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Dislocation and impurity effects in smectic-A liquid crystals* 

P. S. Pershan and J. Prostt 

Division of Engineering and Applied Physics. Harvard University. Cambridge. Massachusetts 02138 
(Received 2 December 1974) 

The effects of dislocations and impurities on the macroscopic elastic properties of smectic-A liquid 
crystals are discussed. The first conclusion is that smectics behave like linear elastic media only so 
long as the stresses are smaller than some critical value that is analogous to the critical velocity of a 
superfluid. Below the critical stress, smectics can store elastic energy without flowing and 
consequently without any dissipative processes in analogy with the fact that. below a critical velocity. 
superfluids store kinetic energy without any dissipation. For most practical samples the critical 
smectic stress is that value for which pinned dislocation will grow unstable; however. for ideal 
samples, initially free of dislocations. the critical value is determined by the condition of unstable 
growth of thermally generated dislocation loops. In the linear elastic region both dislocations and 
impurities modify the macroscopic elastic properties such that the effective elastic constant is smaller 
than the value for an ideal sample. This is a sort of diaelasticity and can be discussed in the same 
way as diamagnetism. Impurities are shown to act as sources of stress fields analogous to the way 
magnetic dipoles and magnetic monopoles are sources of magnetic fields. The result is to predict 
long-range elastic interactions between impurities in smectic systems. Since biological systems like 
chloroplasts and retinal rods have lamellarlike structures that are similar to the smectic structure, 
there is the possibility that long-range elastic interactions may play some role in biological function. 

PACS numbers: 81.55., 62.20 .• 61.70.M 

I. INTRODUCTION 

In a previous paper Pershan developed theoretical 
expressions for the stress-strain fields surrounding 
simple dislocations in smectic-A liquid crystals and for 
the forces on dislocations due to macroscopic stresses 
in the material. 1 These results were conveniently dis­
cussed in terms of the Peach-Koehler analogy between 
the magnetic forces on electric currents and the stress­
induced forces on dislocation lines. 2 With this analogy 
in mind the suggestion was made that dislocations in 
smectics might have effects on the stress fields in 
smectics analogous to the effects that electric currents 
in metals have on applied magnetic fields. That is, one 
might expect a "diaelasticity" in smectics that is analo­
gous to the diamagnetism of metals _ The purpose of this 
paper is to develop these ideas further, presenting some 
theoretical predictions for possible effects. 

If dislocation lines can be considered as analogous to 
electric current lines, then dislocation loops can be 
treated analogously to electric current loops which are 
formally equivalent to magnetic dipoles. Thus, the 
initial point is that for the purposes of discussing 
macroscopic stress-strain relations in smectics, it will 
be more convenient to deal with dislocation moment den­
sities rather than the dislocation densities. This is 
analogous to the macroscopic magnetic properties of 
solids in which case one defines the magnetization in 
terms of the first moment of the microscopic electron 
currents. 

The second point is that certain types of impurities 
induce stress-strain fields that are identical in the far 
field with those of a dislocation loop. Thus, if disloca­
tion lines are analogous to the orbital motions of free 
electrons, these impurities are analogous to the perma­
nent magnetic moments of bound electrons (Le., para­
magnetic ions) or electron spins. The elastic properties 
of smectic liquid crystals are influenced by the presence 
of both dislocations and impurities analogously to the 
manner in which magnetic properties of metals are in-
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fluenced by both free and bound electron currents. The 
far fields of more general types of impurities also con­
tain terms more appropriately analogous to magnetic 
monopoles and these also influence the macroscopic 
elasticity of smectics. Parenthetically one should note 
that macroscopic elastic effects of focal conic defects 
can also be discussed in terms of the analogies 
presented here. 

The third point to be made is that the analogy to mag­
netism in normal materials is only profitable in smectics 
subj ected to low stresses. Above some critical stress 
one expects dislocation moments to become unstable, 
resulting in macroscopic plastic deformation or flow 
of the smectic. The existence of such a critical stress 
is a direct consequence of a separate analogy between 
smectics and superfluids that was pointed out by de 
Gennes. 3 In Table I we list the various analogies that 
will be useful. The analogy between the smectic liquid 
crystal and magnetism was discussed in detail by 
Pershan. 1 It is just a special case of the result original­
ly derived by Peach and Koehler for crystals. 2 The 
analogy between vortices in classical fluids and electric 

TABLE I. Useful analogies for discussing smectics. 

Smectic Superfluid He Superconductor Magnetism 

Dislocation Vortex density Flux density Electric cur-
density n B rent density 
I J 
Stress field Superfluid Superfluid Magnetic flux 
'V'q,=O current current 'V·B=O 

(momentum) 'V 'Js=O 
'V'(,=O 

Strain field Superfluid Vector Magnetic field 
'Vxm=l velocity potential 'V XH = (41T/C)J 

'Vxvs=n 'VxA=B 

Peach- Magnus force Lorentz force Lorentz force 
Koehler (Refs. 4-6) (Refs. 7 and 8) 
force 
(Ref. 2) 
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currents in magnetism is well known.4 The extension to 
superfluids seems to have occurred in a number of 
places. 5-8 In de Gennes's development of the analogy be­
tween smectics and superfluids, he emphasized the 
analogy to superconductors and pointed out that disloca­
tions exist in smectics only to the extent smectics are 
analogous to type-II superconductors. The critical 
smectic strain could thus be discussed in analogy with 
critical currents in type-II superconductors. In many 
respects, however, superfluid helium behaves like an 
extreme example of a type-II superconductor and we 
find it slightly more convenient to discuss the critical 
smectic strain in analogy with critical currents in 
superfluid helium. 

To illustrate the analogy as it is relevant to the 
present discussion, consider that below some critical 
value of current density superfluid helium can sustain 
a permanent supercurrent with no diSSipation. There 
is stored kinetic energy in the superfluid, but no dis­
sipative processes. Below the critical stress a smectic 
sustains stored elastic energy with no plastic flow, 
that is, with no dissipation. Above the critical current 
vortices are generated in superfluid helium and their 
motion in the force field ariSing from the superfluid 
current (i. e., Magnus effect) gives rise to dissipative 
processes that are analogous to the dissipative plastic 
deformation of a smectic sample associated with the 
motions of dislocation lines. Vortex generation in pure 
superfluid helium away from any boundaries has been 
discussed theoretically in terms of a nucleation and 
growth process similar to the condensation of drops in 
a supersaturated vapor. 9-11 At some critical velocity 
that is an intrinsic property of the material, independent 
of sample dimensions, thermally generated vortex loops 
are predicted to grow unstably and pass out the sides of 
the sample. Similarly, if a pure smectic is strained 
by, for example, homogeneously compressing the 
layers, there will be a critical strain at which thermal­
ly generated dislocation loops will be predicted to grow 
unstably. This is discussed at length in Sec. VI. This 
particular value of the critical current is rarely achieved 
in superfluid helium since there are other mechanisms 
by which unstable vortex growth can occur. Similarly, 
for the smectic it will be difficult to attain this value for 
the critical stress in the presence of other mechanisms 
for supplying dislocations. This is discussed in some 
detail in Sec. V. 

For example, critical currents are often observed 
in superfluid helium under conditions where vortices 
have previously been trapped at surface irregularities. 
Superfluid currents much smaller than those required 
to create new vortex lines will be sufficient to cause 
preexisting lines to grow unstably. 12 Similarly trapped 
dislocation lines in a smectic will grow unstably at 
strain levels much below those required to create new 
dislocations. This is, in fact, one mechanism by which 
plastic deformation of conventional crystals is believed 
to occuro 13 

This paper is principally addressed to the elastic 
properties of smectic samples at stresses below the 
critical values under the assumption that the smectic is 
type 11.3 The formalism for dealing with dislocation mo-
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ments and their macroscopic effects on the smectic 
stress-strain relationship is discussed in Seco II. In 
Sec. ill we develop Green's function solutions for the 
stress-strain fields surrounding point dislocation mo­
ments and then relate the far-field stress-strain patterns 
of real impurities to equivalent point dislocation mo­
ments and monopoles. In Sec. IV we make use of the 
previous results to make some numerical estimates re­
garding impurity-stress equilibrium effects. In partic­
ular we develop expressions for the diaelastic effects 
of impurities and also the osmotic smectic stress of 
impurities. In addition to estimating the critical smec­
tic stress for unstable growth of pinned dislocations 
referred to above, we discuss the diaelastic effects of 
trapped dislocations at stresses below the critical. 

II. DISLOCATION MOMENTS AND SMECTIC STRESS· 
STRAIN RELATIONS 

Starting from one of the microscopic Maxwell's equa­
tion of electromagnetism, 

v x B = 47TC-1j + c-1 aE 
at ' 

(201) 

a macroscopic equation is obtained by averaging over 
some finite volume element. 14 In the static case i: = 0 
and in the absence of macroscopic electric currents, 

(j)=cVXM, (202) 

where 

(2.3) 

Combining Eqo (2.2) and the averaged version of Eqo 
(2.1) gives VX(B-47TM)=Oo When there are macro­
scopic electric currents, Eqo (202) can be replaced by 
(j) =J + cVXM; however, there are formal difficulties 
in defining M when J varies spatially. In the limit that 
J varies slowly in space, the averaged form of Eq. 
(2.1) becomes 

vxH=47TC-1J, (204) 
with H= B - 47TMo The characteristic length that sepa­
rates the macroscopic description from the microscopic 
is determined by the practical requirement that the M 
obtained from the average in Eq 0 (203) be sufficient to 
describe the relevant magnetic properties of the mate­
rialo For example, in the case of a single electric cur­
rent loop, the average would have to be over a suffi­
ciently large volume that the average magnetic fields 
due to the loop are not significantly different from the 
average magnetic fields of a magnetic dipole situated 
at the center of the loopo In the case of dilute distribu­
tion of such loops, there are two different macroscopic 
regions: one is identical to the case of the individual 
loop and describes the fields between loops in terms of 
the fields of "equivalent" magnetic dipoles 0 For the 
second macroscopic region one averages over many 
loops and obtains average bulk magnetizations and fields. 
As the loops get closer together, the two regions coin­
cide and in the limit of dense packing there is only one 
macroscopic region. 

We can proceed in an identical manner and treat the 
macroscopic elastic properties of a smectic-A liquid 
crystal 0 The one caution worth mentioning is that the 
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word microscopic here refers to dimensions small com­
compared to the characteristic lengths in the distribu­
tion of dislocation positions, but large compared to the 
dislocation core. This can be large compared to the 
molecular dimensions and is not the conventional use of 
"microscopic". With this in mind the microscopic prop­
erties of smectic-A liquid crystals can be discussed in 
terms of a vector m(r) satisfying the differential 
equation 

vxm(r) = l(r), (2.5) 

where l(r) is the density of dislocation lines (i. e., 
lines/cm2).1 Away from any dislocation line, m(r) can 
be written as the gradient of a scalar variable describ­
ing the position of the smectic layers [m(r) = - ((lVu(r)]; 
however, this is not generally true since 1$ m(r) • dr 
will not be zero if the path encloses a net number of dis­
location lines. As in the magnetic problem, one aver­
ages and obtains 

(l)=L+VxP. (2.6) 

Following the usual practice in magnetic problems, we 
will emphasize examples in which the average denSity 
of dislocation lines L=O. For example, a smectic sam­
ple that is homeotropically aligned between glass slides 
that are parallel on average can be regarded as having 
L=O everywhere and the average dislocation moment 

(2.7) 

Combining Eqs. (2.5) and (2.7) gives Vx(m-p)=O and 
allows one to infer 

(2.8) 

In analogy to the current loop examples discussed 
above, one can consider a distribution of small disloca­
tion loops. For a dilute concentration of such loops the 
scalar u actually describes layer displacements in the 
space between the loops. For concentrated distributions 
of loops, u describes an average displacement. 

In order to illustrate the significance of Eq. (2.8), 
consider the example of a small edge dislocation of unit 
strength curved to form a circular loop of radius R 
centered at the origin (see Fig. 1). Except for a Sign 
change, the strain ms for this loop was previously calcu­
lated1 and we quote the result for the spatial Fourier 
transform 

ms(q) = 27T;\.2Rq~Jl(qJ.R)(q~ + ;\.2q1)-1, 

where J 1 is the ordinary Bessel function of order one 
and q!=ift +q~. Averaging over dimensions large com­
pared to R is equivalent to considering only those qJ. 
«R-1

• In this region the dislocation moment density can 
be written ps(r) = 7TR2a (r) and its Fourier transform ps(q) 
=7TR2. Also Jl(qJ.R) ... ~qJ.R and 

ms(q) = ps(q);\. 2q1(tfs +;\. 2q1)-1. (2.9) 

This same result is trivially obtained by combining 
Eq. (2.8) with the previous relations defining the stress 
tensor. 1 Assuming the pressure P = 0, we get 

2345 

u33 = - CPs = abms' 

O'J.s= - t/JJ. =- ab;\.2VJ.(VJ.' m), 

V· t/J=O. 
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(2.10) 

(2.11) 

On substitution of PJ. - ((lVLU for mJ. the 3 derivative of 
Eq. (2.11), Vs(V, t/l)=0 can be written 

- ab(V s)2ms + ab;\.2V~(V sVJ. • PJ. - ((lV~V sU) =0. 

However, since a-1Vsu=Ps-ms, one obtains 

V~ms-;\.2(V!)2ms=;\.2(V)2(vsVJ.' PJ. -V~ps)' (2.12) 

With PL =0 in the present example, Eq. (2.9) is trivially 
obtained. 

The macroscopic elastic properties of a smectic 
densely packed with dislocations will follow from Eqs. 
(2.8), (2.10), and (2.11) on averaging over sufficiently 
large volume elements, if one knows how the disloca­
tion moment density P depends on the macroscopic 
stress cpo Assuming P is a linear local function of t/J, to 
lowest order in wave vector, one can write 

Ps=Xss¢s+XSJ.VsV1.' 4>.1., 

PJ. = X1.s V!. V sCPs + Xu cP1.. 

Since 

CPs = - abPs + bV 3U, 

4>1. = ab;\.2V1. VJ. • P1. - b;\.2VL V:u, 

substitution of (2.13) into (2.14) obtains 

CPs"'b(l +abxss)-lvsu, 

¢1.'" - b;\.2V~V1.U, 

(2.13) 

(2.14) 

(2.15) 

where we have neglected terms of higher order in wave 
vector. The interpretation of Eq. (2.15) is that a finite 
dislocation moment density will induce a renormalization 
of the smectic elastic constant b, 

(2.16) 

If X3S > 0, this is the diaelastic effect alluded to earlier. 1 

1\ 
3 

L~ 

FIG. 1. Schematic representation of a circular dislocation loop 
of radius R. Note that the sense of 1 is into the page on the 
right and out on the left. This is just opposite to the loop dis­
cussed in detail in Sec. vm of Ref. 1. The coordinate system 
shown here will also be used throught this paper. The 3 axis 
is normal to the smectlc planes. 
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Although finite values of X33 could possibly arise from 
thermally generated dislocation loops, this effect is 
probably better treated by other approaches. This is 
discussed in Sec. VI. On the other hand, pinned disloca­
tion lines or loops will give rise to X33 effects. As we 
will discuss below, certain impurities in a smectic in­
duce stress-strain fields similar to dislocation arrays 
and the motions of these impurities in response to ex­
ternal stresses will also contribute a renormalization 
factor to b. 

Note also that in the case of a point dipole located at 
the origin, p= (P3x3+Pol)0(r), Eq. (2.11) reduces to 

V'~u _,\2(V'f)2U= a(P3V'30(r) - ,\2(P). (V')V'~o(r)J, (2.17) 

for which the solution can be given in terms of a Green's 
function to be defined below [Eq. (3.2)]: 

u(r)=P3G(r)-,\x3Ix31-1(p). (V'ol)G(r). (2.18) 

Although it is explicitly shown below, it is also apparent 
from Eq. (2.17) that G(r) is an odd function of Xs and 
even in (r) while the second term is even in X3 and odd 
in (r). 

III. GREEN'S FUNCTION CONSIDERATIONS 
Given any arbitrary distribution of magnetic dipole 

moments it is always possible to find an equivalent dis­
tribution of electric currents such that the macroscopic 
magnetic fields of the two are identical. In the spirit of 
the analogy between smectic strains and magnetic fields 
we ask whether or not the macroscopic strain fields of 
an arbitrary distribution of localized impurities can be 
expressed in terms of an equivalent dislocation distribu­
tion. We will demonstrate below that this is not general­
ly poSSible, since strain fields have source terms analo­
gous to magnetic monopoles. Nevertheless in examples 
where the smectic is macroscopically uniaxial (or 
planar), impurities analogous to both positive and nega­
tive magnetic monopoles exist in equal numbers and the 
smectic can once again be treated analogously to a mag­
netic material. 

To develop these ideas mathematically, consider a 
Green's function G(r - r') defined by 

V'ssG - ,\ 2(V'~)2G = aV'so (r - r'), (3.1) 

with boundary conditions that G - 0 as r - 00. It is 
straightforward to solve Eq. (3.1) and obtain G(r - r'). 
For r' = 0 this gives 

G = a(81T,\xs)-1 exp[ - ~ (4,\ I xsi )-1]. 

Assume an infinite sample with a finite impurity located 
near the origin r = O. Using conventional Green's func­
tion methods, the strain at any point r' can be expressed 
as a surface integral over the impurity: 

aV'~u(r') = J dAl[ -0 ISV' su(r) +,\ 2 (V')I V'~u(r)]G(r - r') 

+ J dA i [ - ,\2V'~u(r)](V'ol)IG(r - r') 

+ J dAl[,\2(V'),u(r)]V'~G(r-r') 
+ J dA,[-,\2u (r)](V'.L), V'~G(r-r') 

+ J dAl(olsu)V'sG(r-r'), (3.3) 

with dA(r) pointing out of the impurity and the convention 

2346 J. Appl. Phys., Vol. 46, No.6, June 1975 

that (V'.L) I is zero if i = 3 and V'~ = V'~ + V'~. A moment ex­
pansion is obtained from the expansion 

G(r - r') = - G(r') +r V"G(r') - 2-1r r V"V"G(r') + ... 
I , , J i J (3.4) 

on grouping together terms with the same asymptotic 
behavior as r' approaches infinity. Since G(r) goes to 
zero algebraically as X;l along parabolic curves speci­
fied by constant values of ~ I x31-1, it is convenient to 
conSider the asymptotic behavior along this curve. The 
perpendicular derivatives, for example, 

(V'i)iG(r') = - (rf}j(2,\ I x;1 )-lG(r'), 

falloff as I ~1-S/2 along the curve. Grouping together 
terms of similar asymptotic behavior 

G(r - r') = - G (r') + (rol) , (V'.O,G(r') 

+ [+ Xs V' sG(r') - Z-l(r)l(r), (V'i),(V'~),G(r')] 

+terms of order I x31-s/ 2 exp[ - ~(4'\ I x31 )-l}. 

(3.5) 

With this expansion for G substituted into Eq. (3.3), 
the coefficient of the leading term is 

f1= J dA,[+0ISV'Su(r)-,\2(V'.L),(V'.L)2u (r)]. (3.6) 

Taking the stress tensor to have components1 

us3 = - bV'3U= - cf>3' 

(U.L3), = ,\2bV'~(V'),u= - cf>1I 

(uJ.J.)'J = - ,\2b(V'),(V'.L), V'3U, 

(3.7) 

gives f1 = b-1 r dA,u/ s, which is just the 3 component of 
the net force on the impurity and can be taken to vanish. 
The coefficient of the term proportional to (V'.L)IG, 

(P-), = J dA,{[ -oJsV' sU +,\ 2 (V'J, V'2uJ(r.L)' -o~,'\ 2V'~U}, (3.8) 

vanishes since it is just the torque on the impurity. To 
demonstrate this, take the net torque exerted on the 
outer sample surface to be zero and use the divergence 
theorem to write 

(I.L), = J dA,[b-1u,s(r),I + J dV,\2(V'.L)'V'~u, (3.9) 

where u1s = u3S0,s + (u.Ls)}' The sign in front of the second 
term is positive because the vector dA points out of the 
impurity and into the sample. However, one can also 
write 

,\ 2 (V') , V'~u = b-1V' s[xs(O".Ls) ,I + b-1(V' ),[xs(O"J.J.),,]' (3.10) 

so that on using the divergence theorem and the sym­
metry of the stress tensor 

(3.11) 

where 0"" = (U.LS)IO 'S + (uJ.J.),,' Requiring the perpendicular 
components of the torque to vanish demands (I.L),=O. 

The first nonvanishing terms in the moment expansion 
of Eq. (3.3) are of the order of I xS I-2 exp[ - ~(4'\ I Xs 1)-1]. 
These are the terms proportional to V'~G(r') and (V'i), 
(V'i)",G(r'): 

aV'~u(r') = J dAl{o,s[u(r) - xsV'su(r)] +,\ 2xs(V'),V'~u(r)}V'~G(r') 

_2-1 J dA,{(r),(r.L)",[-Ii,sV'su(r) +,\2(V'.L),V'~u(r)] 
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• 
(0) 

(b) 

(e) 

FIG. 2. Schematic illustration of impurities with nonzero 
values of (a) P3 and (b) Qlj' (c) An impurity for which P3 is 
modified by a pinned dislocation. 

- >..2[ou(rJm +olm(r~),]V~U(r) 

+ 2>.. 2(V )lu(r)Olm}(V.O, (V.OmG(r') 

+terms of order I xSI-S/2 exp[ - ~(4).. I xsi tl]. 

(3.12) 

The first term in Eq. (3.12) corresponds to the first 
term in the solution to the point dipole problem given by 
Eq. (2.18) if we define 

(3.13) 

The divergence of the integrand vanishes so that the mo­
ment Ps defined this way is independent of the choice of 
surface for the integration. 

Second, observe that the value of Ps depends on both 
the impurity itself and also the externally applied strain 
surrounding the impurity. For example, Ps depends on 
the difference between u and Xs V su rather than just u 
alone. Stated another way, this implies that the disloca­
tion moment of an impurity is somewhat polarizable by 
external stresses. As a practical matter, this is prob­
ably not too important for small strains, but it is funda­
mental. The second term in Eq. (3.12) does not cor­
respond to the strain field of any dislocation distribution. 
Note that (V.OI(vr)p(rf ) is even in r~ but odd in xs' so 
that on integration it gives a term in u(r) that is even in 
both r.L and xS' For example, defining 

Q'm = - (2a)-1 J dAJ (rJ , (rJm[ - 0lsvsu(r) + >..2(V.I.)lv2u(r)J 

- >.. 2[0 II (r.L)m + ° 1m (r.l.),]V~u(r) + 2>..2(v~)lu(r)0 I..} 
(3.14) 

a solution of the same form as Eq. (3.12) would be ob-
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tained from the differential equation 

V~u - >..2 (V2)U = a[psVs +Q 1m (V~), (V~)m]O (r). (3.15) 

This differs from Eq. (2.18) in two respects: First, 
the expansion equation (3.12) was only carried as far as 
terms of order I xSI-2 exp[ - r2(4)..lx3 1 )-1J and the PJ. term 
in Eq. (2.18) comes from the next term in the expansion, 
More important is the fact that the Q'm term cannot be 
represented in terms of an equivalent dislocation dis­
tribution. In the spirit of the analogy between smectic 
strains and magnetic fields, one can think of this term 
as ariSing from impurities analogous to magnetic mono­
poles. For example, the source terms analogous to 
perpendicular components of dislocation dipoles [see 
Eq. (2.18)J - a>..2(p~)I(V)lv~0(r) has one more deriva­
tive than the !1

'
m term in Eq. (3.15). This is the con­

ventional difference between dipole and monopole source 
terms. 

Figures 2(a) and 2(b) illustrates schematically 
the type of impurities that would have nonvanishing 
values of either Ps or Q xx' respectively. In both cases 
we assume boundary conditions on the impurity that con­
strain the smectic layers to follow the surfaces. In Fig. 
2(a) there are obviously large local strains at the sides 
of the impurity and it is possible that a dislocation loop 
will become pinned around the impurity as illustrated in 
Fig. 2(c). This does not alter the principal physical 
point that an impurity like the one shown in 2(a) will 
have some net nonvanishing value of P3 even if the bare 
value is partially shielded by dislocation effects. The 
impurity illustrated in Fig. 2(b) should couple most 
strongly to splay-type distortions and in the absence of 
macroscopic splay any local smectic region should con­
tain equal numbers of impurities oriented like the one 
shown and those of opposite sign, e.g., turned upside 
down. This also is suggestive of monopole effects since 
in both electricity and magnetism the absence of macro­
scopic fields E (or H) implies equal numbers of charges 
(or monopoles) of opposite sign. 

Note also that aps has the dimensions of volume. The 
smectic distortions produced by an impurity like the one 
illustrated in Fig. 2(a) are obviously related to the 
amount of smectic material that has to be displaced to 
deform the layers as shown. Figure 2(c), however, 
emphasizes that in real cases aps is not just the volume 
of the impurity, but rather it represents an effective 
volume that is most likely smaller than the true value. 
Different boundary conditions between smectic and im­
purity can also produce negative values for Ps. 

In the two examples previously treated in this manu­
script, that is in the absence of any impurities and also 
in the case of point dis loc ation dipoles with Ps'* 0, equa­
tions like (3.15) followed from the condition VIO'IS=O. 
In the present case this should also follow and we make 
the identification 

O'ss=- tf>s=-bVsu+baP30(r), 

(O'J.)IS = - (tf>J, = b>..2(VJI V~u + ba(?jl(V)jO (r), 

(O'll),j = - b>.. 2(VJ.)I(VJj V sU - baQtJ V sO (r). 
(3.16) 

The first terms are the "external" stresses on the im­
purity and include effects such as boundary conditions 
and images due to the boundaries. 
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The interaction energy between externally applied 
stresses and impurities with moments Ps and QiJ can 
be obtained by considering a virtual displacement of the 
system under conditions that no external work is done. 
Then the interaction energy OEINT is just the negative of 
the change oE in the elastic energy, Taking the elastic 
energy to be 

E = 2-1 b J dV[ (v SU)2 + X 2(V~U)2], 

the interaction energy OEINT = - oE, 

OEINT = - b J dV[VauVaou +X2(V~U)V20UJ. 

(3.17) 

Integration by parts give a surface term a ~ describing 
the work done on the smectic by the boundaries that is 
zero and a volume term 

OEINT = - b J dV[ - V~u + X2(V~)2U]OU. (3.19) 

From Eq. (3.15) this can be expressed as 

OEINT = - ab[PsVaou -QI} (VJ.)I (VJ.)Jou]. (3.20) 

The term - abPa V aOu = - aPa<Pa is analogous to the energy 
of a magnetic dipole in an extenal field, - U· B. An in­
teresting feature of the Q I} term is the result that al­
though a uniform value of (V);(V)Ju (corresponding to 
a uniform splay) induces no change in the stress tensors 
given by Eqs. (3.16), it does change the energy of im­
purities with nonvanishing values of Q I,' The effects of 
uniform splaylike distortions on QIJ are identical to the 
effects that a uniform magnetostatic potential would have 
on a magnetic monopole. Equation (3.20) consitutes a 
potential energy that is a nonlocal function of the stress. 
The force, however, is a local function of the stress. 
This is best illustrated by conSidering the special case 
of an impurity with Q I} =Qo~J' In the presence of in­
homogeneities in au, there will be forces on the impurity 
that can be calculated by taking the gradient of the inter­
action term in Eq. (3.20). Writing 

gives 

Fk= + aPaVk<Pa + aX-2Q(<Pl)k - aOkPV:<Pa· (3.21 ) 

The force proportional to Q <Pu is exactly what one 
expects for a monopole in the presence of a constant 
field. The Ps term is analogous to the force on a magne­
tic dipole in a magnetic field gradient and the last term 
is a higher-order correction. There are, however, two 
special pOints to make regarding the Q I} terms. 

First, QIJ itself is not conserved since an impurity 
oriented like the one shown in Fig. 2(b) can presumably 
flip over and thus reverse the sign of Q. Second, there 
is no reason to assume that all impurities must have the 
symmetric form assumed above (i. e., Q II =Qo~J)' and 
in the general case Eq. (3.20) implies that some orienta­
tions of the impurity will have lower energy than others 
for a given inhomogeneity AU. It is reasonable, however, 
to expect that in the presence of an inhomogeneity in au 
the impurity will relax so that its orientation is in 
statistical equilibrium with the local configuration. This 
orientational relaxation will occur in some "microscopic" 
time characterized by the impurity dimensions, etc., 
and the local properties of the smectic. Our main con-
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cern here, however, is not with phenomena occurring 
on microscopic times, but the long-wavelength long-time 
elastic behavior and for these purposes we can replace 
Q IJ by a statistical average that is nonzero only because 
(VJ.)I(VJ.)JU is nonzero. That is, the statistical average 
of QI} will be proportional to (VJ.)I(VJ.)Jou and by partial 
integrations the average value of the Q'J term in oE is 
proportional to (V:U)2. 

Since this is not different from the result that would 
be obtained if we started by assuming QIJ = 9a~J' we 
proceed by neglecting the part of Q jJ lacking cylindrical 
symmetry. Note also that if the expectation value of 
9'J is proportional to (VJ.),(VJ.)Jou, the expectation value 
of (VJ.)PIJ is proportional to aJa or (<p)r In the discus­
sion of dislocation moments Ps ' the assumption was 
made that a macroscopic average over a sufficiently 
large volume would result in the moment density Pa 
=Xaa<Pa. The implication here is that a similar macro­
scopic average of the Q IJ would result in a "monopole" 
denSity satisfying 

(VJ8'J =x*(<PJ j • 

Macroscopic averages of Eq. (3.16) give 

(a1)13 = - (<pl.), = bX2(V 1.)' v2u + ba(V1)JQIJ' 

(au)/J = - bX2(VJ.),(VJ.)JVau - baVsQ/j' 

(3.22) 

(3.23) 

where Qij = QO~J' With the assumptions made just above, 

(3.24) 

In the same way that dislocation moments Pa can be 
responsible for diaelastic effects on the aaa stress, so 
~an impurities with moments Pa' In addition, impurities 
with "monopole"-like boundary conditions have diaelastic 
effects on the nematic like elasticity. Presumably these 
latter effects are also present in nematics. 

IV. IMPURITY-STRESS EaUILIBRIUM EFFECTS 

Consider a smectic-A sample homeotropically aligned 
between glass slides in thermal equilibrium with a 
stress-free smectic region as shown in Fig. 3. Assume 
that the stress-free region acts as a reservoir of im­
purities that diffuse into the region between the glass 
slides. Take the impurity concentration in the stress­
free region to have a constant value Co [number/cmS

] 

and assume that the impurities have dislocation mo­
ments Ps ' In terms of the interaction energy derived 
from Eq. (3.20), thermal equilibrium between the two 
regiOns requires 

kTln[c) - aPa<Pa = kTln[co)' 

From Eqs. (3.23) with Pa = Psc, 

<Pa = - abPac + b(Vsu), 

so that 

<Ps + abPsco exp[aPs<ps(kT)-l] = bVsu, 
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FIG. 3. Schematic illustration of a smectic sample with non­
uniform boundary conditions. The spacing D is originally 
chosen so that the entire sample is stress free. 

and with apscf>s« kT , 

_ bV sU - abPscp 

cf>s -1 + crp~bco(kT)"1 • (4.4) 

Consider now the geometry in Fig. 3 where initially 
there are no impurities and both regions are stress free. 
If impurities are then dissolved in the region outside the 
rigid boundary [region (2)J, they will tend to diffuse into 
region (1). Assuming the spacing between the glass 
plates are held fixed (i.e., Vgu=O), the increasing im­
purity concentration will develop a stress gradient tend­
ing to oppose further diffusion. The equilibrium stress 
will be given by Eq. (4.4) and Vsu=O. Taking aPs-lO"21 
cms, b -108 dyn cm"2 would obtain an "osmotic smectic 
stress" of the order of 106 dyn/cm2 (1 atm) for a re­
servoir concentration of 1019 impurity molecules/ cms. 
If Ps is positive so that the impurity behaves as extra 
smectic layers, the induced stress is negative, implying 
a compressional smectic stress. In practice this value 
would not be achieved if the osmotic stress exceeds the 
critical stress for unstable dislocation growth. As a 
rough rule of thumb, one might expect that the critical 
stress is of the same order as the stress required to 
change the over-all sample thickness by the thickness 
of half of one smectic layer. Taking the sample thick­
ness to be D implies a critical stress - ab(2D)"l. Using 
the values quoted above, the sample would have to be 
thinner than 50 smectic layers to attain the full value. 
Note also the "renormalization factor" represented by 
the denominator of Eq. (4.4). Referring to Eq. (3.23) 
an externally applied stress cf>s induces a change in im­
purity concentration that has the effect of making the 
effective value of b smaller than for the pure sample. 
For the numerical values assumed above, concentra­
tions co-lOOO cmos are required to make b

eff 
-~b. 

v. PINNED DISLOCATIONS 

Irregularities at the surfaces containing the smectic 
and impurities within the smectic can serve to pin dis­
locations within the material. Figure 4 illustrates a 
hypothetical edge dislocation line of length L trapped by 
pOints A and A'. For simplicity we assume that in the 
absence of a macroscopic stress the segment is straight 
An applied stress cf>s will produce a force per unit length 
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on the dislocation (F = al x cf» that will cause the line to 
bow. Assuming that the dislocation has a line tension y, 
the deformed configuration shown in Fig. 4 has an 
energy 

E=yR(20 - 2 sin B) -acf>aR22"l(2B - sin20), (5.1) 

with 2R sinO = L. Near 0'" 0 Eq. (5. 1 can be expanded 
in a power series to obtain 

E;' iyLB2 - iacf>3L20 

which has a minimum at 

(5.2) 

(5.3) 

Bowing of the dislocation line induces' a change in the 
dislocation moment 

(5.4) 

such that if there are no such pinned lines per cms (ps 
= np6Ps) , Eq. (2.14) gives 

cf>s= -nocrLsbcf>s(12y)"l + bVsu 

and [Eq. (2.16)] 

b.rr =b[1 +nocrLSb(12y)"l]"l. 

(5.5) 

(5.6) 

If we take the order of magnitude of y - bcr, the de­
nominator of Eq. (5.6) is 1 + f2npLs . Assuming disloca­
tions have a core radius rc the fractional volume oc­
cupied by dislocations 6v/v is of the order ~Lno such 
that noLs - (6v/v)(Llre)2. Since Lire» 1, a reasonable 
denSity of edge dislocations can result in Significant 
reduction of b

eff 
0 

The above analySis is only applicable to low stresses. 
For larger values the dislocation will become unstable 
resulting in plastic deformation in the same manner that 
these effects occur in crystals. lS Glaberson and Don­
nellyl2 discussed the analogous effect of unstable growth 
of pinned vortex lines in superfluid helium as the result 
of the Magnus force. By numerical methods one can 
show from Eq. (5.1) that for 

cf>;~ 2balL, (5.7) 

the bowed dislocation becomes absolutely unstable for 
any finite value of R. Nabarro discussed the numerous 
possible mechanisms that are aVailable for plastic flow 
under this condition. ls Since real smectic samples will 
usually have a distribution of pinned dislocations of 

./ 
R ./ 
/' 

./ 

<:)28 
........ 

-....... 

I 

A 

........ ~--------~~-
A 

FIG. 4. Schematic illustration of a pinned edge dislocation 
running from A to j(. The heavy line indicates the straight 
equilibrium configuration in the absence of an exterhal stress 
and the lighter soUd line illustrates the deformed configuration 
in the presence of a stress 1/>3> O. The § direction is out of the 
page. 
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varying lengths and configurations, it is difficult to make 
make a specific prediction for the actual critical stress 0 

As a practical matter, one might expect that the longest 
"free dislocation length" L might be of the same order 
as the sample thickness. This would predict a critical 
strain not too different from values suggested in the 
experiments of Clark. 15 

VI. THERMALLY GENERATED DISLOCATION LOOPS 

Earlier in this paper we emphasized that it is not al­
ways profitable to speak of dislocations in a smectic 
system for the same reasons that it is not always profit­
able to speak of fluxoids in a superconductor. In the 
latter case there are type-I and type-II superconductors 
and discussions of fluxoids are restricted to the latter. 
de Gennes3 originally made this point with regard to 
smectics. Confusion arises if one loses sight of the fact 
that both the smectic order parameter and the defects in 
in the order (i.e., dislocations) are macroscopic 
phenomena in the sense that they involve correlations in 
the behavior of many individual molecules. These quan­
tities are defined as macroscopic averages in which a 
considerable number of microscopic fluctuations are 
assumed to average out. In this sense there is some 
minimum number of molecules (or in terms of a cor­
relation length ~ a minimum volume - ~3) that enters 
into the definition of the order parameter and unless 
the number of molecules involved in the average ex­
ceeds this, the order parameter will be poorly defined. 
The macroscopic symmetry of the smectic phase tells 
us that it is always possible to identify a volume large 
enough to allow a meaningful definition of the order 
parameter. 

On the other hand, in order to define a dislocation one 
first defines the macroscopic smectic order parameter 
over an extended region of the sample and then finds that 
topological considerations demand a defect somewhere. 
Thus the dislocation can only be defined if it is sur­
rounded by an extended region of sample free of macro­
scopic defects. For example, it is not self-consistent to 
assume a model in which the distance between disloca­
tions is less than the correlation length ~ needed in the 
macroscopic averages by which the order parameter is 
defined. More to the point of the present discussion is 
that confusion will arise if one attempts discussion of 
dislocation loops with dimensions smaller than ~o In 
regard to thermally generated dislocation loops, the 
length ~ should probably be defined self-consistently to 
be large enough that the equilibrium number of loops 
with dimensions comparable or larger than ~ is vanish­
ingly smalL In summary, we are arguing that there is 
a continuous distribution of "microscopic" thermal 
fluctuations that must be averaged over in order to de­
fine the smectic order parameter and that it makes no 
sense to define an averaging volume smaller than the 
largest thermal defect to appear in significant numbers. 
Macroscopic effects of all these "microscopic" fluctua­
tions are summarized by the equilibrium value and the 
thermal fluctuations in the order parameter. In this re­
gard dislocation theories of melting should be regarded 
most cautiously since the best to be expected from them 
is a prediction of the onset of a pretransition region in 
which ~ begins to grow. The width of the pretransition 
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region and the actual character of the phase transition 
are beyond any such theory. 

All of these remarks are also applicable to thermally 
generated vortex loops in superfluid helium 0 In the 
presence of macroscopic current the superfluid becomes 
unstable in the sense that microscopic thermal fluctua­
tions can grow into macroscopic vortex loops. Langer 
and Fisher, 9 Vinen,10 and Iordanskiill all discussed this 
in detail and their results can be directly applied to the 
smectic, Consider the paper by Langer and Fisher. 9 

They argue that in the presence of a macroscopic super­
fluid velocity v. there is a critical radius Rc (v.) for 
vortex rings, Rings with R < Rc will tend to contract and 
sink into the thermal distribution of microscopic fluctua­
tions, while rings with R > Rc will tend to grow without 
bound (except for pinning effects). Since vortex rings 
with radii of the order of Rc are virtually nonexistent in 
thermal equilibrium, Langer and Fisher calculate the 
probability of their appearance in terms of a nucleation 
and growth process. The macroscopic Landau-Ginzburg 
equations can be used to obtain an expression E(R) for 
the energy of a vortex ring of radius R» ~. For suf­
ficiently small currents v. [e.g., Rc(v.)>>~], Langer 
and Fisher obtain the following expression for the nuclea­
tion rate per unit volume of unstable vortex rings: 

(6.1) 

where 10 is a characteristic rate for microscopic pro­
cesses. They estimate 10 crudely by dividing a frequency 
of the order of (sound velocity)(molecular dimension)-1 
by the molecular volume. Then they assume some value 
for the smallest detectable nucleation rate IL and calcu­
late the value of Rc(v.) such that E(R)=kTln(JoIIL)' 
The velocity v. thus obtained defines a critical current 
for homogeneous nucleation of dissipative processes in 
superfluid helium. 

The one practical difference between the problem of 
critical smectic stress and critical superfluid current 
is the boundary conditions. Typically critical smectic 
stress might be experimentally studied in thin smectic 
samples homeotropically aligned between glass slides. 
Critical stresses must then exceed values corresponding 
to strains of the order of a(2D)-I, where a is the smectic 
layer spacing and D is the s ample thickness, 1 Langer 
and Fisher considered the superfluid problem analogous 
to D-oo. 

Kleman16 was the first to apply the techniques well 
known in theories of crystalline dislocations to the prob­
lem of the self-energy E(R) for a smectic dislocation 
loop. Translated into the present notation he quotes 
the following general result for an edge dislocation loop 
with unit Burgers vector and zero external stress 

where the integral is over the area of the loop. Although 
Eq. (6.2) does not explicitly include the core energy of 
the dislocation, this can be implicitly included by a 
suitable choice of the core radius. In the case of an 
infinite smectic sample, Kleman obtains the following 
expression for the self-energy of a circular loop of 
radius R: 
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where qc is an arbitrarily chosen cutoff. Presumably 
this upper cutoff in the q integral corresponds to a lower 
cutoff for R at the core radius, i. e., qc -,21T ~-l and R 
>- ~. The integral can be evaluated to obtain 

E°(R)'" 21TyR, (6.4) 

loops. For larger values of CP3 there is a critical radius 

Rc = ya-1[ CP3 - ba(2D)-1 ]-1, 

with energy 

E(R) = 1Ty2a-1[cps - ba(2D)-1]-1. 

(6.11) 

(6.12) 

Loops with R > Rc will grow unstably while for R < Rc 
they will shrink. For the opposite type of loop, i. e., 
P3 < 0, similar results are obtained except with opposite where the line tension y is given by 

'Y = a2bA (2 ~)-l, (6.5) signs 

If A - 2 ~, this is consistent with earlier estimates of the 
magnitude of 'Y, 1 It is also clear that ~ can be chosen to 
include the core energy. 

The self-energy for the same dislocation loop in the 
median plane of a sample contained between parallel 
plane boundaries with "rigid" boundary conditions1 (i, e. , 
smectic layers parallel to the boundaries), a distance D 
apart, and zero external stress (i. e., CP3 - 0 far 
from the loop) can be estimated from Eq. (6.2) USing 
acpg obtained by substitution of Eq. (8.7) of Ref. 1 
into the image solution given by Eq. (6.1a) of that same 
reference. The more general result for an arbitrarily 
located loop is essentially the same as for this simpler 
example as long as the loop is not too near the bound­
aries. On separating out a "line tension" term equal to 
EO(R) [Eq. (6.4) above], the self-energy is 

E(R) = EO(R) + a2bA1TR2 fc [q-1J1 (qR)2J{21 exp(- ADq2) 
° 

x [1 +exp(- ADl)][l- exp(- 2ADI)]-1}dq. (6.6) 

If R« (AD)1/2, J1 (qR)2 can be taken as (~qR)2 with the re­
sult that 

E(R) - ~(R) '" 21T'Y~(R2 /AD)2 x (factor of order unity). (6.7) 

Under these assumptions, the right-hand side makes a 
negligible correction to the self-energy calculated for 
the infinite sample. 

On the other hand, if R» ('AD)1/2, the term in curly 
brackets in Eq. (6.6) can be replaced by a constant 
value 2(AD)-1 and for Rqc »1, the remaining integral is 
approximately roO X-1J1 (x)2 dx = 4-1. The final result for 
R» (AD)1/2 is ° 

(6.8) 

Note that balD is just the absolute value of the stress 
inside the loop when the region outside the loop is stress 
free [See Eq. (8.18) of Ref. 1] and 1TR2 is the absolute 
value of the dislocation moment P3 for this loop. So long 
as R« (AD)1/2, the main contribution to E(R) is the "line 
tension" of the loop, When R» (AD)1/2, the boundary 
conditions make it increasingly difficult for the loop to 
grow. If, however, one applies an external stress cP;xt, 
the term - aP3CPs [See Eq. (3.20)] must be added to Eq. 
(6.8) to obtain 

(6.9) 

Consider the example of a dislocation loop with P3 > 0 
(i.e" ps=+rrR2), Then 

E(R) = 2rryR + arrR2[ba(2D)-1 - CP3], (6.10) 

and so long as CP3 < ba(2D)-1 or the strain "il3u < a/2D, the 
minimum value of E(R) is obtained for vanishingly small 
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Rc = 'Ya-1 [ I CPs I - ba(2D )-1 ]-1, 

E(Rc ) = 1TYa-1[1 cpsl-ba(2D)-1]-1. 

(6.13) 

(6.14) 

Equation (6.12) or (6.14) can be substituted directly 
into the Langer-Fisher result for the nucleation rate 
[Eq. (6.1)] and one obtains a critical stress cP~, 

(6.15) 

or a critical strain fJDC/D given by 

I fJU I - 2-1a= rrDY[abkTln{folA)]-l. (6.16) 

The radius Rc corresponding to this value of the critical 
stress as obtained from Eqs. (6.5), (6.13), and (6.15) 
is 

(6.17) 

Since the present analysis is applicable only so long as 
Rc » ~, we require 

kTln{fo/fr,)>>ha2bA. (6.18) 

Following a procedure similar to Langer and Fisher's 
fo - (105 cm sec-1/2 x 10-7 cm) (3 x 10-22 cmS)-l -1033 

sec-1 cm-s , and we choose fe, -10-1 sec-1 cm-s . If 21TA '" a 
'" 2 x 10-7 cm, we obtain b« 8 x 108 dyn cm-2. Assuming 
b less than this, substitution of the expression (6.5) for 
y gives 

I ~ - ba(2D)-11 '" b(A/ ~)~1Tba3[4kT In{fo/fr, )]-1}. (6.19) 

Taking A/~ -·L b will have to be of the order of 107 

dyn cm-2 if the critical strain is to be less than 10-2. 
Although this is still a relatively large strain, it does 
illustrate the conditions under which homogeneous 
nucleation might be observable. 

To emphasize the requirement of small b, consider 
values greater than defined in Eq. (6.18). With Rc ~~, 
Eq. (6.15) cannot be used with confidence to estimate 
cp~. A reasonable guess in that case might be the value 
CPs that makes dislocation loops of radius R - ~ unstable. 
Substitution of y as given by Eq, (6.5) into either (6.11) 
or (6.13) gives 

I cP~ - ba(2D)-1! '" baA (2 ~2)-1 . (6.20) 

If 21T'A '" a, the critical strain exceeds 7T(A/~)2, USing de 
Gennes' criteria for type-II behavior, i. e., (A/ ~)2 > 2-1, 
we obtain an unreasonably large value for ct>;, The con­
clusion is that smectic-A liquid crystals with values of 
b ~ 109 dyn cm-2 will certainly not exhibit homogeneous 
nucleation of unstable dislocatiOns. There are of course 
the possibilities of other types of instabilities, like, for 
example, the undulation instabilities under dilative 1>s 
stresses15 ,17 or a stress-induced phase transition from 
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the smectic A to either the nematic or the smectic C. 18 
Discussion of these is beyond the scope of the present 
article. Smetics with b ~ 107 dyn cm-2 might show homo­
geneous nucleation effects if other instabilities do not 
occur first. 

In principle the elastic properties of cholesterics 
can also be described in terms of the same equations as 
for smectics. The equivalent compressional elastic con­
stant can be obtained from the Frank elastic theory. If 
P is the cholesteric pitch and the three Frank constants 
are taken equal to K, bett '" 32rK(3p2)-1. Since typical 
numbers for beft are of the order of 105 for small pitch 
cholesterics, unstable growth of thermally nucleated 
dislocation loops might occur. Unfortunately, the pitch 
of a cholesteric is at least 102 larger than the lattice 
spacing in a smectic and the criterion derived from R 
» ~ [See Eq. (6.1S)] is more difficult to satisfy. Nev:r­
theless, unstable growth of dislocation loops in choles­
terics is commonly observed. 

VII. DISCUSSION 
The principal objective of this paper has been elucida­

tion of the effects of dislocations and impurities on the 
macroscopic mechanical properties of smectic-A liquid 
crystals. The first conclUSion, that smectics will behave 
as linear elastic materials capable of sustaining certain 
stresses only so long as the stresses are smaller 
than some critical value, is not particularly surprising. 
The same is true of crystals and analogous behavior is 
also characteristic of superfluids. In the most general 
circumstances we expect the critical smectic stress to 
be determined by the number and types of dislocations 
existing within the sample. In this sense the critical 
stress depends on the thermomechanical history of the 
sample. One might hope, however, to produce samples 
that are self-annealing in that they will naturally exclude 
defects from their volume. For example, in the case of 
free smectic films of the type studied by Clark and 
Meyer,19 dislocations are attracted to the sample sur­
faces by the boundary conditions1 and one does not expect 
that these samples contain pinned dislocations. Thus 
free smectic films might very well be used to investi­
gate critical stresses that can be attributed to thermal 
nucleation of dislocation loops. 

The mechanical properties of smectics below critical 
stresses are sensitive to both sample history (i. e., the 
number and type of pinned dislocations) as well as im­
purity concentration. Both dislocations and impurities 
alter the observable elastic constant associated with 
changes in layer spacing. However, these effects can 
only be observed on time scales sufficiently slow that 
the distributions of both dislocations and impurities can 
adjust to the externally applied stresses. To put this 
another way, dislocations and impurities give rise to 
relaxation processes that must be taken into account in 
analyzing stress-dependent experiments on smectic 
liquid crystals. Clark15 has observed some stress re­
laxation effects in smectics and these could be inter­
preted in terms of the effects considered here. For 
example, when smectics are subj ected to dilative 
stresses above some critical value, strong quasielastic 
light scattering with rather unique angular properties 
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is observed .15,17 SUPPOsing that the effect of the stress 
is to induce nonequilibrium values of either P3 or Qlj 

= QO~J' the condition V I¢I = 0 applied to Eqs. (3.23) 
would give 

(7.1 ) 

In the hydrodynamic limit VLu describes the local rota­
tion in the uniaxial smectic axis and ~u(q) is simply 
related to a local inhomogeneity in the off-diagonal com­
ponents in the optical dielectric constant. Previous in­
terpretations of the above-mentioned light scattering 
have all been in terms of expressions like either Eq. 
(4.1) or its spatial Fourier transform. The essential 
ingredient in aU the explanations was always the factor 
(q~+A2qt)-1 that is sharply peaked at qs« qL' We see 
here that either new or changed dislocation loops, per­
turbed impurity distributions, or even microscopic focal 
conic defects with moments Ps or (JiJ will give rise to 
the observed effects, Further, these defects can decay 
away giving rise to the observed relaxation effects. 
Some of the mechanical properties of smectics have 
been studied by Brillouin scattering. 20 However, the 
elastic constants derived from these experiments are 
high-frequency results and could differ considerably 
from low-frequency elastic constants. Experiments to 
investigate the frequency dependence of smectic elastic 
properties are clearly called for and these should be 
done for samples of varying impurity content. As yet, 
there is no satisfactory explanation for the difficulty in 
observing the Brillouin Signal due to shear sound waves 
in smectics when the propagation direction is such that 
shear sound couples to local splay. Relaxation effects 
associated with oQIJ have the correct symmetry to 
explain this. 

Impurities like those schematically illustrated in Fig, 
2 (b) posses the symmetry that would also allow them 
to have electric dipole moments. Thus elastic effects 
related to moments QIJ can also couple to external elec­
tric fields giving rise to flexoelectric effects, 21-23 This 
phenomenon has not been treated in the present paper. 
However, it does suggest that nonvanishing values of 
Q IJ should not be exclusively attributed to impurities; 
rather, inhomogeneous distributions of molecular 
orientations can also give rise to nonvanishing values 
of Q

IJ 
if individual molecules lack a center of symmetry. 

Relaxation effects due to nonequilibrium values of oQ IJ 
will be nonhydrodynamic in the sense that relaxation 
times will be finite even for infinitely long wavelengths, 
Since 0 Q IJ has the appropriate symmetry to couple 
directly to splay distortions (V~U-VL 0 mL ) even in the 
absence of electric dipole effects, the relaxation 
phenomena observed in the ripple instability experi­
ments15 ,17 could have a component due to oQIJ" 

relaxation, 

The impurity effects discussed here may also have 
some biological significance in that both the rods and 
cones of the eye and the chloroplasts of plants have 
biological membranes that organize themselves in a 
lamellar structure similar to that of smectics. Both of 
these systems function through active participation of 
specific macromolecular ingredients that might be re­
garded as impurities in the lamellar structure. One can­
not discount the possibility that stress-impurity inter-

P.S. Pershan and J. Prost 2352 

Downloaded 07 Nov 2010 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



actions are essential to function in these systems. For 
example, in the eye the primary physical process as­
sociated with "rod vision" is the photoinduced isomeriza­
tion of a rhodopsin molecule. The resultant change in 
either Ps or Q IJ of the isomerized molecule changes the 
mechanical equilibrium in the rod and this physical fact 
could be significant. In a broader sense the stress pat­
terns associated with impurities give rise to long-range 
elastic forces between impurities that could playa role 
in facilitating chemical interactions in lamellar struc­
tures. For example, we can ask whether or not reac­
tions involving three separate chemical ingredients de­
pend exclusively on random diffusion to bring the three 
ingredients together. If diffusion is not sufficient, there 
is the possibility that a reaction like A + B ~ AB induces 
a local stress whose long-range effect is to attract a 
C molecule facilitating further reaction. This mechanism 
might be invoked to explain reactions like A + C ~ AC 
which only function efficiently at low A, C concentrations 
in the presence of some species B. These last ideas are 
obviously rather speculative and the only purpose in 
presenting them here is to encourage their active 
examination. In our own laboratory we are studying the 
effects of impurities on the mechanical properties of 
lyotropic smectic liquid crystals in order to obtain more 
quantitative data on the magnitudes and rates of some of 
the phenomena discussed here. 24 
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