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Abstract
Background: Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been widely used
to investigate the DNA binding sites for a variety of proteins on a genome-wide scale. However,
several issues in the processing and analysis of ChIP-chip data have not been resolved fully, including
the effect of background (mock control) subtraction and normalization within and across arrays.

Results: The binding profiles of Drosophila male-specific lethal (MSL) complex on a tiling array
provide a unique opportunity for investigating these topics, as it is known to bind on the X
chromosome but not on the autosomes. These large bound and control regions on the same array
allow clear evaluation of analytical methods.

We introduce a novel normalization scheme specifically designed for ChIP-chip data from dual-
channel arrays and demonstrate that this step is critical for correcting systematic dye-bias that may
exist in the data. Subtraction of the mock (non-specific antibody or no antibody) control data is
generally needed to eliminate the bias, but appropriate normalization obviates the need for mock
experiments and increases the correlation among replicates. The idea underlying the normalization
can be used subsequently to estimate the background noise level in each array for normalization
across arrays. We demonstrate the effectiveness of the methods with the MSL complex binding
data and other publicly available data.

Conclusion: Proper normalization is essential for ChIP-chip experiments. The proposed
normalization technique can correct systematic errors and compensate for the lack of mock
control data, thus reducing the experimental cost and producing more accurate results.

Background
Chromatin immunoprecipitation on microarrays (ChIP-
chip) is a technique that has been used primarily for
investigating the binding locations of a protein on a
genome-wide scale. With the availability of custom tiling
arrays, this approach has yielded unprecedented resolu-

tion for these binding events. Much of the work so far has
focused on binding of transcription factors [1-3], and
many computational methods have been developed to
identify the bound regions [4-9]. Recently this technology
has been extended to the genomic mappings of other fea-
tures, such as histone modifications [10], transcription-
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ally active regions [11], and binding sites of other protein
complexes [12,13]. In the present work, we examine sev-
eral issues related to the experimental design and data
analysis of ChIP-chip experiments, with a focus on two-
color platforms. Despite their increasing popularity
[11,14], some basic analytical issues still remain unre-
solved.

One issue is related to the role of mock controls in the
design of experiments. Mock control experiments using
non-specific antibody or no antibody are often performed
together with ChIP-chip experiments to control for sam-
ple handling, labeling bias, preferential amplification,
and other biases that may occur in the experiment. For
experiments with two-channel arrays, the immunoprecip-
itated sample is hybridized against the input DNA and the
mock control is hybridized against the same input DNA.
This design allows the same mock control to be used in
multiple experiments and tends to give less noise than
hybridizing directly against the mock IP, as the amount of
input DNA is much larger than that of the mock IP. With-
out the mock control, it is possible to get false positive
bound sites due to an artifact in the experimental proce-
dure; on the other hand, the mock controls increase the
experimental cost substantially and may in fact add other
artifacts in some cases. The importance of this design issue
was underscored in a recent paper [3]. In that work, differ-
ential enrichment of genic and intergenic regions is
observed in the ChIP-chip experiments for histone occu-
pancy in yeast. However, the mock control data also dis-
play a similar feature, and there is no substantial
differential enrichment once the mock control data are
used to normalize the histone occupancy data. If in gen-
eral the conclusion drawn in a study depends on whether
or not the mock control data are used, there is a need to
perform mock control experiments in all cases, and the
conclusions drawn in those experiments without mock
control may be suspect. In fact, in many published works,
mock control data sets are missing, and the control exper-
iments do not appear to have been performed.

Another important and related issue is normalization of
the data. There are many sources of systematic variation in
microarray experiments, and normalization is a computa-
tional process for reducing the experimental artifacts,
both within each array and between arrays. This issue has
been studied extensively for gene expression microarray
data [15,16], and the standard normalization methods for
expression arrays have been extended to ChIP-chip exper-
iments [17]. A difficulty with ChIP-chip data, however, is
that the distribution of the log-ratios is asymmetric. There
is only a 'bump' in the right side of the distribution, cor-
responding to the binding events. Standard normaliza-
tion methods for expression analysis assume that there is
a roughly equal number of up- and down-regulated genes

or that the proportion of differentially expressed genes is
small. Neither type of assumption is satisfied in general
for ChIP-chip data, and standard methods do not work
well. Some fixes have been proposed previously, such as
mirroring the left side of the distribution to the right to
estimate the background distribution [6]. However, we
have noticed that the distribution of log-ratios is often not
centered at zero or does not appear to have a symmetric
background. A quantile normalization [16], which forces
the signals in each array to follow the same distribution,
has been used in some cases, but this seems to be too
stringent, eliminating the variation in the degree of bind-
ing among experiments. The bias in the GC content of
each probe also influences its hybridization characteristics
and a normalization effect for this has been proposed
recently [7].

We also note that the ChIP-chip data for chromatin-asso-
ciated proteins and histone modifications present addi-
tional challenges, as they often display broad regions of
enrichment. This is in contrast to the isolated and sharp
peaks that are typical for the binding of transcription fac-
tors. Some examples are given in Figure 1. In Figure 1a, the
log-ratios for the binding of the male-specific lethal (MSL)
complex show that some regions are clearly bound, com-
pared to the mock control. In this particular case, the
bound regions appear to be between 2 kb and 7 kb; an
extreme case is shown in Figure 1b, where the bound
region is larger than 18 kb. The presence of these large
regions mean that the typical within-array normalization
schemes mentioned above are even less likely to work
because of the increased asymmetry in the distribution of
log-ratios. It also means that the common algorithms for
finding bound regions based on Hidden Markov Models
(HMMs) are likely to give incorrect results. Standard
HMMs, by their construction, assume a geometric distri-
bution of fragments, which is unlikely to hold in this data
set.

In this work, we present a novel normalization method
designed specifically for ChIP-chip data and show its
effectiveness in correcting dye-bias and other systematic
errors. We also find that proper normalization is closely
related to the issue of whether mock control should be
used: in the absence of proper normalization, mock con-
trol is generally necessary to eliminate the effect of system-
atic errors; but through appropriate normalization, the
lack of mock controls may be compensated. We find that
the use of the proposed normalization method alone
without the use of mock control is sufficient to identify
the binding events and that the correlation among biolog-
ical replicates also improves as a result. Furthermore, our
normalization strategy also yields insight into the ques-
tion of differential enrichment of histone occupancy in
genic and intergenic regions [3].
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This methodological investigation is made possible by a
unique data set we have generated on dosage compensa-
tion in Drosophila [12]. The MSL complex is known to
bind specifically to the X chromosome to up-regulate the

X-linked genes [12,18]. With tiling array data for the bind-
ing of the MSL complex on both the X chromosome and
autosomes (2L and 4), analytical methods can be evalu-
ated for their efficiency of identifying bound regions on

Examples of binding sites for the Drosophila MSL complex on the X chromosomeFigure 1
Examples of binding sites for the Drosophila MSL complex on the X chromosome. (a) An example of typical binding regions. (b) 
An example of a very large binding region (about 18 kb). Corresponding mock controls show no binding. Genes transcribed 
from left to right are shown on top; red genes are expressed while black ones are not.
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the X with autosomes as control regions. This interesting
feature of Drosophila MSL binding also offers evaluation of
normalization schemes and other data analysis strategies.

Results and discussion
Experimental design
Unnormalized data require mock control experiments
To examine the role of the mock control, we first examine
the MSL binding data. The data are from Nimblegen tiling
arrays with 100 bp resolution (see Methods for detailed
description of the arrays). In Figure 2, the scatter plots of
the log-ratios for ChIP-chip versus mock control are
shown, along with density contours. Figure 2a and 2b are
the scatter plots for X and 2L chromosomes, respectively.
The X-specificity of MSL complex binding is clearly
reflected in this comparison of X and autosomes. The data
points from the 2L chromosome are roughly centered on
zero on both axes and are scattered around the diagonal
line y = x, as expected. The deviation from this straight line
is due to noise in the experiment. The symmetry of the
blue region along line y = x confirms that there is no MSL
complex binding on 2L chromosome and that data on 2L
chromosome can be regarded as background noise. On
the other hand, the data points from the X chromosome
show a large number of points that have higher log-ratio
in the experiment than in the mock data.

To determine the optimal method for separating the sig-
nal from the background, we superimposed the scatter

plots for X and 2L chromosome binding data in Figure 3.
First, it appears that the mock data plays an important role
and should not be ignored. Without them, the threshold
for determining a bound region would depend only on
the experiment, corresponding to a horizontal line in the
figure. One may still be able to capture a significant por-
tion of enrichment with that approach, but it would
clearly result in many false positives (blue points above
the horizontal line) and false negatives (red points under
the horizontal line). A better method would be to utilize
mock control data by subtracting the mock data from the
experiment and then using a threshold on the difference.
This is the typical use of the mock data in ChIP-chip stud-
ies. This direct subtraction of mock control is equivalent
to drawing a line (shown as a blue dashed line) parallel to
the diagonal (shown as cyan dashed line) to separate the
red signal region from the blue background regions. How-
ever, the shifting of this parallel line alone, which is equiv-
alent to changing the threshold of the log-ratio to define
bound probes, cannot achieve the optimal separation
(shown as red dashed line) of these two regions. Instead,
it appears from the figure that further improvements can
be made by a threshold that weighs the experiment and
the mock data differently (this threshold corresponds to
the red line). This appears to capture the shape of the
background distribution from the 2L data and thus best
separates the X-specific signals. Of course, the bound
regions and the background regions usually cannot be
separated in this way and none of the methods we

Scatter plots and density contours of log-ratios for Drosophila MSL complex bindingFigure 2
Scatter plots and density contours of log-ratios for Drosophila MSL complex binding. ChIP-chip experiment versus mock con-
trols are shown for (a) chromosome X and (b) chromosome 2L, with each point corresponding to a probe. The symmetry of 
the scatter plot for the 2L chromosome along the diagonal y = x confirms that there is no MSL complex binding on the 2L 
chromosome. 3000 of the probes (about 1.5%) were randomly selected from the X and the 2L chromosomes for visualization.

−2 0 2 4 6

−
2

0
2

4
6

Mock Control

Ex
pe

rim
en

t

Contour for data on Chr.X

−2 0 2 4 6

−
2

0
2

4
6

Mock Control

Ex
pe

rim
en

t

Contour for data on Chr.2L

(a) (b)
Page 4 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:219 http://www.biomedcentral.com/1471-2105/8/219
develop here require such separation. But the unique
characteristics of our dosage compensation system allows
us to validate our methods.

Dye-bias and the use of mock control data

The purpose of the mock control experiment is to correct
dye-bias and other systematic errors in ChIP-chip experi-
ments. The correlation observed in Figure 2b indicates
that there may indeed be some systematic bias. To exam-
ine possible dye-bias, we plot the log-ratio as a function of
signal intensity. Often referred to as the 'MA plot,' we plot

the log-ratios M = log(R/G) on the y-axis and the average

intensity A = log( ) on the x-axis, where R and G are

the intensities of the two-channels. This is equivalent to a
scatterplot of the two channel intensities but the 45 degree
rotation and rescaling makes it easier to interpret.

In Figure 4, the MA plots of a ChIP-chip experiment and
its corresponding mock control data are shown. If there
had been no intensity-dependent dye-bias, the bulk of the
points should fall on the horizontal line M = 0. Instead,
we see a striking display of intensity-dependence. Clearly,
setting a threshold on unnormalized data without mock

R G∗

A scatter plot of ChIP-chip data versus mock control dataFigure 3
A scatter plot of ChIP-chip data versus mock control data. Data from the X (red) and the 2L (blue) chromosome were super-
imposed after median smoothing (window size 7) to suppress background noise. Choosing a threshold solely based on the 
experiment is equivalent to drawing a horizontal line, and it is clearly not optimal for separating the signal from the background. 
A direct subtraction of mock control from the experiment corresponds to using a line with the slope 1 as a threshold (the blue 
line or another parallel to it), but that also does not appear to be optimal. A better solution would be the red line, which cor-
responds to a subtraction with a different weight for the control.
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data subtraction, which would be equivalent to a horizon-
tal line in Figure 4a, would result in a large number of
false positives and negatives. Such a phenomenon has
been observed in many two-color expression arrays previ-
ously and has been attributed to the differences in the size
of the dye molecules and their differing efficiency, as well
as nonlinearity in the scanning process [15]. The same
patterns displayed in Figure 4 have been observed consist-
ently in many tens of Nimblegen arrays. While it may not
be as strong for other platforms, we have observed the
same type of dye-bias in most data sets we have examined
(see below).

The use of mock data is one possible solution to this prob-
lem. Because the mock data contain the same dye-bias
(Figure 4b), subtraction of the mock data from the exper-
iment data would eliminate much of the bias. However,
because noise exists in both ChIP-chip and control exper-
iments, a direct subtraction of the mock control has the
disadvantage of introducing additional noise. This effect
is shown in Figure 4, in which the probes in the small
green region selected from the background of ChIP-chip
experiment (Figure 4a) are spread out in the background
of mock control experiment (Figure 4b) due to noise.

Within-array normalization
Rather than eliminating systematic variation by subtract-
ing the mock data, we consider the possibility of normal-
izing each array first. Normalization is a process for
reducing the variations within and between arrays of non-
biological origin [15,16]. It is an important step for any
array analysis, as it has been shown that different normal-
ization methods can lead to divergent results in expres-
sion data analysis [19]. For two-color arrays, the
conventional normalization method is to fit a line
through the background portion of the data in the MA
plot and then to regard this line as the new horizontal line
M = 0. Because one cannot distinguish the signal from the
background, a robust line fitting method called locally
weighted regression and smoothing scatterplots (lowess)
[20] is often applied. This technique fits the line through
the dense part of the distribution and is resistant to out-
liers, which are likely to be the signal. While this proce-
dure has been shown to work well for expression arrays, it
is unlikely to be effective for ChIP-chip data. The reason
for this is that the signal is only positive, unlike the up-
and down-regulation in expression arrays and that the
amount of signal (binding) can be very large, especially
for histone modifications or chromatin-associated pro-

MA plots (average intensity of the signal vs log-ratio) of (a) ChIP-chip and (b) its corresponding mock control data without nor-malizationFigure 4
MA plots (average intensity of the signal vs log-ratio) of (a) ChIP-chip and (b) its corresponding mock control data without nor-
malization. Both show significant dye-bias that cannot be ignored. A direct subtraction of mock control from experiment cor-
rects the systematic errors to some extent, but it also introduces additional noise. This can be seen by how the probes marked 
in green in (a) are spread out in (b). Conventional within-array normalization using lowess fitting does not work well due to the 
presence of a large cluster of probes that show binding.
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teins, as illustrated in Figure 1. These issues were described
in the Background section. Indeed, when the lowess
method is applied to our data shown in Figure 4, the fitted
curve is 'pulled' by the signal (red points) and is far away
from the background data (blue points). Because of the
heavy bias in this data set, even a more robust version of
lowess, such as one based on interquartile range of resid-
uals, is unlikely to work near the high-intensity spots.
Other line fitting methods we have tried also gave the
same unsatisfactory results. While it is not difficult to see
where the line should be from visual inspection, the prob-
lem of fitting a line through the background when the
background is mixed with the signal is not trivial.

We propose a novel method to solve this issue. The main
idea is that we perform the line fitting not on the original
data but on the first order differences of the probe values
along their chromosomal location. This is a discrete ver-
sion of taking a derivative. This idea is illustrated in Figure
5 with a simulated profile. When there is a binding in the

profile (Figure 5a), the distribution of log-ratios has a
'bump' on the right side of the distribution (Figure 5b).
But when we look at the differences of neighboring
probes, the beginning and the end of the bound region
give a positive and a negative value, respectively, but the
middle of the bound region is indistinguishable from
unbound regions (Figure 5c). That is, the distribution of
the log-ratios is symmetrized.

Our novel normalization procedure based on the above
idea is illustrated in Figure 6. First, when the bias is strong,
as is the case here, we rotate the data in the MA plot rather
than fitting a lowess curve first. Based on the scatterplot,
measuring the deviation perpendicular to the background
appears reasonable, and this also ensures that the signals
do not dominate the background at all different intensi-
ties. To select the rotating angle from the MA plot, we
transform the data to the differences between neighboring
probes for both M and A, denoted by σ(M) and σ(A) (Fig-
ure 6b). This σ(M) vs σ(A) plot shows the same dye-bias

Illustration of the key ideaFigure 5
Illustration of the key idea. When the log-ratio profile shows binding for a large fraction of probes (a), the distribution of log-
ratios has a heavy tail on the right side (b). But the profile of the differences between neighboring probes (c) are not sensitive 
to the amount of binding. The few points that correspond to the jumps in (a) are large but are now distributed evenly between 
positive and negative values, and the distribution of the differences is symmetric (d).
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trend as the MA plot, but signal portion is scattered in a
symmetric manner as to not influence the determination
of the rotating angle, regardless of the amount of the sig-
nal. After rotation (Figure 6c), we can perform the stand-
ard lowess-type normalization for any remaining
nonlinear artifacts. In order to further minimize the effect
of signal in the line fitting, outlier log-ratios can be given

smaller weights. In our example, for instance, those log-
ratios (M) more than two standard deviations away from
their median were given zero weights in the lowess fitting.
We also employed an iterative procedure in which the
outliers were redefined after each step and the curves were
refit, but it gave similar results. Figure 6d shows the final
MA plot after normalization steps.

The proposed normalization procedure: (a) The MA plot before normalization shows a need for rotation to correct dye-biasFigure 6
The proposed normalization procedure: (a) The MA plot before normalization shows a need for rotation to correct dye-bias. 
(b) To determine the correct angle of rotation, the σ(M) vs σ(A) plot of the differences between probes is generated (the dif-
ferences were taken between probes that are 800 bp along the chromosome; see Figure 8). This circumvents the effect of 
binding signal in determining the rotating angle for original MA plot in (a). (c) The MA plot after rotation by the angle deter-
mined in (b). The green line is the lowess fitting line after rotation. (d) The MA plot after lowess normalization. 3000 sample 
points from each of X and 2L chromosomes are shown.
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The Scatter plot of ChIP-chip versus mock control after rotation and lowess normalization (cf. Figure 3), (a) without and (b) with running median smoothingFigure 7
The Scatter plot of ChIP-chip versus mock control after rotation and lowess normalization (cf. Figure 3), (a) without and (b) 
with running median smoothing. The optimal line for separating the X-specific signals from the 2L signals is now a horizontal 
line. This suggests that mock control data correction may be neglected when a proper normalization is carried out.
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Measurement of within-array noise using lagged differencesFigure 8
Measurement of within-array noise using lagged differences. Generalizing the concept of differences on probe values along the 
chromosomal location, median absolute deviation is measured for probes that are apart by the distance shown on the x-axis. In 
both experiment and control, after about 800 bp, there is no spatial correlation, and this deviation can be used as a noise level 
for standardizing across arrays.
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After this normalization, the scatterplot between experi-
ment and mock control changes dramatically, as shown in
Figure 7a (cf. Figure 3). With the reduction of the system-
atic variations, the log-ratios have a small deviation, and
a horizontal line is now sufficient to separate the signal
from the background. This suggests that correcting the
ChIP-chip data using mock control may be neglected after
a proper normalization.

The combinatorial method of rotation and lowess nor-
malization with no use of mock control data in fact results
in improved correlations among biological replicates
compared to the subtraction of the mock data, both at the
probe level and at the gene level. For the two ChIP-chip
replicates for two cell types (Drosophila embryos and
Clone 8 cells), the correlations at the probe level increases
from 73% and 78% to 82% and 79%, respectively. For the
agreement for enrichment at the gene level, the matches
increase from 89% and 86% to 96% and 95%, respec-
tively. This may be partly due to the reduction in the noise
level as a result of avoiding the subtraction of log-ratios. A
further improvement in the identification of the signal
can be made by simple smoothing of the profiles (see Fig-
ure 1) along their chromosomal location, for both ChIP-
chip and the mock control. Regardless of the algorithm
used for finding bound regions, the smoothing step sup-
presses the effect of outlier probes and results in improved
performance. The amount of smoothing applied depends
on the type of binding sites and the spacing of the arrays.
In our case, a running median smoothing along each
probe with a window size of 7 probes gave good results.
In contrast to Figure 7a, there are fewer stray probes in Fig-
ure 7b and both the signal and background parts appear
to be 'tighter' with smaller standard deviations.

Measurement of noise levels and normalization across 
arrays
In the previous section, we used the differences of log-
ratios from neighboring probes as a means to symmetrize
the distribution and perform curve fitting. But the same
idea can be used to estimate the level of array-specific
noise, which can be used to normalize between arrays. As
shown in Figure 5, the differences of the consecutive
probes is not affected by the amount of binding, other
than few outlier points corresponding to the ends of the
bound regions. Thus, a measure of deviation for the distri-
bution of differences (Figure 5d) would serve as a reason-
able measure of noise. The median absolute deviation can
be used to obtain a robust measure of deviation (see
Methods).

More generally, we can study the spatial correlation
between neighbors i and i + j, for some j ≥ 1. Because son-
icated fragments are being hybridized, there is still corre-
lation between consecutive probes (j = 1). As the probes

farther away are compared, this correlation weakens and,
conversely, the estimate of the background noise
increases. In our data, we have found that after j ≈ 8, the
correlation is significantly diminished and the noise esti-
mate becomes relatively stable. This is illustrated in Figure
8 for both the experiment and the mock control. With 100
bp resolution on our arrays, j = 8 corresponds to a distance
of 800 bp, which is roughly the size of the DNA frag-
ments.

To see how the amount of binding affects this estimate,
the noise estimates were obtained separately for chromo-
somes X and 2L as well as the combined data (Figure 8a).
For chromosome 2L, there is a clear stabilization of the
noise estimate; for chromosome X, it continues to
increase due to the long range correlations but the
increase is very slight. For the mock control, there is
almost no distinction between the X and the 2L chromo-
somes and they reach a plateau around j = 8. The proxim-
ity of the curves near j = 8 for X and 2L indicate that the
proposed estimate of noise is resistant to the different
amount of binding. This estimate can therefore be used to
rescale the log-ratios explicitly or as a basis for determin-
ing a significance threshold on each array.

Validations
To determine the effectiveness of the proposed normaliza-
tion, we examine how the analysis results change between
this and the standard mock subtraction normalization.
This is studied in the context of two data sets.

Identification of binding sites by the MSL complex
We had previously used mock subtraction for our analysis
and identified several hundred binding sites that show up
repeatedly in biological replicates [12]. In the current
analysis, we seek to determine the overlap between the
sites identified from the old and the new analyses, using
Drosophila embryo data as an example. In Figure 9, we dis-
play Venn diagrams that show the overlap of the clusters
obtained between the two replicates using the mock sub-
traction analysis and each of replicates using the new anal-
ysis. First, we see that the overlap between the two
replicate was already high in the previous analysis (blue
and green), with the size of the intersection over the size
of the union being (811 + 17)/(811 + 17 + 61 + 29 + 29 +
37) = 85%. With the new analysis (red), most of the over-
lapping binding sites are reproduced (811/(811 + 17) =
98% and (803/803 + 25) = 97%). To determine whether
the new method can be a substitute for the old one, we
compare the result of (i) Embryo sample 1 (proposed
method) vs Embryo sample 2 (mock subtraction) with
that of (ii) Embryo sample 1 (mock subtraction) vs
Embryo sample 2 (mock subtraction). As shown in Figure
9a, the result is in fact slightly better for case (i). There are
more overlapping binding sites in case (i) than in case (ii),
Page 10 of 14
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811 + 29 vs 811 + 17, and fewer non-overlapping binding
sites in case (i) than in case (ii), 61 + 20 vs 61 + 29. That
is, the bound genes obtained by the normalization
method without the mock data is at least as accurate as
those obtained with mock subtraction. A similar result is
obtained for the other Embryo sample (Figure 9b). To
make it fair, roughly the same number of clusters had to

be chosen in each case in this comparison. Hence, the
number of probes called significant was equalized by tak-
ing the same top 13% of the log-ratios from the X chromo-
somes, which corresponded to the number of sites found
in the original work [12]. The clusters were then formed
based on these probes.

Histone occupancy and modification
In Pokholock et al [3], the authors generated genome-
wide maps of nucleosome acetylation and methylation
patterns in yeast. They examined the relationship between
the modification status of various histones and transcrip-
tional activity, and they associated specific events with dif-
ferent parts of actively transcribed genes. Agilent arrays
were used, with 44K 60-mer probes covering 12 Mb
(85%) of the yeast genome except the highly repetitive
regions and an average probe density of 266 bp. Impor-
tantly, the authors note their surprise in finding that while
differential enrichment of intergenic and genic regions
was observed in histone occupancy, the same was also
observed in control experiments without antibody or anti-
body recognizing a nonhistone protein, possibly due to
the different relative levels of intergenic and genic DNA
recovered during extraction procedures. When these con-
trols experiments were used to normalize the histone H3
data, they found that the difference between the relative
levels of intergenic vs genic DNA was not substantial. The
authors show that the use of a different control explains
the discrepancy between their conclusions and that of an
earlier paper [21], in which genomic DNA was used. To
investigate whether the above observation is affected by
the statistical technique used for normalization, we
applied the proposed normalization method to the same
data set. In Figure 10, MA plots are shown for mock con-

Comparison of binding sites identified by direct subtraction of mock control and the proposed normalization without mock controlFigure 9
Comparison of binding sites identified by direct subtraction 
of mock control and the proposed normalization without 
mock control. The two biological replicates for MSL binding 
in embryos (blue and green) show a large overlap (85%) in 
the identified sites. The new normalization method involving 
rotation and lowess-curve fitting (red) was applied to each 
replicate. In both cases, the new method identifies nearly all 
of the common sites (98% and 97%) found by direct subtrac-
tion and many of the sites found by only one. Also, the new 
method for sample 1 gives a greater percentage of overlap 
with mock-subtracted sample 2 than mock-subtracted sam-
ple 1 does. Similarly, the new method for sample 2 gives a 
greater percentage of overlap with mock-subtracted sample 
1 than mock-subtracted sample 2 does.
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The comparison of MA plots for (a) mock control (with no antibody), (b) histone occupancy (with anti-histone H3), and (c) his-tone modification (with anti-histone H4) ChIP-chip experimentsFigure 10
The comparison of MA plots for (a) mock control (with no antibody), (b) histone occupancy (with anti-histone H3), and (c) his-
tone modification (with anti-histone H4) ChIP-chip experiments. The mock control experiment shows a different dye-bias 
from other ChIP-chip experiments. This suggests that the dye-bias needs to be corrected before using this mock control to 
normalize ChIP-chip experiments through subtraction.

4 6 8 10 12 14

−
4

−
2

0
2

4

A (intensity)

M
 (l

og
 ra

tio
)

4 6 8 10 12 14

−
4

−
2

0
2

4

A (intensity)

M
 (l

og
 ra

tio
)

4 6 8 10 12 14

−
4

−
2

0
2

4

A (intensity)

M
 (l

og
 ra

tio
)

(a) (b) (c)
Page 11 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:219 http://www.biomedcentral.com/1471-2105/8/219
trol (with no antibody), histone occupancy with anti-H3
antibody, and histone occupancy with anti-H4 antibody.
Although not as strong as in the Drosophila data set above,
there is a substantial dye-bias that requires correction,
especially for the no-antibody case. It is clear that a direct
subtraction of the mock data to correct dye-bias in ChIP-
chip data can introduce additional noise in the analysis.
There is no obvious cluster of points with positive log-
ratios corresponding to the binding this time, but the sig-
nal is still present.

The binding pattern across all rescaled genes is shown in
Figure 11. Without any normalization, both histone occu-
pancy and mock control data show differential enrich-
ment of genic regions over intergenic regions, as described
in the original manuscript [3]. However, when the data
are normalized with rotation and lowess-fitting, the no-
antibody case no longer shows differential enrichment
while the H3 and H4 cases still show it. This lends a strong
support to the conclusion that the differential enrichment
exists and that the problem of a control experiment hav-
ing the same enrichment pattern may have been an arti-
fact.

Conclusion
The X-specificity of Drosophila MSL complex binding pro-
vides an excellent opportunity for the development of
methods for identifying bound regions in ChIP-chip data.
We have found that there is significant bias due to the dif-
ferences in the dye, as seen on the average intensity vs log-
ratio plot, and that this must be corrected to obtain accu-
rate estimates of binding sites. One way to fix this prob-
lem is via direct subtraction of the mock control, but it
appears that the lack of mock control may be compen-
sated through proper normalization steps. We developed
a normalization procedure for ChIP-chip experiments
based on the differences of the neighboring probes along
the chromosome and found that it improves both the cor-
relation of log-ratios at probe level and the overlap at gene
level among replicates. Conventional normalization
methods may work for ChIP-chip experiments with tran-
scription factors because the proportion of the bound
probes is generally small. But with histone modifications
or binding of chromatin-associated proteins, that propor-
tion may be much greater and the standard methods do
not work well. We also used the same idea to measure
array-specific noise for normalization across arrays.

Composite profiles over 5527 genes for histone occupancy (with anti-histone H3 or H4) and mock control (with no antibody) in yeast [3], (a) before and (b) after normalizationFigure 11
Composite profiles over 5527 genes for histone occupancy (with anti-histone H3 or H4) and mock control (with no antibody) 
in yeast [3], (a) before and (b) after normalization. The boundaries of ORFs were defined by transcription start and stop sites 
and were scaled to [0, 1]. The upstream and downstream regions are plotted with the same scale with the ORF. Before nor-
malization, the mock control appears to show the same differential enrichment between genic and intergenic regions as the 
histone occupancy, suggesting that the differential enrichment may be an artifact. However, after normalization, the mock con-
trol no longer shows significant differential enrichment while H3 and H4 profiles still do.
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We have examined the Nimblegen and Agilent platforms
in detail here, but other studies using these and other two-
dye platforms are likely to have experimental artifacts. It is
thus important that the data are processed properly to
obtain accurate description of the binding sites.

Methods
ChIP-chip data sets
Data from two Drosophila male cell types (Clone 8 and
SL2) and late-stage embryos are available for the experi-
ments with the MSL complex. Because the MSL complex
appears to bind to some regions on autosomes in SL2
cells, possibly due to genome rearrangement, we used the
embryo data for developing and testing data analysis
methods. The custom NimbleGen arrays for these experi-
ments contained 388,000 probes each and were designed
based on FlyBase 3.2. The X and the 2L chromosomes
were tiled with 50-mer probes every 100 bp except for the
repetitive regions. For the ChIP-chip experiments, tandem
affinity purification (TAP) tag was added to the C-termi-
nus of the MSL3 protein, which is a component in the
MSL complex. The addition of the TAP-tag does not affect
the function of MSL complex and chromatin immunopre-
cipitation was achieved by an antibody specifically recog-
nizing the TAP tag. Mock control experiments were done
following the same protocol as the ChIP-chip experiments
but in the absence of the TAP-tagged MSL complex
(detailed in [12]). All data are available from the authors'
web site. The array designs and the ChIP-chip data for his-
tone modification and occupancy in yeast [3] were
obtained from the ArrayExpress database under the acces-
sion number E-WMIT-3.

Identification of binding sites

To measure the noise level in each array, we employed the
median absolute deviation to the lagged differences. This

is defined as σ* (j) = s × median|dij - median(dij)|, where

dij = xi + j - xi and xi is the log-ratio of the ith probe. The scal-

ing factor s ≈ 1.4826/  is introduced so that the σ*

becomes the standard deviation σ when the underlying
distribution is normal. There are two parameters to con-
sider in determining whether a region is bound: the
threshold for significant log-ratio value and the minimum
number of probes needed to define a cluster of probes. We

set the threshold for log-ratios to 2σ*(j = 8) to define
"enriched" signal probes (note that this definition is dif-
ferent from the one in Ref [12] due to the lag). We also set
the minimum number of clusters to be 8, based on the
correlation length of 800 bp obtained from Figure 8.
These values give a high enrichment ratio between the
number of the sites on the X and the 2L chromosomes and

the false discovery rates based on random permutation are
< .05.
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