(ω) = ER

~
ω
ωc

exp(− ω
ωc

) elsewhere, with cutoff ωc, and

reorganization energy ER = ~
∫∞

0
dω J(ω)

ω [5].
In the case of the Hamiltonian Hr we obtain the Lind-

blad generators Arm(ωM ) = cm(M)|0〉〈M |, where ~ωM =
EQY+εM is the molecular transition frequency, separated into
EQY ∼ 12500cm−1 for the QY band of bacteriochlorophyll
a and excitonic energies εM of the order of 300cm-1 [42]. The
respective rate is again assumed to be diagonal, γrmn(ω) =
δmn γ

r
mm(ω), and site independent, γrmm(ω) = γr(ω). For

Ohmic ∼ ω and super-Ohmic spectral densities one is able to
approximate γr((EQY +εM )/~) ≈ γr(EQY/~). This approx-
imation yields a simplified Lindblad superoperator similar to
Eq. (5) without the summation over frequencies and with the
generators Arm = |0〉〈m|. Finally, we choose the rates γr(ω)
such that it leads to a 1ns exciton life-time, as experimen-
tally measured for chromophoric complexes e.g., in Ref. [41].
The Lamb-shifts HLS = Hp

LS + Hr
LS are explicitly given

by Hk
LS =

∑
ω,n,m S

k
nm(ω)Ak†n (ω)Akm(ω) (for k = p, r)

where Snm(ω) is the imaginary part of the half-sided Fourier-
transform of the bath-correlator. The Lamb shift usually con-
tributes only marginally to the dynamics of the system, e.g. in
the FMO complex [42].

The master equation Eq. (4) and its Lindblad superopera-
tors Eq. (5) contain a significant degree of complexity, reflect-
ing the non-trivial form of the FMO complex and its diverse
sources of environmental interaction. To deal with this com-
plexity one needs to separate the contributions of the different
physical processes to the dynamics. To this end, in the next
section, we explicitly construct a quantum trajectory master
equation to study the effects of free Hamiltonian, damping and
relaxation. Specifically, we demonstrate that the energy trans-
fer in multi-chromophoric systems of the chromophoric chan-
nel can be considered as a generalized (directed) continuous-
time quantum walk in the single-excitation manifold inter-
rupted by jumps to the zero-excitation manifold.

III. QUANTUM WALK FORMALISM FOR ENERGY
TRANSFER

In general, the Förster theory for energy transfer leads to a
classical random walk description of the transport in photo-
synthetic units [43, 44]. The equation of motion for the clas-
sical probabilities of an excitation being at site a, Pa, is given
by

∂Pa(t)
∂t

=
NC∑
b=1

MabPb(t). (6)

The Mab denotes the Markov transition matrix elements
which describes the classical Förster rates between site a and
b. In closely-packed chromophoric arrays, however, one has
to consider not only populations of states but also coherence
between states; consequently, the equation of motion is given
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by a master equation for the density matrix such as Eq. (4).
For the purposes of evaluating the dynamics of this master
equation, and for investigating the interplay between coher-
ence and decoherence in the resulting quantum walk, it is con-
venient to re-express the master equation for a single excita-
tion in terms of a quantum trajectory picture of open quantum
system dynamics, as in [45, 46]:

∂ρ(t)
∂t

= − i
~

[Heff , ρ(t)]? (7)

+
NC∑

m,m′,n,n′

Γp(m,m′, n, n′)Wm,m′ρ(t)W †n,n′

+
NC∑
m

γrmRmρ(t)R†m,

where the Wm,m′ = a†mam′ generate jumps in
the single-exciton manifold and the Rm = am
generate jumps between exciton manifolds. The
jump rates are given by Γp(m,m′, n, n′) =∑
l,ω γ

p(ω)〈m|Ap†l (ω)|m′〉〈n|Apl (ω)|n′〉, and Θp(m,n) =∑
l,ω γ

p(ω)〈m|Ap†l (ω)Apl (ω)|n〉. We have also defined [, ]?
as a generalized commutation relation for any two operators
A and B as [A,B]? = AB − B†A†. In order to describe
absorption of the exciton at the acceptor site and the damping
due to the phonon bath, we introduced an effective anti-
Hermitian Hamiltonian as: Heff = HC + HLS + Hdecoher,
with

Hdecoher = − i
2
{

NC∑
m,n=1

Θp(m,n)a†man (8)

+
∑
m

∑
ω

γrm(ω)a†mam +HC→A}.

Now taking the trace of the overall master equa-
tion leads to the probability density that no jump
to the zero manifold occurs between time t and
t + dt as: pno−jump = −2iTr[Hdecoherρeff (t)]dt +∑NC

m,m′,n,n′ Γp(m,m′, n, n′)Tr[Wm,m′ρeff (t)W †n,n′ ]dt,
and the probability density of a jump event be-
comes: pjump =

∑NC

m γrmTr[Rmρeff (t)R†m]dt. In
the case of a no-jump trajectory one has the mas-
ter equation ∂ρeff (t)

∂t = − i
~ [Heff , ρeff (t)]? +∑NC

m,m′,n,n′ Γp(m,m′, n, n′)Wm,m′ρeff (t)W †n,n′ ,which can
be considered as a directed quantum walk on the one-exciton
manifold described by the density operator ρeff .

We note that the contribution due to the free Hamilto-
nian, i.e., the equation ∂ρ(t)

∂t = − i
~ [HC , ρ(t)] represents a

continuous-time unitary quantum walk in the single-excitation
manifold. The off-diagonal elements of the free Hamilto-
nian terms represent quantum coherent hopping with ampli-
tudesHC,mn between the localized sites with energyHC,mm.
The analogy of continuous-time unitary quantum walks to
classical random walks was addressed within the context of
quantum algorithms in Ref. [29] and further explored in
[27, 30]. The damping contribution to the dynamics within

− i
~ [Heff , ρ(t)]? leads to site-dependent relaxation for both

diagonal and off-diagonal elements of the density operator
and the terms

∑NC

m,m′,n,n′ Γp(m,m′, n, n′)Wm,m′ρ(t)W †n,n′

induce quantum jumps in the single-excitation manifold.
The similarity between quantum walks and classical ran-

dom walks, Eq. (6), can be readily emphasized in Liouville
space. The quantum trajectory picture is re-expressed as a ma-
trix equation by representing the density operator in a vecto-
rial form. Thus, quantum walks in multi-chromophoric com-
plexes are described by the equation

∂~ρa(t)
∂t

=
∑
b

Mab~ρb(t), (9)

where ~ρT (t) = ( ρ11 ρ12 . . . ρNCNC−1 ρNCNC ). This
equation manifests a quantum walk in the N2

C-dimensional
Liouville space, with the transition (super-) matrix,

Mab = − i
~
{I ⊗Heff −H∗eff ⊗ I)ab (10)

+
NC∑

m,m′,n,n′

Γp(m,m′, n, n′)(W ∗n,n′ ⊗Wm,m′)ab.

The time variation of the vector ~ρ(t) in Liouville space rep-
resents the dynamics of population elements ρmm as well as
coherence elements ρmn, which are the signature of quantum
dynamics. The real part of M is responsible for the direc-
tionality in the quantum walk which enhances the excitation
energy transfer for the FMO complex as we will demonstrate
later. This is due to the effective interplay between the free
Hamiltonian and phonon-bath coupling that generates quan-
tum jumps. Next we study the properties of the quantum walk
picture in terms of the energy transfer efficiency as an univer-
sal measure.

IV. ENERGY TRANSFER EFFICIENCY

The energy transfer efficiency of the channel is defined as
the integrated probability of the excitation successfully leav-
ing the channel to the acceptor. This definition of the channel
efficiency has the advantage of being independent of the de-
tailed dynamics within the acceptor, charge separation, and
the energy storage via a chemical reaction. More formally we
define:

η =
1
~

∫ ∞
0

Tr(HC→Aρ(t))dt. (11)

Similar definitions, using integrated success probabilities,
were used in context of energy transfer from donor to ac-
ceptors [3, 46], and quantum random walks [30, 34]. Note
that the efficiency in Eq. (11) has the upper limit of ∞, yet
in most practical cases there is always a natural cutoff, 1/γrm,
due to finite excitation life-time, e.g., for chromophoric com-
plexes and GaAs quantum dots 1/γrm ∼ 1ns [43, 47]. More-
over, the relevant dynamical time scale for the excitation to be
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transferred to the acceptor is about 1/κm.A more quantitative
measure for the transfer time through the quantum channel to
the acceptor is given by,

τ =
1
η

∫ ∞
0

t Tr(HC→Aρ(t))dt. (12)

In this work we mainly focus on the energy transfer effi-
ciency. In order to study its optimality and robustness, we
define a decomposition Λk of the superoperator by M =∑
k Λk.The different Λk can be chosen in any desired way in

order to isolate the effect of different parts of the master equa-
tion. For example, one Λk could represent the effect of the
system Hamiltonian on its own, while another could represent
the effect of the phonon bath. Each term Λk is associated with
a scalar quantity λk, which represents the overall strength of
the of the kth term in the dynamics. For example, the λk as-
sociated with the Hamiltonian gives the overall energy scale
of the Hamiltonian, while the λk associated with the photon
bath gives the strength of the coupling to that bath.

It is natural to investigate the energy transfer efficiency in
terms of the susceptibilities ∂η

∂λj
and the Hessian ∂2η

∂λj∂λk
, us-

ing the scaling parameters Λk → λkΛk, in the neighborhood
of λk → 1. For any chromophoric complex the gradient of
the efficiency defined by the set of ∂η

∂λj
can be used as a mea-

sure for local optimality of its performance with respect to
independent parameters λk. Moreover, such efficiency gra-
dient can be utilized for engineering photovoltaic materials
with optimal and robust energy transfer in their respective pa-
rameter space. One can verify that the susceptibilities sat-
isfy the identity

∑
k
∂η
∂λk

= 0, where the sum consists of a
complete decomposition of the superoperator. This identity is
the consequence of energy conservation for all times t: In the
single-excitation manifold, the energy that is transferred by
the physical processes HC→A out of the chromophoric chan-
nel is absorbed by the reaction center in a given time interval.
Additionally, the Hessian ∂2η

∂λj∂λk
is a measure for the second-

order robustness of natural or engineered chromophoric sys-
tems. Note that the robustness also satisfies a similar conser-
vation property, i.e.,

∑
j,k

∂2η
∂λj∂λk

= 0. Next, we study the
quantum walk approach in the context the ETE in the FMO
complex.

V. FENNA-MATTHEWS-OLSON COMPLEX

The structure of the Fenna-Matthews-Olson (FMO) com-
plex of green sulfur bacteria was revealed by x-ray crystal-
lography [38], as the first pigment-protein complex structure
to ever be determined in this method, and since then it has
been extensively studied [48]. The FMO complex consist of a
trimer, formed by three identical monomers, each constituting
of seven bacteriochlorophyll molecules (BChl a) supported by
a rigid protein backbone. The FMO complex essentially acts
as a molecular wire, transferring excitation energy from the
chlorosomes, which are the main light-harvesting antennae of
green sulfur bacteria, to the membrane-embedded type I re-
action center. In the recent study of the Chlorobium tepidum

FMO complex by Engel et al., [21], using two-dimensional
electronic spectroscopy, direct evidence of long-lived coher-
ence in the form of quantum beatings was demonstrated at
77K. The presence of quantum coherence prompted specu-
lations about the presence of quantum computation in FMO.
Indeed, it was argued that FMO acts as a dedicated computa-
tional device [21], since excitons are able to explore many
states simultaneously and select the correct answer, which
here is the lowest energy excitonic state. This operation
was claimed to be analogous to Grover’s algorithm, which is
known to provide a quadratic speed-up over its classical coun-
terparts for searching elements of an unstructured database
[37]. Here, we argue that a purely unitary Grover-type search
algorithm cannot explain the efficiency of the exciton transfer
in FMO complex. However, we employ our directed quantum
walk approach to study the quantum effects in the dynamics
of the FMO complex.

We use the free Hamiltonian of the FMO complex as given
in Ref. [5]. The site-energy differences and inter-site cou-
plings lead to exciton energies with separations of around
100cm−1. The highest energy states are exciton 6 and 7 which
are mainly delocalized over sites 5/6 and 1/2, respectively.
The lowest exciton state 1 involves the site 3. For an overview
of the structure of the FMO complex see Fig. 1 (a). The initial
states for the simulation are taken to be sites 1 and/or 6 which
are close to the chlorosome antenna (donor) [42]. Transfer of
the excitation from the FMO channel to the acceptor occurs
via site 3 with the rate κ3, which is a free parameter in our sim-
ulations and, if not otherwise stated, taken to be κ3 = 1ps−1.
The exciton lifetime is assumed to be 1/γr = 1ns [3, 41]. The
bath spectrum is taken to be as described above with the reor-
ganization energy ER = 35cm−1 and cutoff ωc = 150cm−1,
inferred from Fig. 2 of Ref. [42].

The purely unitary evolution generated by the seven-site
Hamiltonian is not performing a Grover-type search. In
general, for a unitary evolution to be qualified as a quan-
tum search a certain set of conditions have to realized: (i)
〈ψES | ρi(t0) |ψES〉 = 1 − α, where |ψES〉 = 1√

N

∑
m |m〉

is an equal superposition of the basis states {|m〉}Nm=1 of the
Hilbert space including the solution the search, the target state
|m∗〉. ρi(t0) = |ψi(t0)〉 〈ψi(t0)| is the pure initial state of the
system at some arbitrary time t0 and α � 1. For a standard
Grover search algorithm α is equal to zero. This condition as-
sures that the initial input state of the search is unbiased with
respect to the target state. (ii)

∣∣〈m∗| e−i(tf−to)H |ψi(t0)〉
∣∣2 =

1−β,where tf is the smallest time in which the free evolution
of the initial state, e−i(tf−to)H |ψi〉, has significant overlap
with the target state, and β � 1. (iii) tf = γ

√
N, where γ is

either a constant or a poly(logN). In summary, a Hamiltonian
generating the Grover algorithm should map an equal coherent
superposition of all possible (database) states into a desired
target state, within a time polynomial in the size of database
and with a probability of close to one. For the FMO com-
plex, we have investigated a variety of different reasonable
initial states (e.g., an equal superposition of all BChl states,
or a localized excitation on BChls 1 and 6) and target states
(e.g., the state localized in BChl 3). In neither case did the
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FIG. 1: The Fenna-Matthews-Olson protein: (a) The spatial structure and energy levels of the complex, where the number at each site
represents the localized site energy and the arrows with numbers denote the couplings among various bacteriochlorophylls. For clarity, some
small couplings are not shown. The inset depicts the participation of the seven chlorophylls in the delocalized excitonic states [5]. (b) The
susceptiblities of energy transfer efficiency with respect to perturbations of inter-site jumps and corresponding damping, rescaled by a factor
of 104 and drawn with a cutoff of 2.0. The initial state is taken to be a mixture of populations at site 1 and 6. Standard parameters are
ER = 35cm−1, T = 295K, κ3 = 1ps−1, and γr = 1ns−1. Susceptibilites are large when inter-chromophoric couplings are strong and
site-energies are similar. The sign of the susceptibility is an indication of the directionality towards the target site 3.

coherent Hamiltonian dynamics result in a significant overlap
to the target state. We found that the overlap oscillates in time
but never exceeds the value of 0.4. We conclude that the uni-
tary Grover search algorithm cannot explain the efficiency of
the exciton transfer in FMO complex. However, in principle,
certain non-unitary generalizations of quantum search algo-
rithms could still be developed to be relevant in this context;
especially for the case of non-unitary oracles interacting with
a non-Markovian and/or spatially correlated environment.

We investigate other non-trivial quantum dynamical effects
in the presence of phonon-bath fluctuations and exciton re-
combination and trapping. The results are shown in Figs. 1,
2, and 3. In Fig. 2 (a), we illustrate the functional dependence
of the ETE, Eq. (11), on temperature for two initial states lo-
calized at site 1 or 6, respectively. The overall dependence
is less than 1% for reasonable temperatures. This can be ex-
plained by the relatively small size of the FMO and the ap-
proximately three orders of magnitude separation of lifetime
(1/γr) and acceptor transfer (1/κ3) timescales. In order to
see this, note that at zero temperature there are only quan-
tum jumps originated from spontaneous emission of energy
into the phonon bath, leading to relaxation down the energy
funnel. This phenomenon in itself leads to a high efficiency of
transport, due to the presence of irreversible trapping on a time
scale much faster than the lifetime of the excitation. At higher
temperatures quantum jumps due to stimulated emission and
absorption enter the dynamics. Both processes have the same
rates and a temperature dependence which is determined by

the bosonic distribution function n(ω). In the FMO protein,
stimulated emission of excitonic energy helps the transport,
since the target state has the lowest energy. The effect of ab-
sorption is twofold: It facilitates the overlap with the trapping
site when there is an energy barrier in the transport path. At
the same time, absorption processes can lead to transfer away
from low-energy target sites (“detrapping”). These effects ex-
plain the difference in the temperature dependence for the two
initial states localized either at site 1 or at site 6. The ETE
increases slightly with temperature for the initial state being
at site 1 (blue line in Fig. 2 (a)). This site has a large over-
lap with exciton 3 and the spatial pathways to site 3 involve
energetically higher excitons 4,5,6, and 7, see Fig. 1 (a). De-
trapping explains the slight decrease of ETE as a function of
temperature for initial state 6 (red line in Fig. 2 (a)). This
site has a high overlap with exciton 5 and 6 and energetically
funnels down to exciton 1 (site 3). For larger photosynthetic
complexes and/or in the absence of low-energy trapping sites,
the temperature dependence of the efficiency is expected to be
more significant. First, temperature-independent spontaneous
emission will play a less prominent role. Second, the energy
transfer time will become more comparable to the exciton life-
time. This translates to a higher temperature dependence for
the overall efficiency since any variation in the transport be-
comes more pronounced. mes.

The functional dependence of the ETE on the reorganiza-
tion energy at room temperature is shown in Fig. 2 (b). The
reorganization energy can be understood as a linear scaling of
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FIG. 2: Energy transfer efficiency as a function of a) temperature, b) reorganization energy (log-linear), and c) transfer rate to the acceptor
(log-linear). Transfer time as a function of reorganization energy d). Blue lines show the efficiencies starting from an initial state localized
at site 1. Red lines how the efficiencies starting from site 6. The default parameters (shown as vertical lines) are taken to be T = 295K,
κ3 = 1ps−1, γr = 1ns−1, and ER = 35cm−1. A quantum walk with no environment-assisted jumps corresponds to no reorganization energy
in panel b). The energy transfer efficiency in this case is 15-30% less than for the parameters obtained experimentally for FMO demonstrating
the effect of the environment-assisted quantum walk.

the phonon bath. Thus, at ER = 0 we have the (pure) quan-
tum walk limit leading to efficiencies of 70% and 85% respec-
tively for both pathways. The difference of 15% between the
two different initial states can be explained by the higher lo-
calization of initial state 6 due larger energy mismatch of site
6 and target site 3. An increase in reorganization energy re-
sults in an efficiency increase up to about 99%, demonstrating
the effect of the environment-assisted quantum walk.

As mentioned before the actual value of the irreversible
transfer rate κ3 from the FMO complex to the reaction cen-
ter (acceptor) is not well known, since there exists insufficient
chrystallographic data for the combined FMO/RC structure
[38]. In Fig. 2 (c), we explore the dependence of the ETE on
this unknown parameter at room temperature. The ETE in-
creases monotonically from zero to almost one within a range
of five orders of magnitude. One obtains the largest increase in
efficiency when the acceptor transfer rate is∼ 1ns−1 thus sur-
passes the lifetime rate γr. In the limit of large transfer rates
to the acceptor, κ3/γ

r � 1, the lifetime of the excitation does
not significantly reduce the efficiency. On the other hand, in
the limit of small transfer rates to the acceptor, κ3/γ

r � 1,
most of the excitation dissipates into the environment before
being transferred to the acceptor.

Figure 2 (d), shows the transfer time, Eq. (12), of the ex-
citation initially at site 1 or 6 to the acceptor as a function of
reorganization energy. In the fully quantum limit it takes the
excitation more than 50ps to arrive at the acceptor. This value
dramatically improves for higher reorganization energies. At
the value ofER = 35cm−1 one finds a transfer time of around
4ps−1, which was reported based on different considerations
in [42].

Figure 3 illustrates the susceptibilities ∂η
∂λj

for the basic pro-
cesses in the FMO dynamics including the Hamiltonian, the
phonon bath coupling, transfer to the acceptor, and the loss
of the excitation. In Fig. 3 (a), the susceptibilities for those
processes are shown as a function of temperature. The sus-
ceptibility of the ETE to the phonon bath shows several inter-
esting features. The system is rather susceptible to perturba-
tions of the phonon bath coupling at zero temperature. In this
limit, the directionality of the quantum walk is maximized,
since, due to spontaneous emission, the excitation can only
move down in energy towards the target site 3 while energy

absorption from the phonon bath is suppressed. Increasing
temperature leads to increased stimulated emission and ab-
sorption, thus the system is less susceptible to perturbations of
the phonon bath since their effect on emission and absorption
processes is the same. Concomitantly, the efficiency becomes
more susceptible to the transfer process to the reaction center
at higher temperature. This is again readily explained by the
increased phonon-bath absorption rate: In the presence of de-
trapping processes it becomes more important to capture the
excitation immediately once it arrives at site 3. We note that
the efficiency is not susceptible to a small variation of the free
Hamiltonian due to inherent irreversibility of the fully unitary
quantum dynamics. The susceptibility with respect to dephas-
ing in the energy basis has also insignificant variation for all
the temperatures considered here due to the dominant role of
the quantum jumps to the overall ETE, and thus is not pre-
sented in Fig. 3.

The dependence of the susceptibilities of the ETE as a
function of the reorganization energy is shown in Fig. 3 (b).
The susceptibility of the ETE to the phonon bath peaks at
around 1cm−1 for the initial state 1 and around 0.01cm−1

for the initial state 6. Note that, for the Ohmic spectral den-
sity considered here, the reorganization energy scales linearly
the strength of the coupling to the phonon bath, therefore this
curve is the derivative of the ETE in Fig. 2 (b), where the
steepest ascent occurs around 1cm−1 or 0.01cm−1 respec-
tively. The susceptibility of the ETE on the transfer rate to
the acceptor becomes smaller for higher reorganization en-
ergy. Larger reorganization energy leads to faster thermaliza-
tion. In this regime the system is more resilient to perturba-
tions of the transfer process to the acceptor and the dissipation
to the environment.

The dependence of the susceptibility of the ETE on the ac-
ceptor transfer rate is illustrated in Fig. 3 (c). We observe a
maximum in the susceptibility at around 1ns−1, which is the
regime where the time scales of transfer to the acceptor and
the lifetime are comparable, κ ∼ γr, compare to Fig. 2 (c).

The susceptibilities of the energy transfer efficiency
on inter-site quantum jumps is shown in Fig. 1 (b).
More formally, we look at the effect of perturbations
of site to site jump terms and the corresponding damp-
ing, Λnm = −Θp(m,m)(I ⊗ a†mam + a†mam ⊗ I) +
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FIG. 3: Susceptibility versus a) temperature, b) reorganization energy (log-linear), and c) transfer rate to the acceptor. The processes considered
are free Hamiltonian (black), the phonon bath coupling (red), transfer to the acceptor (green), and the loss of the excitation (blue). The initial
state is a mixture of 1 and 6, except for the jump susceptibility in b) which is separated into 1 and 6 respectively. Standard parameters (shown
as vertical lines) are ER = 35cm−1, T = 295K, κ3 = 1ps−1, and γr = 1ns−1. For the standard parameters, the FMO complex shows
relatively small susceptibilities, suggesting robustness with respect to external or evolutionary perturbations.

Γp(n,m,m, n)(W ∗m,n ⊗Wn,m), in the quantum walk master
Eq. (10). We obtain a schematic picture of the most suscep-
tible pathways in the FMO complex. The susceptibilities are
correlated with the incoherent transport pathways. The sus-
ceptibilities are large when relaxation or absorption of energy
due to the phonon bath is important for a particular transport
pathway. This is the case e.g. when there is a relatively large
off-resonance between different sites and thus coherent cou-
pling does not lead to significant overlap between the sites,
for example for sites 3/7. On the other hand, when coher-
ent coupling is similar to the site-energy splitting, incoherent
processes are less significant, leading to small susceptibilities
such as for sites 1/2 and 5/6. A positive (negative) suscepti-
bility of a process Λnm indicates an increasing (decreasing)
ETE. For the FMO complex, jumps towards (away from) site
3 have positive (negative) susceptibility, a signature of the di-
rectionality in the irreversible dynamics. Thus, the quantum
walk formalism together with a rather straightforward mea-
sure of the energy transfer susceptibility provides a valuable
method to investigate spatial exciton transfer pathways in mul-
tichromophoric arrays.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a general theoretical framework within
the Lindblad formalism for studying the role of quantum ef-
fects in energy transfer dynamics of arbitrary chromophoric
arrays interacting with a thermal bath from a microscopic
Hamiltonian. We have shown that a quantum walk ap-
proach, which has been widely used in quantum informa-
tion science, provides an appropriate mathematical framework
for studying energy transfer. We have generalized the con-
cept of continuous-time quantum walks to non-unitary and
temperature-dependent dynamics in Liouville space. This ap-
proach can also be used to generally study decoherence effects
in quantum walks in arbitrary geometries. The energy transfer
efficiency was used as a universal measure to study the trans-
fer properties of the environment-assisted quantum walk. We
We have applied our method to explore the energy transfer ef-
ficiency and its susceptibilities for the Fenna-Matthews-Olson
protein complex as a function of temperature, reorganization

energy, trapping rates, and quantum jumps. In particular the
energy transfer susceptibilities were studied with respect to
the free Hamiltonian, the phonon bath, dephasing, trapping
rate, and the exciton loss. This approach provides valuable
insight into the dynamical role of various generators of the
master equation and into spatial exciton transfer pathways in
multichromophoric arrays. We have shown that the overall
environment coupling strength leads to a substantial enhance-
ment of the ETE of about 25% for the FMO complex. Thus,
the overall energy transfer efficiency of 99% can be explained
with the open nature of the multichromophoric dynamics in-
volving an effective interplay between free Hamiltonian and
fluctuations in the protein and solvent.

We applied the general formalism presented in this work
to reveal the contributions of underlying physical mechanism
to quantum transport [50]. We also quantified the phenom-
ena of environment-assisted quantum transport due to an ef-
fective interplay of quantum dynamical coherence and a pure-
dephasing noise model [51]. Using pure dephasing model,
others observed similar effects [52, 53]. Motivated by re-
cent observations of non-local effects in the structure and the
dynamics of the purple bacteria reaction center [22] and the
FMO protein [48], and also based on recent advances in the
understanding and control of non-Markovian open quantum
systems [54, 55], generalizations of our scheme to include
environments with temporal and spatial correlations are cur-
rently underway. These results could lead to new ways for
engineering optimal state transfer in quantum spin networks
[56, 57] which interact with realistic environments. Since we
employ the Lindblad equation, our quantum walk formalism
can be implemented numerically using the Monte Carlo wave-
function (MCWF) approach. The MCWF method was origi-
nally developed for dissipative processes in quantum optics
[58]. The main advantage of MCWF is the fact that one only
needs to simulate the wave function rather than the density op-
erator [59]. Our approach can potentially be used to enhance
energy transfer efficiency via engineering quantum interfer-
ence effects. For certain binary tree chromophoric arrays,
e.g., dendrimers, quantum walks could lead to an exponential
speed-up over classical walks of excitations [30]. In general,
the combined biology and quantum information inspired ap-
proach of this study could provide new insight for engineering
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artificial photosystems, such as quantum dots and dendrimers
[60] to achieve optimal energy transport by exploiting their
environmental effects.
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[2] X. Hu, T. Ritz, A. Damjanović , and K. J. Schulten, Phys. Chem.
B 101, 3854 (1997).

[3] T. Ritz, S. Park, and K. Schulten, J. Phys. Chem. B 105, 8259
(2001).

[4] V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, R. van
Grondelle, J. Phys. Chem. B 108, 10363 (2004).

[5] M. Cho, H.M. Vaswani, T. Brixner, J. Stenger, and G.R. Flem-
ing, J. Phys. Chem. B 109, 10542 (2005).

[6] T. Förster, in Modern Quantum Chemistry, Istanbul Lectures,
edited by O. Sinanoglu (Academic, New York, 1965), Vol. 3,
pp. 93–137.

[7] G. D. Scholes, Annu. Rev. Phys. Chem. 54 , 57-87 (2003).
[8] V. May and O. Kuhn, Charge and Energy Transfer Dynamics in

Molecular Systems (Wiley-VCH, Weinheim, 2004).
[9] A.G. Redfield, Adv. Magn. Reson. 1, 1 (1965).

[10] M. Grover and R. Silbey, J. Chem. Phys. 54, 4843 (1971).
[11] S. Rackovsky, R. Silbey, Mol. Phys. 25 61 (1973).
[12] H. Haken and G. Strobl, Z. Phys. 262, 135 (1973).
[13] V.M. Kenkre, R.S. Knox, Phys. Rev. Lett. 33 803 (1974).
[14] V. M. Kenkre and P. Reineker, Exciton Dynamics in Molecular

Crystals and Aggregates (Springer, Berlin, 1982).
[15] W. M. Zhang, T. Meier, V. Chernyak, S. Mukamel, J. Chem.

Phys. 108, 7763 (1998).
[16] M. Yang and G. R. Fleming, Chem Phys 275, 355 (2002).
[17] S. Jang, M.D. Newton, and R.J. Silbey, Phys. Rev. Lett. 92,

218301 (2004).
[18] Y. C. Cheng and R. J. Silbey, Phys. Rev. Lett. 96, 028103

(2006).
[19] S. Jang, M. D. Newton, and R. J. Silbey, J. Phys. Chem. B 111,

6807 (2007).
[20] K M. Gaab and C. J. Bardeen, J. Chem. Phys. 121, 7813 (2004).
[21] G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mancal,

Y-C. Cheng, R.E. Blankenship, and G.R. Fleming, Nature 446,
782 (2007).

[22] H. Lee, Y.-C. Cheng, and G.R. Fleming, Science 316, 1462
(2007).

[23] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lec-
tures on Physics (Addison Wesley, Reading, MA, 1964).

[24] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill, New York, 1965).

[25] J. Klafter and R. Silbey, Physics Letters, 76A, 143 (1980).
[26] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,

1687 (1993).
[27] J. Kempe, Contemp. Phys. 44, 302 (2003).
[28] V. Kendon, Math. Struct. Comp. Sci. 17, 1169 (2006).
[29] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[30] A. Childs, E. Farhi, and S. Gutmann, Quan. Info. Proc. 1, 35

(2002).
[31] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in Proc.

33th STOC (ACM, New York, 2001) p. 50.
[32] D. A. Meyer, J. Stat. Phys. 85, 551 (1996).

[33] B.C. Sanders, S.D. Bartlett, B. Tregenna, and P.L. Knight,
Phys. Rev. A; W. Dür, R. Raussendorf, V.M. Kendon, and H.-J.
Briegel, Phys. Rev. A 66, 052319 (2002).

[34] O. Muelken, V. Bierbaum, and A. Blumen, J. Chem. Phys. 124,
124905 (2006).

[35] O. Flomenbom, R. J. Silbey, arXiv:0706.2328 (2007).
[36] P.W. Anderson, Phys. Rev. 109, 1492 (1958).
[37] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[38] Y. Li, W. Zhou, R. E. Blankenship, and J. P. Allen, J. Mol. Biol.

271, 456 (1997).
[39] S. Mukamel, Principles of Nonlinear Optical Spectroscopy

(Oxford University Press, New York, 1995).
[40] H. -P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford Univerity Press, New York, 2002).
[41] T.G. Owens, S.P. Webb, L. Mets, R.S. Alberte, and G.R. Flem-

ing, Proc. Natl. Acad. Sci. USA 84, 1532 (1987).
[42] J. Adolphs and T. Renger, Biophys. J. 91, 2778 (2006).
[43] M.K. Sener, D. Lu, T. Ritz, S. Park, P. Fromme, and K. Schul-

ten, J. Phys. Chem. B 106, 7948 (2002).
[44] M.K. Sener, S. Park, D. Lu, A. Damjanović, T. Ritz, P. Fromme,
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