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ABSTRACT

The ubiquitous RNA-binding protein AUF1 promotes
the degradation of some target mRNAs, but
increases the stability and translation of other tar-
gets. Here, we isolated AUF1-associated mRNAs by
immunoprecipitation of (AUF1–RNA) ribonucleopro-
tein (RNP) complexes from HeLa cells, identified
them using microarrays, and used them to elucidate
a signature motif shared among AUF1 target tran-
scripts. The predicted AUF1 motif (29–39 nucleo-
tides) contained 79% As and Us, consistent with
the AU-rich sequences of reported AUF1 targets.
Importantly, 10 out of 15 previously reported AUF1
target mRNAs contained the AUF1 motif. The pre-
dicted interactions between AUF1 and target
mRNAs were recapitulated in vitro using biotinyl-
ated RNAs. Interestingly, further validation of
predicted AUF1 target transcripts revealed that
AUF1 associates with both the pre-mRNA and the
mature mRNA forms. The consequences of AUF1
binding to 10 predicted target mRNAs were tested
by silencing AUF1, which elevated the steady-
state levels of only four mRNAs, and by over-
expressing AUF1, which also lowered the levels of
only four mRNAs. In total, we have identified a sig-
nature motif in AUF1 target mRNAs, have found that
AUF1 also associates with the corresponding pre-
mRNAs, and have discovered that altering AUF1
levels alone only modifies the levels of subsets of
target mRNAs.

INTRODUCTION

In mammalian cells, the expression of stress-response,
proliferative, immune and developmental proteins is criti-
cally regulated through processes such as pre-mRNA
splicing and mRNA transport, stability and translation
(1–3). Specific families of mRNA-binding proteins
(RBPs) directly influence these processes by binding to
the 30 and 50 untranslated regions (UTRs) of the tran-
script. These regulatory UTR sequences are heteroge-
neous; they often encompass stretches rich in U or AU
nucleotides (and hence are termed AU-rich elements or
AREs), but other times they are rich in different residues,
such as GU or C (4,5). Several RBPs which associate with
these regulatory sequences function as mRNA turnover
and translation regulatory proteins; thus, they have been
collectively termed TTR-RBPs (6). Several TTR-RBPs
function primarily as translational inhibitors, such as the
T-cell-restricted intracellular antigen-1 (TIA-1) and the
TIA-1-related protein TIAR (4,7–10), but can also influ-
ence mRNA turnover (11,12). The Hu/elav proteins
(HuR, HuB, HuC and HuD), broadly enhance mRNA
stability (13,14), but can also enhance or inhibit the trans-
lation of several target mRNAs (15–20). Other TTR-RBPs
decrease the stability of target mRNAs, including triste-
traprolin (TTP), K homology splicing-regulatory protein
(KSRP), the CUG triplet RNA-binding protein 1 (CUG-
BP) and the butyrate response factor-1 (BRF1) (5,21–23).

The TTR-RBP AUF1 (AU-binding factor 1), also
called hnRNPD (heterogeneous nuclear ribonucleoprotein
D), has also been implicated in several distinct post-
transcriptional regulatory processes. AUF1 was originally
found to promote mRNA decay, as determined from
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studies using cultured cells expressing different levels of
AUF1 as well as using AUF1-deficient mice (24–30).
However, in some instances AUF1 was also shown to
enhance mRNA stability (26,28,31) and to promote trans-
lation (11). AUF1 comprises four proteins that arise from
alternative splicing (p37, p40, p42, p45) and shuttle
between the nucleus and the cytoplasm (27). AUF1 iso-
forms associate with hsp70/hsc70, with the translation
initiation factor eIF4G, and with the poly(A)-binding pro-
tein PABP (32). The degradation of AUF1-bound
mRNAs requires the dissociation of AUF1 from eIF4G
followed by proteasome-mediated destruction (32), and
has also been linked to the recruitment of AUF1 to the
exosome (33).

All of the AUF1 isoforms contain two RNA recogni-
tion motifs (RRMs) through which they bind to a select
group of mRNAs (32,34,35). Reported AUF1 target tran-
scripts include many mRNAs that encode stress-response
and proliferative proteins such as p21, Cyclin D1, MYC,
FOS, GM-CSF, TNF-a, IL-3, parathyroid hormone
(PTH), and the growth arrest and DNA damage-inducible
(GADD)45a (24–26,28–31,36). AUF1 has been shown to
influence the steady-state mRNA levels both in untreated
conditions and in response to treatment with damaging
and growth-regulatory stimuli. For example, in cells
treated with the growth inhibitor prostaglandin A2, irra-
diated with the genotoxin UVC (short wavelength ultra-
violet light) or left without treatment, AUF1 associated
with the cyclin D1 mRNA and reduced its stability
(36,37). In untreated cells, AUF1 was also found to associ-
ate with the p21 mRNA and reduced its half-life (25).
Similarly, following treatment with bacterial lipopolisac-
charide (LPS), AUF1 was implicated in the degradation
of target mRNAs encoding TNF-a, IL-1b and cyclooxy-
genase-(COX)-2 (38,39). Through its actions on these
and other mRNAs, AUF1 was shown to play a central
role in the cellular response to mitogenic and immune
factors (39–41), differentiation cues (42,43) and carcino-
genesis (44).

Given the participation of AUF1 in critical cellular
functions and its ubiquitous expression pattern (45), we
sought to identify the collective of AUF1 target mRNAs.
We employed an approach based on the immunopreci-
pitation of ribonucleoprotein (RNP) complexes from
unstimulated HeLa cells using an anti-AUF1 antibody.
The AUF1-associated mRNAs were then identified by
microarray hybridization and the existence of a shared
sequence among the putative targets was elucidated by
computational analysis, as previously described for TIA-
1, TIAR and HuR (4,10,46). The signature motif sequence
was 29–39-bases long and was highly AU-rich, consistent
with the sequences of previously reported AUF1 targets.
The usefulness of the signature motif in the prediction of
additional AUF1 targets was tested by RNA-binding
assays which examined the interaction of AUF1 with indi-
vidual transcripts. These analyses revealed that AUF1
associates with both the mature mRNA (cytoplasmic)
and the unprocessed pre-mRNA (nuclear). Despite exten-
sive evidence that AUF1 promotes target mRNA decay,
silencing AUF1 only elevated the levels of some target
mRNAs, while AUF1 overexpression only reduced the

abundance of a subset of target mRNAs. These findings
support the notion that AUF1 only accelerates mRNA
decay for a fraction of targets and may regulate the meta-
bolism of other target mRNAs through different post-
transcriptional mechanisms.

MATERIALS AND METHODS

Cell culture, treatment and transfection

Human cervical carcinoma cells (HeLa) were cultured
in Dulbecco’s modified essential medium (Gibco BRL,
Gaithersburg, MD) supplemented with 10% fetal bovine
serum (HyClone, Logan, Utah) and antibiotics and
were maintained at 378C in a humidified atmosphere con-
taining 5% CO2 in air. For AUF1 knockdown, cells were
transfected with pSILENCER plasmids that either
expressed an AUF1-directed shRNA or lacked an insert
(25). For AUF1 overexpression, cells were transfected
with a mixture of four plasmids (pcDNA-derived plasmids
expressing p37, p40, p42 or p45) or with pcDNA lacking
an insert (36). All transfections were performed by using
Lipofectamine 2000; 8 mg plasmid DNA was used per
transfection.

cDNA array analysis

RNA in the material obtained after IP reactions using
either an anti-AUF1 antibody or IgG was reverse tran-
scribed in the presence of [a-33P]dCTP (MP Biomedicals),
and the radiolabeled product was used to hybridize cDNA
MGC arrays (http://www.grc.nia.nih.gov/branches/rrb/
dna/index/dnapubs.htm#2), containing 9600 genes, as pre-
viously reported (4,10,46). The data were analyzed using
the Array Pro software (Media Cybernetics, Inc.), then
normalized by Z-score transformation and used to calcu-
late differences in signal intensities. Significant values were
tested using a two-tailed Z-test and a P of <0.01. The data
were calculated from three independent experiments. The
complete cDNA array data are available from the authors.

Computational analysis

Human UniGene records were first identified from the
most strongly enriched AUF1 targets derived from
the array analysis; the top 244 transcripts served as the
experimental dataset (Supplementary Table S1) for the
identification of the AUF1 motif. The 128 transcripts
with complete, high-quality 30UTR sequences were first
scanned with RepeatMasker (www.repeatmasker.org)
to remove repetitive sequences (Supplementary Data).
The remaining sequences were divided into 100-base-
long subsequences with 50-base overlap between consecu-
tive sequences and were organized into 50 data sets.
Common RNA motifs were elucidated from each of the
50 random data sets. The top 10 candidate motifs from
each random data set were selected and used to build the
stochastic context-free grammar (SCFG) model, which
summarizes the folding, pairing and additional secondary
structure features. The SCFG model of each candidate
motif was then used to search against the experimental
30UTR dataset as well as the entire human UniGene
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30UTR data set to obtain the number of hits for each
motif. The motif with the highest enrichment in the experi-
mental data set compared with the entire UniGene data
set was considered to be the top AUF1 candidate motif.
The enrichment was examined by Fisher’s exact test. The
identified RNA motif for AUF1 forms a stem-loop and
appeared in 75% of the transcripts that were found by IP
analysis.
The identification of the RNA motif in unaligned

sequences was conducted using FOLDALIGN software
(47), and the identified motif was modeled by the SCFG
algorithm and searched against the transcript data set
using the COVE and COVELS software packages (48).
The motif logo was constructed using WebLogo (http://
weblogo.berkeley.edu/). RNAplot was used to depict the
secondary structure of the representative RNA motifs.
The computation was performed using the NIH Biowulf
computer farm. Both UniGene and Refseq data sets were
downloaded from NCBI.

Cell fractionation,RNApurificationandwesternblotanalysis

Cells were incubated on ice for 5min in cytoplasmic lysis
buffer containing 20mM Tris–HCl (pH 7.5), 100mM
KCl, 5mM MgCl2, 0.3% IGEPAL CA-630, 1000U/ml
of RNaseOUT, and protease inhibitors, then centrifuged
(10 000�g) for 10min. After removing the supernatant
(cytoplasmic fraction), the pellet was resuspended in
100ml IP buffer (100mM KCl, 5mM MgCl2, 10mM
Hepes, pH 7.0, 0.5% Nonidet P-40, 1000U/ml
RNaseOUT, plus protease inhibitors), kept on ice
10min, subjected to three cycles of freezing and thawing,
and centrifuged (10000�g) for 10min.
For western blot analysis, whole-cell lysates (10mg) were

resolved by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS–PAGE) and transferred onto poly-
vinylidene difluoride (PVDF) membranes. Hybridizations
were carried out using a rabbit polyclonal anti-AUF1
antibody (Upstate Biotech.) or mouse monoclonal anti-
GAPDH antibody (Santa Cruz Biotech.). Following incu-
bation with the appropriate secondary antibodies, the sig-
nals were detected with the ECLTM reagent (Amersham
Biosciences).

Binding assays: IP and biotin pulldown

IP of endogenous AUF1–mRNA complexes was carried
out using previously described methods (4,46,49). Briefly,
20 million HeLa cells per sample were lysed and used
for IP (1 h at 48C in the presence of 30 mg either a
rabbit polyclonal anti-AUF1 antibody or control rabbit
IgG (Upstate). RNA was isolated using acid phenol–
chloroform (Ambion).
For biotin pulldown assays, PCR fragments contain-

ing the T7 RNA polymerase promoter sequence (T7):
CCAAGCTTCTAATACGACTCACTATAGGGAGA
were used as a templates for in vitro transcription of the
GAPDH 30UTR, p53 coding region (CR) and, the
AQP11, CANX, CGI-149, MATR3, RTKN2, SERP1,
VIL2, SNX13, TMEM2 and RAB23 30UTR using bioti-
nylated CTP. Two mg of biotinylated transcript was incu-
bated with 80 mg of lysate (cytoplasmic or nuclear) for

30min at room temperature, following which the com-
plexes were isolated with streptavidin-coated magnetic
Dynabeads (Dynal) and the pulldown material was ana-
lyzed by standard western blotting.

Oligonucleotides used to prepare templates for in vitro
biotinylated transcription and pulldown assay

To prepare the coding region of p53, primers (T7)AT
GGAGGAGCCGCAGTCAGATCCTAGC and AGAA
TGTCAGTCTGAGTCAGGC (forward and reverse,
respectively) were used.

To prepare the 30UTR templates, the following primer
pairs (forward and reverse, respectively) were used:

(T7) CCTCAACGACCACTTTGTCA and GGTTGA
GCACAGGGTACTTTAT for GAPDH,

(T7) GCATAACAACCATACAATTAATAAAAA
and AATGAGGCTTTTCTAGCAGCA for
AQP11,

(T7) CAAGAAACAGAAAGCCACGA and TCGGT
ACATTTGAAAGCCTCT for CANX,

(T7) CCAGCCACTGTCTCACAGAT and CCAGCA
CTGAAGCTCTTGGT for CGI-149,

(T7) ATTGGCAGAAGAACGCAGAC and CATGG
CCTAGGGTTTTCTTTT for MATR3,

(T7) CTCCAAGGCAGAAATCCATC and TGCTGT
TGCTGACACCTTATG for RTKN2,

(T7) TATCAGGATGGGCATGTGAA and ATGGC
ACATTGGACTCAACA for SERP1,

(T7) AGGCCGGGACAAGTACAAG and CACCTG
CACATGGCATCTTA for VIL2,

(T7) GCAGAAAAGGTGACACTCCA and TGGGT
TTAAAGGTATACACTGAGG for SNX13,

(T7) CTTAAGTGCTGGGGGAAAAA and GCAGG
AGGGTGAACAGAAAA for TMEM2, and

(T7) ACCCAACAAACAAAGGACCA and CGCTG
TCAGATGAAAACTGC for RAB23.

RT followed by conventional PCR and real-time,
quantitative (q)RT–PCR

Total RNA or RNA isolated from the IPs was reverse
transcribed (RT) using oligo-dT (for mRNA) or random
hexamers (for pre-mRNA), and subjected to either PCR
or quantitative PCR (qPCR) to assess the abundance of
the products using the gene-specific primer pairs listed
below. Conventional PCR amplification was visualized
by electrophoresis through ethidium bromide-stained
1.5% agarose gels; qPCR analysis was performed using
the QuantiTect SYBR Green PCR kit (Qiagen) and an
ABI Prism 7000 detection system with the ABI Prism
7000 SDS software.

Oligonucleotides for RT–PCR and RT–qPCR-mediated
detection of mRNAs in IP materials and in total RNA

Oligonucleotide pairs (forward and reverse, respectively)
to detect mature mRNAs were as follows:

GGCTGCACTGGATTCATCA and TGAGGCTTTT
CTAGCAGCATT for AQP11 mRNA, ATCGTTCATT
GCCTTTCCAG and ATGGAGAGTGGGCATTTGAC
for CANX mRNA, AAGTCAGGAGCTGACCAGGA
and CCAGAGGATCTGGGTTTGAA for CGI-149
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mRNA, GTTTGAACCCGTTTTGGTTG and TCACGG
GATTCAAGTGACAA for MATR3 mRNA, AGAAGA
TGCTGCAGGGAAAA and ACTCTGAGGGCACAAC
TGCT for RTKN2 mRNA, AAAGCTACCGTGGTGG
AGTG and ATGGCACATTGGACTCAACA for SERP1
mRNA, AACCATGGCACTTGATGTGA and TGCAC
GAGAAGGAATGAGTG for VIL2 mRNA, AGAGAA
AACTGCCCCCATCT and CACAGCCCTTAAAGCAC
ACA for SNX13 mRNA, AAAAGGAGCGCTTTCTA
GGG and GGCATTTTGCTGCTTCTTTC for TMEM2
mRNA, and CCTGTGAAGTGTGGTGATGC and
TGTGGGACTGACAGCTCTTG for RAB23 mRNA.

Oligonucleotides used for RT–qPCR-mediated detection of
pre-mRNAs in IP materials and in total RNA

Oligonucleotide pairs designed to amplify fragments span-
ning intron–exon junctions were as follows:

GGCTGCACTCATCACCTTTT and TGTCGGCCC
TACTGGTTAAG for AQP11 pre-mRNA, TCTCCCA
AGGTTTGAAATGG and CGAATTTTGCTTTCCCT
TTG for CANX pre-mRNA, CTGATCGTCCATGCTT
TCAA and AGGGTGTCTGATGGGAACAG for CGI-
149 pre-mRNA, GGTTATCCCCATCTGTGCTC and
TGCTTGATCAACTCAATGTCATC for MATR3 pre-
mRNA, CAAGTTTCATAGGTGAATCAATGC and
TAGTGCAGCGCATGATCTTT for RTKN2 pre-
mRNA, TTTGAATAATCTGGAAAATTGCTG and
CAGGCCTGTCTTCACTTCTT for SERP1 pre-mRNA,
CCTCATGTTCTCGTTGTGGA and TTGCCCTTCCT
GTTTTCCTA for VIL2 pre-mRNA, CAGCCCCAATA
ATGTGCTTC and TTGTCTCCCAGTAGCTTTTGC
for SNX13 pre-mRNA, TTTCCACTGAATCCCAAA
AA and TTGTTATCTGGGGCAAAAGG for TMEM2
pre-mRNA, and CGGAGTGACTTCCACCAGAT and
CCACTGAACCGTATGCCTAAA for RAB23 pre-
mRNA.

RESULTS

Sequence and structure of a predicted
AUF1 signature motif

A collection of mRNAs associated with AUF1 was pre-
viously identified in HeLa cells (25). Briefly, pools of
AUF1-associated mRNAs were isolated by immunopreci-
pitation (IP, Figure 1A) under conditions that preserved
the integrity of RNP complexes. The RNA in the IP mate-
rial (associated with AUF1 in the AUF1 IP samples or
bound non-specifically to the reagents in the IgG IP sam-
ples) was then extracted and subjected to RT. The result-
ing products were hybridized to human cDNA arrays
(MGC arrays, Figure 1A, http://www.grc.nia.nih.gov/
branches/rrb/dna/dna.htm#). A total of 244 array spots
(�2.5% of the total spots on the array, Supplementary
Table S1) had Z ratios >1.45 when the signals in AUF1
IP arrays were compared with the signals in the IgG IP
arrays and were thus deemed to represent specific AUF1-
associated transcripts.

These 244 transcripts (the ‘experimental dataset’) were
used for further analysis. First, they were subjected to
computational analysis to identify conserved primary

#1 ARHI UGACAUAUACUAAAUAAAAAAAUGAAUAUGUUGAUCAUU
#2 SWAP70 UUAUACUGAGUAGUAGAAAGA---AGCUAAUUUGAAAUA
#3 XRN2 AGUUUUUAA-UAAAACUA------CAGUACUUUGUGUAU
#4 LOC84661 UUUUGGAUGUAUCAAGAA------CCUUCCGGACAACAG
#5 C20orf4 GUGUGGACCCUGGCCUCA------GAGGCCUUGCUGGUG
#6 RYBP UUACAUAAGCACUCAUGA------AAAUAUGGUAUUCUG
#7 H2AFY UGACUUAGUGUAACCUAG-------GAGAUUUUAUAGUU
#8 MGC1223 UUAUUGAGACCAUCAUAG------AGAUCGAUUCUUGUA
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Figure 1. Sequence and structure of the predicted AUF1 signature
motif, as identified among AUF1-associated transcripts. (A) Left,
Schematic of the experimental approach. HeLa cell lysates were sub-
jected to immunoprecipitation (IP) with either IgG or anti-AUF1 anti-
bodies. The collections of RNAs isolated from each IP reaction were
identified using microarrays [Materials and Methods section and (25)]
and were used to identify a signature sequence shared by the tran-
scripts. Right, representative AUF1 signals in IP samples, as detected
by western blot analysis; Input, aliquot of lysate before IP; H.C., heavy
immunoglobulin chain. (B) Probability matrix (graphic logo) of the
AUF1 motif, elucidated from the array-derived experimental dataset,
indicating the relative frequency with which each nucleotide is likely to
be found at each position within the motif. (C) Specific sequence and
secondary structure of eight representative examples of the AUF1 motif
in specific mRNAs; the corresponding gene names are shown.
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RNA sequences and secondary structures (Materials and
methods section). Among the 100 possible candidate
motifs initially obtained from the experimental dataset,
one motif comprising 29–39 nucleotides had the highest
frequency of hits per kb in the experimental dataset over
the entire Unigene database. A graphic representation of
the relative frequency of nucleotides at each position (the
motif logo) revealed that the most frequent nucleotides
were A and U, jointly comprising a striking �79% of
the sequence (Figure 1B). While the numbers of As and
Us were similar, U residues appeared to cluster in the 50

and 30 regions of the motif, while A residues were predo-
minant in the center of the motif. This signature motif
differs markedly from U-rich motifs identified for HuR,
TIA-1 and a C-rich motif identified for TIAR (4,10,46),
but does agree with the AU-richness of many AUF1 target
mRNAs [e.g. (50)]. Depicted in Figure 1C are eight exam-
ples of the secondary structure of the AUF1 signature
motif on specific mRNAs.

The AUF1 signature sequence predicts AUF1 target mature
mRNAs and pre-mRNAs

Using the AUF1 motif in Figure 1B, we queried the
Unigene database for additional putative AUF1 target
mRNAs. A total of 7572 transcripts were identified, com-
prising 6.2% of the complete Unigene database. Table 1
lists a subset of transcripts and the positions of the indi-
vidual AUF1 motif hits within the 30UTR (the entire list
can be found as Supplementary Table S2). The number of
motif hits in the 30UTRs of each transcripts is also indi-
cated. Importantly, among a list of 15 previously

described AUF1 target mRNAs, 10 were found to have
at least one hit of the AUF1 motif (Table 2), supporting
the predictive value of the motif. Five other prominent
AUF1 targets (p21, MYC, IL-1b, IL-6 and PTH
mRNAs) did not have specific hits for this RNA motif,
indicating that the signature motif does not identify the
entirety of AUF1 target mRNAs; other motifs also iden-
tified many but not all target mRNAs for given RBPs
(4,10,46).

In order to test if the AUF1 signature motif could be
used to predict AUF1 target RNAs, we monitored the
association of AUF1 with several transcripts that were
computationally found to have at least one occurrence
of the AUF1 motif. In total, 10 transcripts were chosen
based on the presence of different numbers of motif hits in
their 30UTRs: one hit (AQP11), two hits (VIL2), three hits
(RAB23, SNX13, CGI-149), four hits (TMEM2, CANX),
five hits (MATR3, SERP1) and six hits (RTKN2).
Initially, we assayed the interaction between AUF1 and
predicted target mature mRNAs by RNP IP analysis using
whole-cell preparations (‘Total’). Transcript identification
was performed by RT of RNA isolated from IP, followed
by either conventional PCR (Figure 2A, top) or quantita-
tive, real-time PCR analysis (Figure 2A, bottom). All of
the predicted targets (black bars) were found to be signifi-
cantly (5–40-fold) enriched in AUF1 IP relative to IgG IP,
although there was no clear correlation between magni-
tude of enrichment and the number of motif hits. Negative
control transcripts (clear bars) were not enriched.

Further analysis revealed that AUF1 associated with all
of the target mRNAs (except with the AQP11 mRNA)
when using cytoplasmic lysates (Figure 2B, top),

Table 1. Putative AUF1 target mRNAs based on the presence of the AU-rich signature motif in the 30UTR

Position in 30UTR # hits Name Symbol UniGene

885–917, 1621–1694, 1768–1801, 2565–2594, 3285–3317,
3678–3748, 4480–4512

10 Insulin-like growth factor 1 IGF1 Hs#S3218917

415–453, 1469–1501, 2035–2067, 2083–2115, 2224–2256,
2738–2770, 2825–2857

7 Cathepsin S CTSS Hs#S1728864

866–898, 1632–1664, 2787–2819, 3215 3247, 3248–3280,
4460–4492

6 Rhotekin 2 RTKN2 Hs#S4553519

301–333, 354–395, 1340–1370, 1385–1417, 1510–1542,
4407–4461

6 Protocadherin 19 PCDH19 Hs#S4812509

61–93, 259–289, 433–465, 776–808, 1911–1946 5 Stress–associated ER protein 1 SERP1 Hs#S2139162
20–52, 63–94, 116–147, 548–580, 1025–1072 5 Matrin 3 MATR3 Hs#S3219061
779–810, 891–923, 981–1013, 1106–1138, 1611–1643 5 Calcyphosphine 2 CAPS2 Hs#S3619535
474–513, 989–1021, 1472–1504, 1594–1666 4 NAG14 protein NAG14 Hs#S3817889
108–144, 856–888, 1608–1652, 1791–1823 4 Transmembrane protein 2 TMEM2 Hs#S2138764
264–296, 1073–1104, 1111–1143, 1331–1363 4 Calnexin CANX Hs#S3218949
87–122, 424–456, 485–584 3 Chemokine (C–C motif) ligand 8 CCL8 Hs#S1730823
120–150, 550–582, 982–1081 3 Sorting nexin 13 SNX13 Hs#S4001833
1261–1312, 2067–2099, 2183–2215 3 CGI–149 protein CGI–149 Hs#S2140320
724–756, 1112–1143, 1664–1724 3 RAB23, RAS oncogene family RAB23 Hs#S2140367
753–784, 1156–1255 2 Villin 2 VIL2 Hs#S1728180
173–272 1 Cytochrome c–1 CYC1 Hs#S1726589
255–354 1 Aquaporin 11 AQP11 Hs#S7089975
462–561 1 Huntingtin interacting protein C HYPC Hs#S15644799
71–170 1 Cleavage/polyadenylation factor 3 CPSF3 Hs#S2140592
1353–1452 1 Extracellular signal–regulated kinase 8 ERK8 Hs#S4435687

Partial list of genes bearing the AU–rich signature motif (Figure 1) in the 30UTR of the corresponding transcripts. The complete list of predicted
target transcripts is available (Supplementary Table S2). The relative position(s) and number of the AU–rich motif hits in the 30UTR of each
transcript are indicated.
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and when using nuclear lysates (data not shown).
Therefore, we hypothesized that AUF1 might associate
with such target transcripts in pre-mRNA form (the pre-
spliced version of the mRNA). To test this possibility,
we designed primer pairs that would amplify fragments
spanning intron–exon junctions of the corresponding
pre-mRNAs, and would thereby reveal if the pre-mRNA
version of the mRNA was also a target of AUF1. While
the overall abundance of the pre-mRNA transcripts was
much lower than that of the mature mRNAs, all of the
target pre-mRNA transcripts were found enriched in the
AUF1 IP compared with the IgG IP (Figure 2B, bottom),
suggesting a model of co-transcriptional or early post-
transcriptional loading of AUF1 onto newly synthesized
target transcript. The relative enrichments of pre-mRNAs
and the corresponding mature, cytosolic mRNA were gen-
erally different (compare top and bottom graphs in
Figure 2B). In both experimental systems, the negative
control transcripts were not found to interact as pre-
mRNAs, supporting the specificity of the interactions
(Figure 2B).

To obtain independent evidence that AUF1 interacted
specifically with the 30UTRs of these mRNAs, biotiny-
lated segments spanning the 30UTRs of target mRNAs
containing at least one hit of the AUF1 motif (Figure 3,
top) were prepared by in vitro transcription (Materials and
methods section). Following incubation with nuclear or
cytoplasmic HeLa cell lysates, the corresponding RNP
complexes were pulled down using streptavidin-coated
paramagnetic beads, whereupon the identity and abun-
dance of the various AUF1 isoforms in the resulting
RNP complexes were assayed by western blot analysis.
In keeping with reports that AUF1 isoforms are not uni-
formly present in both cytoplasmic and nuclear compart-
ments, p45 was preferentially seen in the nuclear lysates,
while the p40/p42 doublet was seen in both sets of pull-
down samples; p37 showed low abundance in both com-
partments (Figure 3, bottom). These results suggest that
AUF1 binds to the 30UTR of target mRNAs, both in the
nucleus and in the cytoplasm.

Taken together, these data indicate that the presence of
at least one hit of the AUF1 signature motif described in
Figure 1 can be used to successfully predict if a given
mRNA or pre-mRNA associates with AUF1, as measured

by RNP IP analysis of endogenous mRNAs and by anal-
ysis of binding to biotinylated transcripts.

Functional consequences of the interaction of AUF1 with
target mRNAs

Given the broadly recognized influence of AUF1 in pro-
moting target mRNA decay, we sought to study the influ-
ence of AUF1 upon the subset of mRNAs bearing hits of
the signature motif identified here. We investigated this
question by modulating the levels of AUF1, then measur-
ing the steady-state levels of the target mRNAs.
First, we reduced AUF1 levels by transfecting HeLa

cells with plasmid that either expressed a silencing hairpin
(sh)RNA directed towards all four AUF1 isoforms [pSIL-
AUF1shRNA (25)] or contained no insert (pSIL).
Western blot analysis revealed the efficiency of the silen-
cing (Figure 4A). Unexpectedly, however, lowering AUF1
levels did not augment the levels of all target mRNAs, as
would be expected if AUF1 universally promoted their
decay. Only RTKN2, TMEM2, AQP11 and MATR3
showed slightly (<50%) elevated levels; the remaining
six AUF1 target mRNAs remained at levels similar to
those seen in cells transfected with the control vector
(pSIL) (Figure 4B). The levels of a positive control tran-
script, Cyclin D1 mRNA (‘Pos.’), increased upon silencing
AUF1, while negative control transcripts (‘Neg.’,
GAPDH, MMP25, TCF3 mRNAs) remained unchanged
(Figure 4B).
Second, we increased AUF1 protein levels by transi-

ently transfecting a mixture of four plasmids, each expres-
sing one AUF1 isoform (Figure 5B), while the control
group was transfected with the corresponding empty plas-
mid. We then tested the consequences of this intervention
on the steady-state abundance of AUF1 target mRNAs.
Here, we also found that AUF1 overexpression led to a
moderate reduction (<40%) in the levels of some pre-
dicted targets (CGI-149, CANX, RAB23 and SNX13
mRNAs) and had little influence on the levels of the
remaining mRNAs. As in Figure 5B, the positive control
transcript (Cyclin D1 mRNA) was reduced after AUF1
overexpression, while negative control transcripts
(GAPDH, MMP25 and TCF3 mRNAs) also remained
unchanged (Figure 5B), suggesting that the modest reduc-
tion in the levels of AUF1 mRNAs was specific.

Table 2. Reported AUF1 target mRNAs bearing the AU–rich signature motif

Position in 30UTR # hits Name Symbol UniGene Reference

410–442, 1378–1411, 1581–1615 3 Cyclin D1 CCND1 Hs#S3987156 (25,37)
45–99 1 Cyclin B1 CCNB1 Hs#S3618391 (unpublished)
291–326, 457–488 2 Gadd45A GADD45A Hs#S1731372 (36)
492–529, 592–624 2 p16 CDKN2A Hs#S4001849 (53)
210–248 1 IL8 IL8 Hs#S3218902 (54)
648–680 1 TNFa TNF Hs#S3218906 (55)
1783–1831, 2389–2429 2 Estrogen receptor a ESR1 Hs#S1726719 (56)
423–454 1 TS TS Hs#S1728128 (57)
939–970, 1433–1473, 1807–1840, 1885–1917, 2189–2220 5 Cyclooxygenase–2 PTGS2 Hs#S1730801 (38)
227–265, 3976–4013, 4373–4407, 4957–4989 4 Bcl–2 BCL2 Hs#S1730182 (58)

List of known AUF1 target mRNAs, out of a total of 15 best–characterized AUF1 target mRNAs previously reported. The positions of the motif
hits within the 30UTRs are indicated. Overlapping motifs are listed as one.
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Collectively, these data indicate that AUF1 reduces the
steady-state levels of some, but not all AUF1 target
mRNAs. Instead, the abundance of a subset of AUF1-
associated transcripts is not directly altered following the
modulation of AUF1 levels.

DISCUSSION

The signature motif identified among AUF1-associated
mRNAs was prominently AU-rich (38% A, 41% U, 7%
G, 14% C), and formed a stem with four internal bulges
and one loop at the end (Figure 1). Using this motif, we
identified many other putative target mRNAs which had
at least one hit of the AUF1 motif (Supplementary
Table S2). Importantly, out of the 15 best-characterized
AUF1 target mRNAs, 10 had at least one hit of the AUF1
motif in their 30UTRs (Table 2). As noted for signature
sequences identified earlier for other RNA-binding pro-
teins (HuR, TIA-1 and TIAR) (4,10,46), the specific
motifs were not capable of identifying every single target
mRNA. For these RBPs, some mRNAs that were demon-
strated targets were absent from the lists of RNAs bearing
signature sequences. There are several reasons why a sig-
nature motif does not identify every target, as seen for the
AUF1 signature motif. It is possible that slight sequence
variations within the probability matrix will be needed in
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Figure 2. Analysis of the association of AUF1 with predicted target
mRNAs bearing AU-rich motif. (A) Analysis of the interaction between
AUF1 and 10 putative target transcripts chosen randomly from Table 1.
Following RNP IP, the association of putative target mRNAs with AUF1
in whole-cell (‘Total’) HeLa cell lysates was assessed by monitoring the
enrichment of the mRNAs in AUF1 IP samples relative to IgG IP sam-
ples. Conventional PCR (top, gel images) and real-time, quantitative
(q)PCR (bottom, graph) were used to quantify this enrichment. In the
qPCR analysis, the levels of housekeeping GAPDH mRNA were used to
normalize differences in sample input. (B) RNP IP analyses were con-
ducted as described in the legend of Figure 2A, except that cytoplasmic
lysates (top graph, ‘Cytopl. mRNA’) and nuclear lysates (bottom graph,
‘Pre-mRNA’) were used. For pre-mRNA detection, specific primer pairs
were used to amplify DNA regions that spanned intron–exon junctions.
In (A) and (B), negative control transcripts (‘Neg. controls’) not AUF1
targets) are depicted as white bars. In (A) and (B), the graphed data show
the means+ the standard error of the means (SEM) from three indepen-
dent measurements.
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Figure 3. Schematic of the RNA segments spanning sections of the
30UTRs of putative AUF1 target mRNAs that were amplified and
used as templates for in vitro transcription in the presence of biotiny-
lated CTP (Materials and methods section). The amplified regions con-
tained one or several AUF1 motif hits; the complete number of hits is
shown in Table 1; all numbers refer to positions within the 30UTR. The
biotinylated transcripts were incubated with HeLa cytoplasmic lysates
or nuclear lysates and the presence of AUF1 in the resulting RNP
complexes was tested by western blot analysis. Biotinylated transcripts
spanning the p53 coding region (p53CR) and the GAPDH 30UTR as
well as beads without biotinylated RNA were included as controls to
detect background signals.
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order to detect all of the possible targets. Alternatively, it
is possible that AUF1 (and other RBPs) recognize and/or
associate with two or more entirely different sequence
motifs. Finally, as we observed with TIAR (4), it is possi-
ble that under different culture conditions, AUF1 may
exhibit different affinity for RNA sequences. It also
remains unanswered whether the AUF1 signature motif
accommodates one or both RRMs.
Since AUF1 promotes the decay of many target

mRNAs [those encoding cyclin D1, p21, GADD45a,
MYC, TNFa, thymidylate synthase, IL-1b, etc.
(Table 2)], we hypothesized that the AUF1 motif-bearing
transcripts identified here might also be degraded by
AUF1-mediated action. In this regard, we did not expect
to find that the levels of most of the 10 transcripts tested
remained unaffected after AUF1 silencing or overexpres-
sion (Figures 4 and 5). While AUF1 silencing elevated the
levels of some mRNAs such as RTKN2, TMEM2, AQP11
and MATR3, plausibly because their half-lives increased
as did the half-life of positive control CCND1 mRNA
[(25,37), Figure 4B], it is possible that the degree of
AUF1 silencing was insufficient to elevate the levels of
the other six transcripts. Similarly, while AUF1 overex-
pression reduced the levels of mRNAs such as CGI-149,
CANX, RAB23 and SNX13, likely by lowering their half-
lives as it lowered the CCND1 mRNA half-life [(25,37),
Figure 5B], it is also possible that the degree of AUF1
overexpression was not enough to decrease the levels of
the other mRNAs studied (Figure 5B). In addition, the
most labile AUF1 targets actually may not be represented
at all in this analysis. If the binding of AUF1 to a given
mRNA triggers its degradation, one can imagine that
those targets would be degraded rapidly before or
during lysis or during the IP reaction, and thus would
not be available for isolation by cDNA analysis (and
hence would not be included for the motif identification).
A further consideration regarding the stability of AUF1
target mRNAs is that in some instances, AUF1 action as a
decay-promoting RNP was more apparent after exposure
of cells to agents such as methylmethane sulfonate, UVC,
prostaglandin A2 or LPS (25,36,37); despite extensive
efforts to test the effect of AUF1 overexpression or silen-
cing in stress-treated cells, the AUF1 target mRNA levels
did not show any striking differences following exposure
to stress agents (data not shown).
Instead, it is more likely that the binding of AUF1 to

some target mRNAs does not promote their decay, but
serves to perform other functions. For example, it was
particularly interesting to find that AUF1 associated
with predicted target mRNAs in their pre-mRNA form,
as shown in Figure 2B. In fact, it is likely that AUF1
associates with some target transcript co-transcriptionally
or immediately after transcription, before splicing has
ended. In this capacity, AUF1 could assist with the
nuclear processing of target transcripts (e.g. splicing or
maturation of the 50 and 30 ends) or with their nuclear
transit. These findings also support an earlier report by
Chen and colleagues showing that AUF1 is a nucleo-
cytoplasmic shuttling protein that first associates with
target mRNAs in the nucleus and later influence
their fate in the cytoplasm (51). In addition, AUF1 was
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reported to have other post-transcriptional actions. In one
instance, AUF1 functioned as an enhancer of MYC trans-
lation; it competed with the translational inhibitor TIAR
for binding to the MYC mRNA, thereby relieving TIAR’s
suppressive influence on MYC translation (11). In other
reports, AUF1 was shown to stabilize labile transcripts
bearing the JUN, FOS and GM-CSF instability sequences
(31) and the PTH mRNA (26). Subsequent work by
Raineri and coworkers considered each AUF1 isoform
individually. They obtained evidence that p37 and p42
stabilized a labile reporter mRNA, while p40 and
p45 promoted its degradation (28). Here, we have studied
all four AUF1 isoforms jointly, since they share the
two RRM regions and therefore they likely share target
mRNAs. Besides this consideration, it would have been
possible to overexpress AUF1 isoforms individually,
but there are no suitable antibodies to IP each isoform
specifically, and there are no siRNAs that will individ-
ually silence one isoform and not others. However, as
these studies progress, it will be important to analyze
systematically the subset of target transcripts that
each isoform binds to, and the specific influence of each
isoform upon the collection of mRNAs with which it
complexes. It will also be interesting to find out if
treatment with various stimuli will trigger the dissociation,
as previously reported (36), or the association (37) of
AUF1 isoforms, individually or as a group, to target
transcripts.
Paradoxically, it is notable that the sequence identified

for AUF1 target mRNAs is, in fact, AU-rich. Similar
systematic analyses were performed earlier on RBPs that
were traditionally believed to bind AU-rich element-
bearing mRNAs (collectively termed ‘ARE-RBPs’ in
some instances). These studies were not found to have
AU-rich shared motifs (25,37). Instead, such RBPs were
found to have a heterogeneous set of signature motifs
on their respective target mRNAs [C-rich, U-rich and
GU-rich sequences (4,5,46,52)]. The complexity of the
RNA motifs identified for the various RBPs is in keeping
with the specificity and versatility needed to regulate the
post-transcriptional fate of the target transcripts. It also
helps to explain the dynamic post-transcriptional control
of mRNAs that are targets of multiple RBPs (e.g. p21,
COX-2, TNF-a, Bcl-2 and many others). As a result of
our expanding knowledge of RBP target sequences, it is
becoming possible to study how these RBPs jointly affect
mRNA metabolism. Interesting examples of competitive,
cooperative, and independent simultaneous binding of
RBPs to shared target transcripts are rapidly emerging
in the literature.
In closing, the AU-rich signature sequence identified

among AUF1 target mRNAs provides a valuable starting
point for the systematic analysis of AUF1 function.
As AUF1 does not appear to stabilize universally the
subset of mRNAs bearing this motif, future work
must investigate if AUF1 instead influences their transla-
tion or perhaps modulates their transport. Further
studies are also warranted to identify possible additional
signature motifs for AUF1 targets. As our understanding
of AUF1 function increases, so will our ability to recog-
nize its role in processes such as cell proliferation,

differentiation, carcinogenesis and the immune and
stress responses (39–44), and our capacity to intervene in
these biological events.

SUPPLEMENTARY DATA
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