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Direct estimation of single- and two-qubit Hamiltonians and relaxation rates

M. Mohseni! A. T. Rezakhanf;® and A. Aspuru-Guzik

!Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford ., Cambridge, MA 02138, USA
2Center for Quantum Information Science and Technology, and Departments of Physics and Chemistry,
University of Southern California, Los Angeles, CA 90089, USA
®Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada

We provide a novel approach for characterization of quarttiamiltonian systems via utilizing a single mea-
surement device. Specifically, we demonstrate how exteurahtum correlations can be used for Hamiltonian
identification tasks. We explicitly introduce experimémieocedures for direct estimation of single- and two-
qubit Hamiltonian parameters, and also for simultaneotisnaton of transverse and longitudinal relaxation
rates, using a single Bell-state analyzer. An advantageiofmethod over the earlier approaches is that it has a
built-in feature which makes it suitable for partial chaeaization of Hamiltonian parameters.

PACS numbers: 03.65.Wj, 03.67.Lx

I. INTRODUCTION lated techniques, identification is reduced to finding tted (r
ative) location of peaks and their heights of the Fouriecspe
o : . trum [10]. Similarly, in the two-qubit case, Hamiltonian-pa
Characterization of quantum dynamical systems is one o btained th h |
the most fundamental problems in quantum physics, and "erameters are obtained through some entanglement measure-
’ Ments sampled in many time points, and then a Fourier anal-

:;E[hfoz(tarzrltl[ci)zf]ql{rahnet;jema:rnefoeznf]:vt\;ol?ngwrferith%([jls] ;ngé:ﬁzsé/sis determines the parametelrs|[11]. There are also more
: eneral Hamiltonian identification schemes which employ

this goal, such as standard quantum process tomography [Sgrosed-loop learning control techniques along with effitie

E;%'gi?;git:gtﬁa?%esnsaﬁzgg%g‘é%y 4][’5? n d7|]r ecéidnhcee"itlhe and improved global laboratory data inversion for iderdific
; qua y o - tion . These techniques are useful particularly whea on
required physical resources grow exponentially with thenu has access to tailored control fields (e.g., shaped lassegul

ber of degree_s Of. fre_edo_m, a_\ll_quantum process t(_)mograph\xh”e the measurements are being performed. A fundamental
schemes are in principle inefficient. However, in variougph

; . : S relevant question is how one can exploit external quantum co
ical situations a full characterization of the quantum dyna d b 9

ical suDeroperator is not always necessary. as sometiraes t elations in order to enhance identification of quantum Hami
) perop Y3 Y, nian systems. This is the subject we address in this work.
information about relevant physical quantities could bates ; . : :

. . .__ In this paper, we introduce an analytical method for direct
to only a polynomial number of parameters in the system size

S - : haracterization of important classes of HamiltoniansisTh
[8]. Thisis indeed the case when: (i) important physicappro ¢ .
erties of a quantum system can be directly associated oaly tomethOd is based on a newly proposed DCQD schée [5]. In

subset of certain superoperator elementsa(jpyiori knowl- particular_, we_demonstrate h.OW to esti_mate e}II parametas 0
edge exists about general properties of quantum dynamicgeneral time-independent single-qubit Hamiltonian ano-tw

and (iii) neglecting some elements will lead to small systenﬁgst'itvgsf%t;?fr'g gfr gﬂ'rsgté?hpc')? ig)iﬁg?nv%ﬁeiaglllmsncl)?nnélAEaOrlti a
characterization errors. ' y p

T o _knowledge about the system is requested, it does not require

The task of Hamiltonian identification, as a characteri-Fourier analysis of the experimental data. In principlés th
zation of quantum systems, is of paramount importance ipyiates the need for long sampling times and in turn offers
quantum physics and chemistry. In particular, it is reqiliire more controllability for the related estimation processur O
for monitoring or controlling performance of noisy single- Hamijltonian identification method is applicable to quantum
and two-qubit quantum gates/devices in quantum informatio systems enabling two-body measurements, due to the fact tha
processingl[1/19]. For various physical systems, a generigcqQD requires Bell-state measurements (BSMs). The re-
form of the Hamiltonian can be guessed from general physiguired BSM can be in principle achieved in linear opticatsys
cal/engineering considerations or observations. However  tems via postselections [13] or hyperentangle t [14d, an
still needs to estimate the Hamiltonian parameters for argiv 5isg in trapped ion$ [15] (see Réf. [16] for a determinigtio-
quantum system in order to study the internal dynamics of thgrammed generation of “ultralong lifetime” Bell-stateahd
system and also to investigate the exact form and the shrengpptical lattices[[17]. In solid-state systems, severakstés
of a potential system-bath coupling. for controllable two-body interactions have been proposed

Identification of time-independent (or piece-wise con§tan [, [18,[19,[2b] 21| 22, 23], with the state of the art exper-
Hamiltonians along with the estimation of errors have al-imental realization in semiconductor quantum dots [24] and
ready been studied for both single-qubit and two-qubit gasesuperconducting flux qubits [25].
[10,[11]. Characterization of a single-qubit Hamiltonian i ~ The evolution of ad-dimensional quantum system (open
achieved via determination of the measurement resultgusinor closed) with initial statep can, under some natural as-
a single fixed readout process which is a periodic function oBumptions, be expressed in terms of a completely positive
time. Through Fourier analysis of this signal and other re-quantum dynamical mag,, which can be represented as:


http://lanl.arxiv.org/abs/0708.0436v3

&(p) = X xii(t)oipol. The positive matrixy = [xmn] ~ We have
encompasses all information about the dynamics, reladive t .
the fixed operator basis sét,, }, where t(o} 0,,) = dd,un. J, 2 = tr[Pa&(p)] /(1 — tr[Pr&:(p))]). 1)
The theory of DCQD determines elementsyofnatrix [5] by
relating them to measurement results more directly than théhe diagonal elements of the superoperator give the algsolut
other existing schemes. The main idea of DCQD is basestalues of the unknown parameteks. Equation[(l) bears this
on quantum error detection theory in which by preparation ofinteresting result that measurements at a single timetpoin
suitable states and measurement of their stabilizers and naare in principle (ignoring the inherent issue of statidtiea
malizers partial information about errors can be obtaifée  rors) enough to obtaif|.J, |, |J,|,|J.|). When the relative
required stabilizer and normalizer measurement can be- physigns are already known, this uniquely identifies the refese
ically realized with a single Bell-state analyzer. Tdbleiis  frame of the Hamiltonian.
marizes the scheme for the single-qubit case. In order to obtain/, we are required to estimate the fre-
quency of the functionos?(.Jt) = tr [Pr&(p)]. The theory of
signal processing and discrete Fourier analysis stateotiet
Il. IDENTIFICATION OF SINGLE-QUBIT generally needsto perfo_rm many time sampllng_s to obtain fre
HAMILTONIANS guencies. By the Nyquist criterion, the sampling frequency
fs = 1/7s must be bounded below by half of the frequency
_ ~of the original signal, i.e.fs > J, to reduce the inherent
Let us consider the cases that quantum dynamics igjiasing [26]. In Refs.[[10, 11] one can find more detailed

gen?rated by a time-indepeyggnt Hamiltoniah(p) =  analysis of these issues and how to relaffom experimen-
Ut)'p U(t), wheretd(t) = e (h = 1), one obtains (5| data. Specifically, in Refi [L1(b)] an interesting mettud
Xmn = Qm@n, WherelU(t) = 3, am(t)om and H is  ensemble measurements in sample points has been introduced

the Hamiltonian of the system. Since an energy shift is althat can reduce the statistical error in inference.
ways possible, we only consider traceless Hamiltonians. In |n the more general case, to fully characterize the real
the single-qubit case, wheté# = J - o, with the choice yector.J we need to consider a different strategy and per-
of {o = (02,04,0:),1} as the operator basis, we have: form two measurements for the off-diagonal elementsof
X00 = €% Xaa = $%J2, Xoa = iscJa, @ndxas = s*JoJs,  According to DCQD, these two experimental configurations
inwhichJ = JJ (J = ||J||), ¢ = cos(Jt), s = sin(Jt) and  are sufficient to determine the diagonal of the superopera-
o, B =x,y, 2. tor, x;; for i € {0,1,2,3}, and four off-diagonal param-
In order to find the real vectaf, according to the DCQD  eters Infxo;), and Reéx;), for any two sets of values of
theory, we can choose different experimental configuration{?, j, k}, {7', /', &'} € {1,2,3} such thati # 7', j # k # i
(measurement settings) depending on auyriori informa-  andj’ # k' # 4'. For example, by preparation of a non-
tion about the Hamiltonian. If the signs of the Hamiltonian maximally entangled stat@!) = «[00) + 3|11) (Table[l)
parameters (i.e., the componentsifare already known, we and performing a standard BSM, we can obtain the following
can determine/ and the absolute values of the componentsgguations:
|J,, in a single experimental configuration. First, we prepare

a maximally entangled state between the qubit of intedgst Xo00 T X33 = P4, Xi1 + X22 = P,
and an ancillap, as|®*) 45 = (]00) + |11))/+/2. Next, the a(xoo — X33) + bIm(xo03) = ¢4,
system evolves undéf for a duration of timet. Finally, we a(x11 — X22) — bRe(x12) = c_,

perform a BSM represented by the four projection operators
Pg+ and Py . The probabilities of obtaining these outcomeswith p.. = tr[Py1&(p)], a = tr(Np), b = 2itr(c 2 Np), and
are found asr[P;E,(p)] = ¢ andtr[P,&(p)] = s2J2, where ¢ = pitr(Npyip), wherep = [@EN(DE|, N = o2oZ,
the projection operator®; and P, (for « = x,y,z) corre- P41 = Pg+ + Pp—, P-.1 = Py+ + Pg- andpy; =
spond to the stateB™, U, U, and®~, respectively. Thus, Py1&:(p)Py1/tr[Pr1&:(p)]. In the other experimental con-
figuration, we prepare a nonmaximally entangled Stafe) ..
and perform another standard BSM to obtain a similar set of

TABLE [: Input states and measurements for direct chariaetion equations in the|+), } basis (here and also fdf+), } ba-
: . A B ; . . .
of single-qubit. Herel®) — a]00) + 811, |@)acy) = af + sis,N' = o' ¢ D). Using these linearly independent equations

. we can determine diagonal elements of the superopesator,
+H)a(y) + Bl — =)@ Wherela| # |8] # 0 andIm(aB) # 0, and . ;
{|0>,1il>}, {|£)=}, {Ti>y} are eigenstates of the Pauli operators (i = 0,1,2,3) and four off-diagonal parameters {fs),

oz, andoy,. Py is the projector on the Bell stat@ ™), and similarly |m(X{Jl), Re(x12), and Réy23). As we have Shown above,
for the other projectors. the diagonal elements can be used to deterniiaad the ab-

solute values.J,|. The relative signs of/,, J,, and.J, can

":Ifft statg Be"'jf“e m;asuremem | OUtPUBm be found from the off-diagonal parameters above; so, we can

}w; - . p Xoooxit,x22, %83 dentify J up to a global sign. This global sign is usually

@b PR ’;“3"?2 evident from the physical/engineered setup under corsider
o) o+ v+ Po— v — 01, X23 . ; . . i

a5y, Pyt £ Py Py £ Py Nomax1s tion, e.g., from the direction of a global magnetic field fpirs

systems. In physical situations where this global sign oann




be deduced from general physical considerations, we need to 1V. IDENTIFICATION OF TWO-QUBIT EXCHANGE

perform a third measurement that corresponds to character- HAMILTONIANS

izing Im(x02) and Réxs1) which completes our knowledge

about an arbitrary (time-independent) single-qubit Hemnil . - .

nian. The whole analysis is also applicable to the case of In splld—stat(_e systems, it Is often th_e case that each pair

piece-wise constant Hamiltonians. In the following we dis-Of qubits (AB)_ Interact directly or Eﬁict'gely through an ex-

cuss another important example of single-qubit dynamies, achange Hamlltonlarf{ex - Za Ja0g Tas where Jos are

though non-Hamiltonian, that shows how the DCQD estima-the couplings of th_e tWO'q.Ub't interaction (see also Iﬁ] [1 .

tion may provide advantage in estimation of dynamical pa{Cf the exchange interaction between neutral atoms in opti-

rameters in the Markovian regime. cal lattices). The_ cgse_of_lsotropl_c or Heisenberg intévact
(J. = Jy, = J.) is intrinsic to spin-coupled quantum dots,
and donor atom nuclear/electron spins! [18]. This interac-
tion is also important in the context of universal faultei@nt
quantum computind [19]. The XY Hamiltoniaw{ = J,,

1. SIMULTANEOUSDETERMINATION OF T} AND T J, = 0) is the available interaction in quantum Hall sys-

tems [20], quantum dots/atoms in cavities| [21], and exeiton

coupled quantum dots [22]. The XXZI{ = J, # J. # 0)

interaction appears in the electrons in liquid-Helium quam

Let us consider the so-called quanthomogeni zation pro-
cess acting on a single-qubit density matpi¢0) for time .
t, wherepg(0) = a andpoi(0) = b in the {ﬁ?);, [1)} ba- computing proposals [23].
sis. This leads to the final stajét) with pgo(t) = (a — In the case of XYZ Hamiltonians, the matrix has only 10
aoo) exp(—t/T1) + aco @ndpg1(t) = bexp(—t/T>), where  nonzero independent elements,,,, for m,n = 0,5, 10, 15.
a~ characterizes the population of thermal equilibrium stateSimilar to the case of the general single-qubit Hamiltonian
and the time-scale%; and T, (7> < 2T}) are longitudi- these diagonal elements contain information only about the
nal and transverse relaxation time-scales of the system, r@bsolute value$J,|s. In order to obtain information about
spectively [1,/27]. The explicit form of;; elements are the signs ofJ,s, we need to measure off-diagonal elements
as follows: xpo(33) = [exp(—t/T1) £ 2exp(t/Ts) + 1]/4, as well. However, in most physical/practical cases thessign
X11 = X22 = [exp(t/T1) + 1] /4. of the terms in an exchange Hamiltonian are already known

Now we demonstrate that both, and 7, can always be from some g_ene_ra_l properties of the system. For example, f(_)r
estimated in asingle ensemble measurement by using theMany materials it is known whether below the phase transi-
DCQD scheme for estimating diagonal elementsof We 0N pointthey become ferromagnetic or anti-ferromagreti
first prepare a Bell-stat&+) 4, and then let the qubit in- alt(_ernanvely thls_lnf(_)rm_atlon can be obtained for a givearm
teract with a thermalizing environment for a given tim@he ~ t€rial by measuring its linear response to an applied magnet

outcomes of a BSM yield the following relations @t and field. In these cases, the Hamiltonian can be completely de-
Ty: termined with asingle ensemble measurement corresponding

to the diagonal elements of the superoperator.

1/Ty = —1In (2tr[ Py & (p)] + 2t1[Py-&(p)] — 1) /¢, Let us consider the important classes of isotropic and
1Ty = —In (tx[Pas £(p)] — [ Pa-E(p)]) /¢ (2) anisotropic exchange interactions. Forf[hese Hamiltetae
2 1t Ferctlp e-ctlp ’ sign of J is known from the ferromagnetic property of the sys-
tem. In fact, by definition/ = Fs — Er (whereEgs andEr
Ideally, these equations imply adequacy of single time¥poi are the energy of singlet and triplet states), is alwaysthega
measurements. That is, unlike the case of readinghere  for ferromagnetic materials. For example, for a two-eleatr
time sampling is necessary and aliasing is inevitableand  system, the singlet state is the ground state of the system if
T, can in principle be obtained through single time-point mea-J < 0. On the contrary, for anti-ferromagnetic materialdgs
surements. This feature could be utilized to reveal the nonalways positive which indicates that in the ground stataspi
Markovian nature of system-bath interaction; e.g., by obse tend to arrange themselves in the same direction.
ing time variations in the estimated relaxation and depitpsi
rates beyond the the natural deviation due to statisticat®r
Moreover, due to orthogonality of BSM outcomes, it is easy
to unambiguously distinguish from T3, unlike the approach
e onGcine ard tanovorse 1aasion s, one e 2 SUE 8S) 1,5, 1), .. Then, he urknown Hami-
; ’ ; tonian H for the duration oft is applied, and a tensor

measure two non-commutative observables (e.g., Pauli oper . . :
atorso, ando,) on two subensembles of identical systems product (.)f BSMs acting on each pail; B, is performed,

= o o 'where this operation can be represented by a tensor prod-
corresponding to magnetization vectdes and M, parallel tof P.o Pv P P. fori — 1.2. The ioint brob-
and perpendicular to a global magnetic fig¥d. The num- UCLOF Pty Py Ly L TOM7 =14, 2. joint p
ber of repetitions in each measurement is determined by thPility distributions of tﬁhe E’%MS are related tb through
desired accuracy in the time sampling estimation of thexrela [Py Pyy&u(p)] = ¢ + s° and [Py Py i Ei(p)] =
ation times associated with magnetizatidds and M, [82].  tr[Py- Py Ei(p)] = tr[Py-—Py-Ei(p)] = s*c?. Therefore,

In order to determine the diagonal elemenisfor Heisen-
berg interaction between two electrods and A,, one can
prepare a tensor product of maximally entangled states be-
tween each electron and a pair of ancilla electraBs &nd



4

we have: to the quantum shot-noise limify f ~ 1/(Ns7sv/Ng), and
the Nyquist criterion,fs = 1/7¢ > f/2, we get: Af/f ~
sin(2[J[t) = 2\/‘51"[Pq>; Pyp-&i(p)], (3)  1/(Nsv/Ng) (see Ref[[11(b)]). Thatis, the average error in
estimation of Hamiltonian parameters scale$ 4Vsv/Ng).
and similar relations hold foPy P+ and Py - Py, as well.  In other words, for an errar, or with the number of digits of
In the case of anisotropic exchange interactions one caBrecisionlog(1/e), we need polyl/¢) more steps, which is
perform a similar Bell-state preparation and BSM as in thecommon among all Fourier analysis based methods [30]. In

case of isotropic exchange, to obtain: this respect, our method does not provide an advantage over
the one in Refs| [11]—both methods provide similar accuracy
sin(2]J,|t) = 2\/tr[P\I,iP\1,i5t(p)], (4) scgle_up. _I-_|owever, the advantage_ of our method_hes in the
1oz built-in ability of the method for partial characterizatior hat

cos(2]J.[t) = \/(tr[p¢+ Py &p)] — s4)/(ct —s1). (5) is, there is a level of independency in the way different sets
roe e of parameters are related to measurements results. For more

eneral discussions on partial characterization by DCQD se

Toread|J,|, one needs to have time samplings (i.e., ensembl o )
measurements for many time-points) and follow the Fourier%efs' [5] and for a very recent proof-of-principle experite

on this issue, using polarization and spatial degrees ef fre

analysis based method sketched earlier. Therefore, ha\/ingdom of a single photon, see R&f. [7]. Moreover, in our method

priori knowledge about the ferromagnetic property of the SYSSome of the parameters are related more directly to the mea-

tem, one can identify the underlying exchange Hamiltonian. surements data, hence obviating the need to (a full) inmersi

Note that the energy spectrum Bf, can be simply calcu- ' . . e .
lated using the above relations and knowing the fact thdt Bel n the first place. E.g., in the single-qubit case, we obtain

states are the eigenkets of the exchange Hamiltonian. Eiger\c‘sjzfy=zlrjr]lj.5tfbyta very 5|tmple alge?ram rqagllpglat'c;]onn(l)fhwe
values ofHe can be written a& — +|.J,| - |J; — J,|, where ata. This feature is not necessarily available in the 0

o+ 3+~ € {x,y 2). We have already shown how to es- of Refs. [11], be_cause a F_ou_rier anal_ysis would be necessary
timate|J| for o o ’x y, 2. In order to find relative signs of even for extracting a partial information about the Hamilto
« - ) 3 .

any two other components, such|ds — J.|, the DCQD al- nian.

gorithm can be utilized by performing a single ensemble mea-

surement that corresponds to measuring the off-diagoeal el

menty 5. For full characterization of an exchange Hamilto-

nian without having ang priori knowledge about the signs of

the coupling constants, one needs to measure the off-daégon

elementyo 10 too. Therefore, with a total of three ensem- We have presented a theoretical approach for utilizing aux-

ble measurements, correspondingtq, xo,5, andyxo, 1o, full iliary quantum correlations to perform Hamiltonian iddiati

characterization ofie, can be achieved. cation. In this method one can directly obtain full inforioat
about unknown parameters of time-independent of single- an
two-qubit Hamiltonians without full quantum process tomog

V. REMARKSON PRECISION raphy. In addition, we demonstrate that for a single qubit un

dergoing a generic Markovian homogenizing quantum map,

In a realistic estimation process, due to decoherence, ||nﬂb0th related relaxation times can be estimated SimUltEBiﬂOU
ited measurement or preparation accuracies (because-of sg® utilizing a single Bell-state measurement. Furthermoee
cific device architecture or finite ensemble size), and othelllustrate how our prior knowledge about Hamiltonian sysse
imperfections, some errors may occur (a generalization ofan be exploited in order to reduce the required physical re-
the DCQD theory that addresses faluty preparations angources for identification tasks. In particular, we showt tha
measurements is underway and will be reported elsewhef@e required repeated measurements, associated to time sam
[2€]). These factors might affect the amount of physicalPling of data, can be reduced when we are interested in partia
resources required for a given accuracy of the estimatiorﬁharacterization of the Hamiltonian systems and also for es
hence some appea”ng features like Sufﬁciency of sing[e.ti timating relaxation rates. With the recent advent of vagiou
point measurements might be lost. For the case of idednethods for generation of controllable entanglement, ook p
preparations/measurmens scenario in which single tinie-po Posed method may have near-term application to a variety of
measurements are in principle sufficient, errors scale up a@uantum systems/devices, such as in trapped ions, liqatd-s
1/+/Ng, whereNg is the number of repeated measurementsNMR, optical lattices, and entangled pairs of photons.

In the cases we need to perform time samplings, the error in Discussions with J. D. Biamonte, J. H. Cole, and D. A. Li-
the estimation of frequencies (and thus, Hamiltonian paramdar are acknowledged. This work was supported by NSERC
eters) is governed by the Nyquist criterion and the quantunito M.M.), the Faculty of Arts and Sciences of Harvard Uni-
shot-noise limit[[29]. Let us considé¥s samples, for each of versity (to M.M. and A.A.)iCORE, MITACS, and PIMS (to
which we performNg measurements. Therefore, accordingA.T.R.).

VI. CONCLUSION AND DISCUSSION
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