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AGENT DECISION-MAKING IN OPEN MIXED NETWORKS

YA’AKOV GAL, BARBARA GROSZ, SARIT KRAUS, AVI PFEFFER,
AND STUART SHIEBER

Abstract. Computer systems increasingly carry out tasks in mixed networks,

that is in group settings in which they interact both with other computer sys-
tems and with people. Participants in these heterogeneous human-computer

groups vary in their capabilities, goals, and strategies; they may cooperate,

collaborate, or compete. The presence of people in mixed networks raises
challenges for the design and the evaluation of decision-making strategies for

computer agents. This paper describes several new decision-making models

that represent, learn and adapt to various social attributes that influence peo-
ple’s decision-making and presents a novel approach to evaluating such models.

It identifies a range of social attributes in an open-network setting that influ-
ence people’s decision-making and thus affect the performance of computer-

agent strategies, and establishes the importance of learning and adaptation

to the success of such strategies. The settings vary in the capabilities, goals,
and strategies that people bring into their interactions. The studies deploy

a configurable system called Colored Trails (CT) that generates a family of

games. CT is an abstract, conceptually simple but highly versatile game in
which players negotiate and exchange resources to enable them to achieve their

individual or group goals. It provides a realistic analogue to multi-agent task

domains, while not requiring extensive domain modeling. It is less abstract
than payoff matrices, and people exhibit less strategic and more helpful behav-

ior in CT than in the identical payoff matrix decision-making context. By not

requiring extensive domain modeling, CT enables agent researchers to focus
their attention on strategy design, and it provides an environment in which

the influence of social factors can be better isolated and studied.

1. Introduction

Computer systems are increasingly being deployed in group settings in which
they interact with people to carry out tasks [Babaian et al., 2002, Schurr et al., 2006,
Pollack, 2006, Rajarshi et al., 2001, Katz and Kraus, 2006]. To operate effectively
in such settings, computer agents need capabilities for making decisions and ne-
gotiating with other participants—both people and computer-based agents—about
the procurement and allocation of resources necessary to complete their tasks. For
example, in a civil disaster like an earthquake, rescue personnel and equipment are
dispersed geographically and may be under the jurisdiction of various dispatchers.
Dispatchers might depend on computer agents to allocate these limited resources
to affected locations quickly and to alert them about changing environmental con-
ditions, such as wind speed and traffic. In turn, computer agents might depend on
people to provide up-to-the-minute information about the availability of personnel
and equipment. In another realm, in some electronic auction settings, both peo-
ple and computer agents (representing groups or individuals) might participate not
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2 GAL, GROSZ, KRAUS, PFEFFER, AND SHIEBER

only to acquire items of value, but also to exchange information about the reliability
of others.1

First response and e-commerce are two different kinds of examples of open mixed
networks. By “open” we mean that the autonomous agents in the network may
be designed by or represent different individuals or organizations. By “mixed”
we mean that the participants of the network may be computer agents or people.
Computer agents operating in open, mixed networks may support people in their
work (e.g., collaborative human-computer interfaces [Shieber, 1996, Babaian et al.,
2002]), serve as proxies for people or institutions (e.g., electronic commerce [Kamar
et al., 2008, Rajarshi et al., 2001]), or interact with other agents to carry out
tasks for which they are responsible (e.g., robots in rescue operations [Schurr et al.,
2006, Murphy, 2004]). These examples exhibit several key characteristics of mixed
network settings: (1) the participants are both human and computer-based; (2) they
depend on each other to make decisions; (3) they may need to exchange resources
and information; (4) they have different, complementary roles.

Open mixed network settings present a range of challenges for agent designers.
First, the participants in these networks—whether people or computer agents—are
loosely coupled and not under the control of any single entity. Agent designers are
unlikely to know a priori the strategies that people or agents designed by others will
adopt, and they cannot force others’ agents to adopt a particular strategy. Second,
people’s decision-making behavior in group settings does not follow the strategies
of classical economic or game theoretic models, but is affected by such social and
psychological factors as cognitive biases, social preferences, and framing effects [Falk
and Fischbacher, 2006, Camerer, 2003, Bazerman, 2001]. It is difficult to measure
the effects of such factors directly, and preferences are hard to elicit explicitly from
people [Castro-Schez et al., 2004, Luo et al., 2006]. Third, agents may differ in
their goals and plans, so agent designers need to develop strategies that are flexibly
able to accommodate different levels of cooperation or competitiveness. For these
reasons, it is at best challenging, and at worst, impossible, to construct effective
agent strategies purely analytically.

An alternative approach is to learn and evaluate agent strategies empirically.
However, past empirical investigations of computer agent strategies such as the
Trading Agent Competition [Arunachalam and Sadeh, 2005] and RoboCup soc-
cer [Asada et al., 1998] have typically required a fully specified domain model. The
need for extensive modeling of domain specific knowledge in such settings makes it
difficult to distinguish among possible causes of agents’ failures and successes, such
as the way agents model the specifics of the domain or the way they make decisions
more generally.

On the other hand, completely abstract settings such as the payoff matrices or
decision trees traditionally used in studies in the behavioral sciences collapse the
structure of a domain into a list of choices that does not capture the essential
relationships among tasks, goals and resources.2 Such relationships often play an
important role in decision making.

1One example of an existing application like this are sniper agents that bid on e-bay as proxies

for their human users.
2For a comprehensive account of behavioral economics experiments in decision-making,

see Camerer [2003].
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The investigations in this paper were done in an environment that represents
an intermediate approach. They use the CT (Colored Trails) system [Grosz et al.,
2004] which provides an analogue to the ways in which goals, tasks and resources
interact in real-world settings, but abstracts away the complexities of real-world
domains. CT supports comparisons of the performance of different computational
strategies for interacting in groups comprising people and computer agents as well
as solely computer agents.3

This paper presents several new decision-making models that represent, learn and
adapt to various social attributes of negotiation in open, mixed-network settings.
We consider in particular, social factors that influence possible negotiation deals
(e.g., joint benefit and inequality of outcome), traits of individual negotiators (e.g.,
altruism, trustworthiness, helpfulness) and group structure (e.g., solidarity, hierar-
chy). Our results show that (1) people exhibit more helpful behavior and increase
their social welfare in CT settings than in payoff-matrix types of settings; and (2)
computer agents that model and learn the social factors that influence human ne-
gotiation strategies can outperform traditional game-theoretic equilibria strategies
when interacting with people and other computer agents in mixed networks.

The contributions of the paper are four-fold: it presents new multi-agent decision-
making models, ones that are able to learn and adapt to the social attributes that
affect behavior in open mixed networks; it presents a novel approach to evaluating
such models; it shows empirically that agents using these models outperform tradi-
tional game-theoretic equilibria strategies. Lastly, it describes CT more completely
than before as a new environment for investigating the design and performance for
negotiation strategies in open-mixed networks. It integrates earlier reports of ini-
tial CT studies [Gal et al., 2007, 2004, Talman et al., 2005] and describes a broader
range of experimental investigations which demonstrate the flexibility of the CT
infrastructure to support different agent-design studies.

The purpose of the work reported in this paper was not to design “plug-and-play”
strategies for specific applications such as first response or electronic commerce.
Rather, the studies we describe show empirically that agents will be better able to
negotiate with people if they take into account social factors. In this respect, our
results relate to recent work in the social sciences that point to societal and cultural
factors that people “bring into the game”, as influencing the way they behave in
negotiation settings [Ostrom et al., 1994, Cardenas et al., 2004]. Our studies differ
from these in providing and evaluating computational models for decision-making
in these settings. In particular, they identify the influence of factors that have
not been addressed in past human-computer decision-making studies and show the
influence of these factors on agent-strategy performance.

The next section of this paper describes CT and the ways in which it corresponds
to real-world task settings; it compares the CT environment with alternative test-
bed environments used in multi-agent system and discusses related work. Section
3 presents a study that establishes that people make different negotiation choices
when interacting in a CT game than when doing so in the payoff-matrix settings
used in the behavioral sciences. Section 4 describes a model for learning the different
types of social factors that affect people’s behavior in a simple negotiation setting
of complete information. Sections 5 and 6 compare the performance of different

3CT is open-source software, which has been made available for download at http://www.eecs.
harvard.edu/ai/ct.

http://www.eecs.harvard.edu/ai/ct
http://www.eecs.harvard.edu/ai/ct
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computational strategies for adapting to other agents’ decision-making in a repeated
negotiation setting. Section 7 discusses the implications of this work for the design
of agent-strategies in open, mixed networks and presents several open research
questions.

2. The Colored Trails Game

Colored Trails (CT) is a game played by two or more participants on a board of
colored squares. The CT system is highly configurable, allowing for the specifica-
tion of games that reflect a wide variety of task environments and decision-making
situations. The basic CT board includes players’ icons and goal squares, but config-
urations may also include traps or other features needed to model a task situation.
Players are typically allocated a set of chips of colors chosen from the same palette
as the board squares. To move a piece into an adjacent square a player must turn
in a chip of the same color as the square. The board state may be dynamic, for
instance with goals moving or traps appearing and disappearing. A player’s perfor-
mance in CT is determined by a scoring function which is a parameter of the game
configuration. The score can be defined to depend on such factors as a player’s
distance from its goal-square when the game ends, the number of moves made, the
number of chips the player possesses at the end of the game, or the number of
goals achieved. In addition, to represent incentives for cooperation or social good,
an individual player’s score can be made to depend on the performance of other
players.

In the canonical use of CT, paths through the board represent doing a task,
with each square in the path corresponding to a subtask. Chips represent resources
needed for doing the tasks. Typically, at least one player does not have the chips
needed to reach its goal. The heart of the game is players’ abilities to negotiate
over these resources. Chips may be exchanged by the players, and the conditions
of exchange may be varied to model different decision-making situations.

Humans play CT using a graphical user interface, while computer agents use
a set of application program interfaces (API). Snapshots of the CT GUI for one
of the canonical games used in this paper is shown in Figure 1. The Main Game
panel (Figure 1a) includes the board game, the goal square, represented by an icon
displaying the letter G, and two icons, “me” and “sun”, representing the location
of the two players on the board at the start of the game.4 The bottom part of the
Main Game panel, titled “Chips”, shows the chip distributions for the players. In
the game shown here, neither player has sufficient chips to get to the goal square.
The Decision Aid panel (Figure 1c) provides decision support tools to be used by
players during the game. It displays a list of possible paths to the goal for players
and the chips required to fulfill each path. Players can view this information for the
chips that they currently possess, or for any hypothetical chip set for each of the
players. For example, the “me” player is lacking a purple chip to get to the goal in
the path that is highlighted in the Main Game panel (this is the shortest possible
path for the “me” player to get to the goal). Similarly, the “sun” player is lacking
a cyan chip to get to the goal (using its shortest path to move two squares up).
The Proposal Panel (Figure 1b) can be used by players to negotiate exchanges. In
the example shown here, the “me” player has offered to give one cyan chip to the

4A “me” icon on the main board panel is used to enable a human player to easily distinguish
between the player’s own icon and those of other players.



AGENT DECISION-MAKING IN OPEN MIXED NETWORKS 5

(a) Main

Game
Panel

(shown at

the onset of
the game)

(b) Proposal

Panel (used
by players to

make offers)

(c) Decision

Aid Panel

(used by
players to

reason about
possible

paths to the

goal)

(d) Message History Panel (shows past offers and responses)

Figure 1. Snapshots of CT GUI
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“sun” player in return for one purple chip. This offer is displayed in the Message
History Panel (Figure 1d), and also includes the response of the “sun” player, which
accepted the offer.5

2.1. Analogy with Task Settings. CT provides a realistic analog to task set-
tings, highlighting the interactions among goals, tasks required to achieve these
goals, and resources needed for completing tasks. Chips correspond to agent capa-
bilities and skills required to fulfill tasks. Different squares on the board represent
different types of tasks. A player’s possession of a chip of a certain color corre-
sponds to having the skill available for use at a time. Not all players possess chips
in all colors, much as different agents vary in their capabilities. Traversing a path
through the board corresponds to performing a complex task whose constituents
are the individual tasks represented by the colors of each square.

CT is parametrized in ways that allow for increasing complexity along various
dimensions that influence the performance of different strategies and algorithms for
decision making. It allows for specification of different reward structures, enabling
examination of such trade-offs as the one between the performance of the group as a
whole and the outcome of an individual. It also allows to examine the cost-benefits
of collaboration-supporting actions.

Game parameters such as the number of players, the size of the board, and the
number of chips may be set to vary the task complexity. The amount of information
available to agents can be controlled by varying the information revealed on the
board and about players’ chips. Uncertainty can be introduced by changing features
on the board and chips during play.

Two kinds of inter-dependencies among players can be varied in CT: task and
score dependence. A task dependence arises whenever players lack the chips they
need to reach their goals and must depend on other players to supply those chips. A
score dependence arises when players’ scores depend on each other’s performance.
The degree to which a player’s score depends on the performance of other play-
ers may be used to distinguish collaborative teamwork from situations in which
group members act independently. For example, a fully cooperative setting can be
modeled in CT by setting the score for each player as the sum of all players’ scores.

To illustrate the task analogy, we present an example of the way CT corresponds
to the rescue domain described in Section 1. Players in CT correspond to fire-
engine dispatchers. There are different ways to assign players to teams, such as by
representing a dispatcher’s affiliation with other dispatchers in their geographical
vicinity by designating a shared goal square. A goal square might represent a
mission to accomplish, such as rescuing people from areas afflicted with fire and
smoke or assisting other rescue teams in different locations. Paths on the board
represent the completion of tasks, such as clearing safe passage in a building or
bringing special equipment to aid in the rescue. Chips represent resources, such
as fire-engines, ladders and personnel. Negotiation over these resources by the
dispatchers is needed to have an efficient deployment of resources. Players’ scores in
this game may be set to depend solely on their individual performance as dispatchers
or may include, at some level, the score of their teammates.

5Note that the panel is displayed from the point of view of the “sun” player, and therefore a
“me” icon is displayed as the recipient of the offer.
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2.2. Related Work: Decision-Making Environments. A variety of simulation
systems have been developed to enable evaluation and comparison between com-
putational strategies for decision-making in particular domains. Prime examples
of such test-beds are (1) RoboCupRescue, which simulates first-response strate-
gies that integrate disaster information, planning, and human interfaces [Kitano,
2000]; (2) the Trading Agent Competition (TAC), that facilitates the study of
bidding strategies for the procurement of resources as well as supply-chain manage-
ment [Arunachalam and Sadeh, 2005], (3) the Agent Reputation Test-bed (ART),
for studying reputation and trust in environments of varying agent-capabilities and
reliability [Fullam et al., 2004], and (4) the Electric Elves system for immersing
agent technology in scheduling tasks in organizations Pynadath et al. [2000].

CT is distinguished from these systems in several ways. First, these test-beds
require that significant domain knowledge be represented in computer agents (e.g.,
modeling stock prices prior to bidding, estimating the number of people in danger in
a burning building). In contrast, CT allows agent designers to focus on such general
properties of interactions between humans and computers such as people’s percep-
tion of the usefulness of an interruption request for information [Kamar et al., 2009a]
and the way people form teams to carry out tasks in strategic environments [van
Wissen, 2009]. This abstraction also has advantages for experiments that involve
people: First, human subjects need not be domain experts. Second, CT enables the
specification of different reward structures, allowing system-designers to vary the
importance of different decision-making factors such as the performance of others
or the group as a whole to the outcome of an individual. As a result, CT is novel in
addressing the need to have better ways of evaluating computer agent strategies in
contexts in which systems are participants in group activities that include people.

Although CT abstracts away from such domain specific details as fire engines and
evacuation routes, it provides a task-like context in which decisions are made. This
task context means that decisions are presented less abstractly than payoff matrices
or trees, the canonical forms used to present outcomes in behavioral economic
experiments. These canonical forms explicitly specify the payoffs to all players for
each potential strategy. Real-world decision-making seldom presents choices this
starkly. CT immerses people in an environment in which underlying relationships
among tasks, goals and resources matter. It thus places decision-making in a more
real context.

3. The Effects of Decision-Presentation on Human Negotiation
Behavior

This section provides empirical evidence that people’s behavior is significantly
more cooperative when they negotiate using CT than when they are presented with
payoff-only representations of the sort common to studies in behavioral economics.
Recent work in the social sciences has demonstrated that people cooperate despite
the lack of direct short-term benefits from cooperative behavior [Dreber et al., 2008,
Nowak, 2006]. This section shows the use of CT induces such cooperative behavior
and thus it provides support for CT as being the right kind of test-bed with which
investigate decision-making in open-mixed networks.

3.1. Empirical Design. We presented subjects with identical multi-agent decision-
making problems in two conditions and measured their behavior and outcomes. In
one condition, called the “task condition”, people made decisions in the context of
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a CT game. In the other, the “table condition”, they were given the decision in the
context of a payoff-only table representation.

For the task condition, we used a 2-player CT setting that varied a configuration
of 4x4 boards, the chip allocations for each player, and the placement of the goal
square. The study comprised a one-shot negotiation setting for which one player
was designated the proposer and the other was designated the responder. Players
had full view of the board and each others’ chips. The proposer player could make
of offer to exchange a particular subset of its chips for some subset of the responder’s
chips. The responder player could accept or reject the proposer’s offer. If no offer
was made (there was a 3-minute deadline for proposers to make offers), or if the
offer was declined, then both players were left with their initial allocation of chips.
If the offer was accepted, the chip exchanges were enforced by the game controller.
Following this interaction, both players’ icons were automatically moved as close as
possible to the goal square given the chips in their possession and their computed
score.

The scoring function for players depended solely on their own performance: 100
points bonus for reaching the goal (otherwise, 50 points bonus); 5 points for each
chip left in a player’s possession at the end of the game; 10 points deducted for
any square in the shortest path between a player’s final position in the game and
the goal-square. These parameters were chosen so that getting to the goal was by
far the most important component, but if a player could not get to the goal it was
preferable to get as close to the goal as possible, rather than hoard chips.

An example of one of the boards used in the study is given in Figure 1a. In this
example, neither player can get to the goal by using the original chip allocation. The
games used in the study all involved at least one of the players having insufficient
chips to get to the goal, but not necessarily both.

The table condition consisted of a payoff matrix representing potential offers that
could be selected by the proposer player in a CT game. Each offer was represented
as a pair of payoffs for the proposer and the responder players. Figure 2 shows
a snapshot of a game in this representation as seen from the point of view of a
proposer player. Each entry in the table represents an offer, and selecting one of
the entries corresponds to choosing the offer that was associated with the payoffs
inside the entry. One of the entries contained the no-negotiation alternative score
and was presented to players as the default outcome of the interaction.

The score that each player received if no offer was made was identical to the
score each player received if the offer was rejected by the responder. We refer to
this score as the “no-negotiation alternative” score and refer to the score that each
player received for an offer that was accepted by the responder as the “proposed
outcome” score.

A total of 32 subjects participated in the experiment. They were equally di-
vided between the two conditions. Participants in the task condition interacted
with each other using the CT environment, whereas those in the table condition
interacted with each other using the payoff matrix representation. In both con-
ditions, participants were compensated in a manner that depended solely on their
individual scores, aggregated over all rounds of interaction. To prevent confounding
effects on their behavior, participants were randomly divided into the two condition
groups and seated in two rooms, such that no participant interacted with another
participant seated in the same room. Participants only interacted with others in
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Figure 2. Snapshot of an interaction in the table condition. Each
entry in the matrix lists a pair of payoffs representing the score to
the proposer player (left) and the responder player (right).

their condition group and were not provided any information about each other.
We trained each group of subjects and tested their proficiency using a pre-study
questionnaire.6

For each CT round that was played in the task condition, an equivalent round
was played in the table condition. Each entry in the table listed a payoff pair rep-
resenting the payoffs to the proposer and responder player for a possible exchange.
For example, the payoff matrix shown in Figure 2 is equivalent to the CT game
shown in Figure 1(a).

We use the term “table proposers” and “task proposers” to refer to the partici-
pants that were designated with the proposer role in the table and task condition
respectively (and similarly for responder players). We use the term “offer bene-
fit” to refer to the difference between the proposed outcome for an offer and the
no-negotiation alternative score for the game. We measured people’s behavior in
the experiment using two features. The degree to which proposers were helpful to
responders was measured in terms of the average offer benefit they proposed to
responders. Similarly, the degree to which proposers were selfish was measured in
terms of the average offer benefit they proposed to themselves. These features are
not independent. For example, proposers can exhibit both a degree of selfishness
and a degree of helpfulness based on the average benefit of their offers.

3.2. Analysis of Proposer Behavior. Table 1 presents the average offer benefit
to participants in the task and table conditions for proposers and responders. Table

6Subjects that did not score full points on the questionnaire were given a show-up fee and did
not participate in the experiment.
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Table 1. Average Benefit of Exchange

Offer Benefit to
Proposer Responder

Task 82.3 47.6
Table 98 36

proposers offered significantly more benefit to themselves than did task proposers
(t-test p < 0.05). Also, they offered significantly less benefit to table responders
than task proposers offered to task responders (t-test p < 0.01). Thus, proposers
were more likely to engage in helpful behavior, in the task setting, and less likely
to engage in selfish behavior.

Another result arising from the table is that proposers offered significantly more
to themselves than they did to responders in both conditions (t-test p < 0.05).
However, the difference between the benefit for proposer and responders was sig-
nificantly larger in the table condition than in the task condition (t-test p < 0.05).
We can thus conclude that although proposers were competitive in both conditions,
they were significantly more competitive in the table condition than in the table
condition.

Table 2. Average Benefit for Accepted Exchanges

Proposer Responder Total
Task 79.5 56.4 135.9
Table 85.6 40.7 126.3

Table 2 shows the exchange benefit to proposers and responders averaged over
all accepted proposals, as well as the total accumulated benefit in each condition.
The benefit to responders from accepted proposals was significantly higher in the
task condition than in the table condition, and conversely for the proposers (t-test
p < 0.05). Thus, task responders outperformed table responders, whereas table
proposers outperformed task proposers.

Our results also found that the CT task setting had a positive effect on the
combined performance of participants. As the rightmost column shows, the total
performance (combined proposers and responders scores) was higher in the task
condition than in the table condition (t-test p < 0.1). The benefit for accepted
exchanges is a measurement of performance, because the outcome of each round
of interaction was fully determined by the action of the responder. Although this
result was not significant at the p < 0.05 confidence level, it highlights that CT did
not only have an effect on people’s helpful behavior tendencies, but also that this
helpful behavior was beneficial overall for the participants.

3.3. Comparison with Nash-Equilibrium Strategies. This section compares
the offers that were made in the CT and table conditions with the offers dictated by
the exchange corresponding to the Nash equilibrium strategy. We use the term NE
exchange of a round to refer to the exchange prescribed by the Nash equilibrium
strategy profile for the round. This exchange offers the maximum benefit for the
proposer, out of the set of all of the exchanges that offer non-negative benefits to
the responder. For the CT scenario used in our experiments, the Nash equilibrium
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offer is the one that maximizes the proposer’s benefit out of the set of all possible
exchanges that offered any benefit, however small, to the responder. Thus, the
NE exchange is a competitive offer, which is more beneficial to proposers than to
responders.

Because proposers were more competitive in the table setting, we expected table
proposers to be more likely to offer NE exchanges than task proposers. We found
that the number of NE offers made in the table condition (57) was significantly
greater than the number of NE offers made in the task condition (13), (chi-square
t < 0.01). To compare the extent to which the exchanges made by proposers in the
two conditions differed from the NE exchange, we plotted the average benefit offered
by NE exchanges and by proposed exchanges for both task and table conditions,
as shown in Figure 3.
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Figure 3. Benefit from Proposed Exchanges vs. NE Exchanges

The difference between the average benefit to responders from the NE offer and
the average proposed exchange was close to zero in the table condition, and large
and positive in the task condition (t-test p < 0.05). Similarly, the difference between
the benefit to proposers from the NE offer and the average proposed exchange was
close to zero in the table condition, and large and negative in the task condition
(t-test p < 0.05). The Euclidean distance between the points representing the NE
benefit and the proposed exchange was significantly larger in the task condition
than in the table condition. In fact, there was no statistically significant difference
between proposed exchanges in the table condition and NE offers; participants who
make decisions in the table condition were more likely to follow the equilibrium
choice.

These results align with recent work in the social sciences that has found dif-
ferences between people’s behavior in field studies and their behavior in controlled
laboratory experiments [Henrich et al., 2001]. However, they differ from classical
findings which show that people do not adhere to traditional game theoretic equi-
libria in one-shot games such as prisoners’ dilemma [Sally, 1995]. One possible
explanation for the adherence to game theoretic exchanges in the table condition
may be the fact that subjects were guaranteed the no-negotiation alternative score
in each game (unlike the canonical behavioral economics experiments, in which the
outcome for no negotiation was zero). The guarantee of a positive payoff to pro-
posers could have made them less likely to fear rejection by the responders. Thus
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they offered exchanges that were more selfish (more game-theoretic) as compared
to prior studies.

3.4. The Context Hypothesis and Related Approaches. The results of the
experiment described above support the hypothesis that the way in which a decision
is represented influences people’s negotiation behavior. While considerable amount
of research in the social sciences has studied the effects of framing on behavior
this is the first work that has explored the particular role played by task settings.
In particular, the result that people are more helpful and less competitive in the
task-like CT setting than when deciding in a payoff-only context, suggests that
task settings have a positive effect on the way people (and in turn, the agents that
interact with people) behave. However, there are several alternative explanations
of this behavior. In this section, we rule out two obvious alternatives.

First, the competitive behavior exhibited by table proposers might be attribut-
able to the fact that the specific payoffs for each possible strategy was explicitly
presented to them, whereas proposers in the CT-task setting were not given the
payoffs explicitly. To rule out this hypothesis, we ran an additional experiment in
the CT game context. In this experiment, we used a CT setting like the one used
in the original task context, with one difference: Subjects were able to access an
extended version of the path-finder panel that allowed them to view the payoffs for
potential paths to the goal. This setting preserved the task environment, but also
allowed for explicit display of the payoffs for both players associated with agree-
ments. We used the same set of games that were used in the original experiment.
The results showed that there was no significant difference in the average benefit
allocated to proposers and responders in this intermediate representation than in
the CT-task condition (t-test t(29) = 2.34, p < 0.05). Thus, we can preclude the
lack of explicitly presented payoff information in the CT context as an explanation
of the different proposers’ behavior.

Second, the different proposer behaviors might be attributable to differences in
the cognitive demand on subjects making decisions in two different settings. In both
of these settings, the number of possible offers for proposer players in each game
was large, and bounded by 28 = 256. Typically, there were between thirty and forty
offers in each game associated with a distinct benefit to both proposer and responder
players. All of these strategies were explicitly presented to table proposers, while
the task proposers needed to infer the possible strategies (and payoffs) by reasoning
about the task setting. Both conditions potentially required large cognitive effort
that could confound players’ reasoning about the degree of helpful behavior to
exhibit. For the original set of experiments, we provided decision support tools for
each decision representation setting, that were designed to mitigate these potential
cognitive load problems. In the CT game, subjects could use the Decision Aid
panel, shown in Figure 1c, to query the system for suggestions about the best
paths to take given any hypothetical chip distribution and the chips required for
these paths. In the table condition, subjects were able to sort the table by their
own benefit or by benefit to the other player. Thus, in both cases, we reduced the
effects of the decision-making complexity on the behavior exhibited by subjects.

Thus, the task context provided by CT remains the best explanation of the
more helpful, less competitive behavior exhibited by subjects in that condition. Al-
though we have not yet established how many of the elements essential for studying
decision-making trade-offs of actual open, mixed network application settings are
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reflected in the decision-making environment provided by CT, these results show
that the CT environment differs for non-trivial reasons from payoff-only settings
and in ways that make decision-making in CT closer to the types of task settings
that occur in the real world.

Lastly, we note that this study is distinguished from work on collaborative user
interfaces and communication protocols for facilitating tasks such as preference
acquisition in e-commerce [Luo et al., 2006, Kamar et al., 2008], turn-taking [Chan
et al., 2008] and diagram generation [Bocionek, 1995]. Many aspects of interfaces
affect the way people interact; In designing both the task interface and the table
interface we attempted to create the most natural representations while restricting
the modalities to a graphic display. The fact that our results did not change even
when the payoffs were available to subjects using CT implies that the difference in
behavior should not be attributed to the payoffs themselves, but to other aspects
relating to the context that CT provides, such as the explicit presentation of tasks,
goals and resources. We do not mean to imply that the difference in behavior can be
attributed solely to one aspect or the other, such as the communication protocol.

4. Learning Social Preferences in Negotiation

This section describes an investigation of the hypothesis that computer agents
that model and learn the influence of social factors on people’s negotiation strate-
gies will outperform agents using traditional equilibrium strategies. It defines three
particular social factors—aggregate benefit, advantage of outcome, advantage of
trade—which together with individual benefit (the sole characteristic taken into
account by traditional equilibrium strategies) are used to characterize an offer. It
then describes an algorithm for learning these factors from data of people’s perfor-
mance in a 2-player CT setting that highlights the task-resource relationship, and
presents the results of empirical studies comparing this learned model to equilib-
rium strategy approaches. The CT setting used in this study was identical to the
one described in Section 3.

4.1. A Model for Learning Social Preferences. This section describes a model
that can be used to enable a computer agent playing the role of the proposer to
make offers that take into account social factors that influence people’s decisions
when they are responders in this CT scenario. The model addresses three essential
challenges. First, people vary in the extent to which they are affected by social
factors when they negotiate. For example, an offer that is rejected by a competitive
responder might be accepted by a responder who is more altruistic. In addition,
people sometimes make mistakes, so they may not behave consistently and thus may
at times deviate from the model of their typical behavior. Third, people’s behavior
has been shown to depend on their inter-dependence. For example, the extent of
generosity reflected in a proposer’s offer may depend on whether the proposer needs
chips from the responder to get to the goal.

The formal decision-making model used in this study is defined as follows: Let
k represent a CT game, associated with a set Ck of possible proposals. For each
proposal ckj ∈ Ck, let NNk

P and NNk
R denote the no-negotiation alternative scores

for the proposer and responder. These are the scores that the proposer and re-
sponder would receive if no agreement is reached in the game, and the players use
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the chips they were allocated at the onset of the game to move towards the goal-

square. Let POk,j
P and POk,j

R denote the proposed outcome scores for the proposer
and responder for proposal ckj .

For each proposal ckj of game k, we represent four social factors xk
j = {xkj,1, . . . , xkj,4}

that affect the behavior of the responder agent.

• Individual benefit xkj,1 = POk,j
R −NNk

R

• Aggregate benefit xkj,2 = (POk,j
P + POk,j

R )− (NNk
P +NNk

R)

• Advantage of outcome xkj,3 = POk,j
R − POk,j

P

• Advantage of trade xkj,4 = (POk,j
R −NNk

P )− (POk,j
R −NNk

P )

The individual benefit of an offer measures the extent to which the offer is beneficial
to the responder. The aggregate benefit of an offer measures the extent to which the
offer is beneficial to both players. The other two social factors represent different
potential sources of inequality. The advantage of outcome for an offer measures
inequality in the proposed outcome scores for the offer, without reference to the
no-negotiation alternative scores. The advantage of trade for an offer measures
inequality in the benefits to the agents of the offer. We illustrate these factors
using the offer in the game shown in Figure 1, in which the “me” player (the
proposer) offers one cyan chip to the “sun” player (the responder) in return for one
purple chip. This exchange provides both players with the chips they need to get
to the goal.7 It would allow the “sun” player to choose a shortest path of length
two to the goal. This player would have two chips left in its possession, and earn
a score of 120 points. Similarly, the offer would allow the “me” player to choose a
shortest path of length three to the goal (the path that is outlined in Figure 1a).
This player would have one chip left in its possession and earn a score of 110 points.
The no-negotiation alternative score for the “me” player in the game is 40 points,
while the no-negotiation alternative score for the “sun” player in the game is 50
points. Therefore the exchange above provides an individual benefit to the “sun”
player of 70 points, an aggregate benefit of (70+60)=130 points, and an advantage
of outcome and of trade of 10 points.

To enable learning of people’s decision-making strategies in this CT game, we
introduce the notion of “responder types” and use them to represent ways that
responders may differ in the extent to which the various social factors affect their
decision-making. Each type represents a particular weighting of these factors, re-
flecting the different ways in which responders make decisions. There is a finite set
of responder types T, and a prior probability distribution over types, denoted by
P (T). The weight wi,l denotes the weighting of social preference xl for responder
type ti. These weights measure the relative importance for the responder of each
of the social preferences.

Let k denote a CT game instance. Given a proposal ckj , possible social preferences

xk
j and responder type ti that is selected from P (T), we define a social utility ui

7The exchange provides a higher individual benefit to the “sun” player than to the “me” player,

according to the scoring function. This is because the “sun” player is initially located closer to

the goal square than the “me” player, and has the same number of four chips at the onset of the
game. Therefore it will be left with more chips than the “me” player if it accepts the exchange

and moves towards the goal.
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for the responder as a weighted sum

ui(x
k
j ) =

4∑
l=1

wi,l · xkj,l

Let rk denote the response to exchange ckj . A responder that always follows its

social utility function ui would agree to any exchange ckj such that ui(x
k
j ) > 0. The

probability of acceptance of an exchange ckj at game k by a responder of type ti is
defined by the following sigmoid function

(1) P (rk = accept | xk
j , ti) =

1

1 + e−ui(xk
j )

There are two advantages to using this function to model the probability of
acceptance using this function. First, it captures the fact that people may make
mistakes with respect to their utility function. Accepting a proposal is more likely
when the utility ui is a large positive number than a small positive number. In
particular, the probability of acceptance converges to one as the utility becomes
large and positive, and to zero as the utility becomes large and negative. When
the utility is close to zero, the decision is less clear-cut, and the probability of
acceptance is close to 0.5, meaning that mistakes, or decisions that are inconsistent
with the utility function are more likely to be made by the responder. Second,
the mathematical properties of the sigmoid function facilitate the derivation of the
learning rules, as we will soon describe. The expected utility to the proposer for an
exchange ckj of type ti can be written as

EUP (ckj | ti) = P (rk = accept | xk
j , ti) · PO

k,j
P +

(1− P (rk = accept | xk
j , ti) ·NNk

P )
(2)

The proposer does not get to observe the type of the responder it is interacting
with at each game. As a result, the best-response strategy for the proposer, as spec-
ified by Equation 3, will equal the unique proposal that maximizes the proposer’s
expected score in the game for all the different types of possible responders.

ck∗ = argmaxckj∈C
∑
ti∈T

P (ti) · EUP (ckj | ti)(3)

4.2. Learning a Mixture Model. To use Equation 3 in the model for a proposer
agent’s offer strategy, it is necessary to learn the distributions over the type space
of responders and the likelihood that each type agrees to a particular offer. Let
D = {d(1), . . . , d(N)} denote a set of instances, each instance representing a single
CT game. The proposal ckj in CT game k comprises a (possibly empty) subset
of the chips of the proposer to be exchanged with some (possibly empty) subset
of the chips of the responder. We define a data instance d(k) to consist of the
following features: a CT game k, a set Ck of possible offers in game k, the chosen
proposal ck∗ ∈ Ck, the set of social preferences xk

∗ = {xk∗,1, . . . , xk∗,4} associated with

the chosen proposal, and the response rk.
The goal of the learning task is to use the data set D to estimate the distri-

bution over the responder types and the strategy of the responder for each type.
As specified by Equation 1, the strategy for the responder depends on the social
preference weights w1, . . . , w4. The likelihood of the response at game k is defined
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as P (rk | xk
∗, ti). Let errki denote an error term for predicting whether the proposal

ck∗ at game k is accepted by responder type ti, defined as follows:

(4) errki = 1− P (rk | xk
∗, ti)

This term comes from assuming that if the model was a perfect predictor of the
responder, it would have predicted the true response rk with probability 1. The
difference between 1 and the P (rk | xk

∗, ti) factor is the degree of error for the
model, given that the responder is using block ti.

We can minimize errki by taking the derivative of this function with respect
to each weight wj . Employing a gradient descent technique, we get the following
update rule for each weight wj , where α is the learning rate.

(5) wj = wj + α
∑
k∈D

xkj
(
1− P (rk | xk∗ti)

)
.

However, the responder type ti in a CT game is unknown. Therefore we define
a mixture model that is comprised of a probability distribution P (T) over the type
space, and an associated set of weights wi,1, . . . , wi,4 for each type ti. We sum over
the type space to compute errk, the expected error of the model at each instance
k for all types

(6) errk =
∑
ti∈T

P (ti | rk,xk
∗) · errki

where p(ti | rk,xk
∗) is the posterior probability of type ti given response rk and the

set of social preferences xk
i . This can be computed using Bayes rule. The degree

to which a training instance k can be used to learn the weights wi,1, . . . , wi,4 is
proportional to the probability that each type ti generated instance k. We get the
following update rule for weight wi,j of type ti.

(7) wi,j = wi,j + α · P (ti | rk,xk
∗)
∑
k∈D

xkj
(
1− P (rk | xk∗ti)

)
Computing the new values of the P (T) parameters is performed using an on-line

version of the EM algorithm [Neal and Hinton, 1998], a standard stochastic learn-
ing paradigm for estimating distributions in the presence of missing information.
We compute the expected sufficient statistics for each type ti using the current
parameter settings and normalize to get a new distribution over the type space.

P (t) =
1

Z

∑
k∈D

P (ti | rk,xk
∗)

where Z is a normalizing factor.

4.3. Empirical Study. In this section we compare the performance of an agent
that used a social preference model to negotiate with people to agents using tradi-
tional equilibrium strategies. A total of 42 subjects participated in the experiment,
32 in the data collection phase and ten in the evaluation phase.

The CT games we used were randomly generated, but filtered to meet the fol-
lowing conditions: (1) at least one of the players could reach the goal after trading
with the other player; (2) it was not the case that both players could reach the goal
without trading. In this way, the games we trained and tested on characterized a
wide range of task dependency relationships between players. For each board we
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used in the study, we recorded the board and chip settings, as well as the actions of
both agents. We ran two instances of the data collection phase, each with different
subjects, collecting 192 games in total. The data obtained in this phase was then
used to learn a model of human play.

We learned separate models for one, two and three possible types of responders,
referred to as M1, M2 and M3, respectively. The parameters in these models
represented different convergence points of the learning algorithm in the parameter
space of possible values for the social preferences. For all models, we used random
initial values for the distribution over responder types. For M1 we also set ran-
dom values for all of the social preference weights. For M2 and M3 we assigned
each responder type initial values that highlighted certain social preferences by
giving them significantly higher initial value than others. Specifically, in M2, one
of the responder types highlighted advantage-of-outcome and advantage-of-trade,
while the other highlighted aggregate benefit. In M3, responder types highlighted
advantage-of-outcome, aggregate benefit, and advantage-of-trade separately. We
ran each model on the data from the data collection phase.

To keep from over-fitting the data, we stopped the learning process after no
improvement had been recorded on a held-out validation set. This occurred after
about 20 epochs. We obtained the following posterior parameter values for each
model. Model M1, which had a single responder type, learned social preference
weights (7.00, 5.42, 0.40, 4.00) for individual benefit, aggregate benefit, advantage
of outcome and advantage of trade, respectively. This model thus describes a re-
sponder who cares about both players’ outcome, but also likes to do better than
the proposer. In M2, the distribution over responder types was (0.36, 0.63) and the
social preference weights were (3.00, 5.13, 4.61, 0.46) and (3.13, 4.95, 0.47, 3.30) for
each type respectively. This model thus describes two partially altruistic respon-
ders, both of whom have high weights for social welfare, while still caring about
their own benefit. One of the types cares more about advantage of outcome, and
the other type cares more about advantage of trade. In M3, the distribution over
responder types assigned minuscule probability for the third type, and resembled
M2 in all other parameter values. We therefore decided to use M2 in the evaluation
phase.

Ten people participated as subjects in the evaluation study, which compared
the performance of three different computer agents. The computer agents were
always in the proposer role. Each of these agents was capable of mapping any CT
game position to some proposed exchange. The agent using the social preference
model, denoted SP , proposed the exchange matching the best-response strategy of
Equation 3. The second agent, denoted NE, proposed the exchange corresponding
to the Nash equilibrium strategy for the proposer role. A proposer that uses a Nash
equilibrium approach will make the offer that maximizes the proposer’s benefit out
of the set of all possible exchanges that offer non-negative benefit to the responder.

ck∗ = argmaxcj |(POk,j
R −NNk

R)>0(POk,j
P −NNk

P )

The third agent, denoted NB, proposed the exchange corresponding to the Nash
bargaining strategy [Nash, 1950] for the proposer.8

8The Nash Bargaining solution maximizes the product of the agents’ utilities and is always
Pareto optimal.



18 GAL, GROSZ, KRAUS, PFEFFER, AND SHIEBER

Table 3. Total score achieved by agents

Model Total Reward Proposals Proposals No
Accepted Declined Offers

SP 2880 16 5 0
NE 2100 13 8 0
NB 2400 14 2 5
HU 2440 16 1 4

The subjects were divided into two groups with the members of each group play-
ing four rounds in a round-robin fashion. At each round, four concurrent games
were played by each group. One of the (human) subjects and the three computer
agents were designated as proposers; the other four (human) subjects were desig-
nated as responders. In each round, the game settings—including board layout,
start and goal positions and initial chip distributions—were the same for all of the
games played by members of the same group. Through the round-robin, each of
the (human) subjects played each of the computer agents at least once as well as
some other human player(s). No two people played each other more than once, but
people could play the same computer agent more than once.

Participants were given the same instructions and tutorial as in the data collec-
tion experiment. To make the conditions in both collection and evaluation phases
identical, we did not tell subjects they would be playing computer agents as well as
people.9 We recorded the settings of each game, as well as players’ proposals and
responses. Altogether we collected 21 rounds, where each round consisted of four
games with different proposers, as explained above.

4.4. Results. The evaluation criterion for the SP agent was the total accumulated
reward received by the agent as compared to the agents that used other models to
guide their play. We also evaluated whether the offers that the SP agent made
were accepted more often by people than the offers made by other agents.

Table 3 presents the results of the evaluation phase for each of the agents used
in the experiment. It lists the total monetary reward, the number of proposals
accepted, the number of proposals rejected, and the number of times no offer was
proposed.

The computer proposer labeled NE always proposed the exchange that corre-
sponded to the proposer’s strategy in the Nash equilibrium of each CT game. In
essence, this resulted in offering the best exchange for the proposer, out of the set
of all of the exchanges that are not worse off for the responder. Many of the ex-
changes proposed by this agent were declined. We hypothesize this is because they
were not judged as fair by the responder. This result closely follows the findings of
behavioral game theory. The performance of NE was the worst of the four.

The computer proposer labeled NB always proposed the exchange that corre-
sponded to the proposer’s strategy in the Nash Bargaining profile. In particular,
this always corresponded to an exchange that was Pareto optimal with respect to
the set of feasible allocations, that is, the proposed outcome was not worse off than
the no-negotiation alternative for both agents. This exchange consistently offered
more to the responder than the NE agent did for the same game, when the board

9Approval was obtained from the Harvard Human Subjects Committee for this procedure.
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Table 4. An example of a proposal made by the SP agent

Model Proposer Responder
Score Score

NNA 45 170
SP 70 150

and chip distribution enabled it to do so. Because NB tended to offer quite fa-
vorable deals to the responder, they were accepted more than the other computer
agents, provided that an offer was made. This player did not make any offer for
those games in which there was no Pareto optimal offer.

The results in the row labeled HU in the table combine the monetary rewards
for all of the human agents. The identity of the human proposer was different at
each round. With one exception, human offers were accepted whenever they were
made.

The computer proposer that followed our expected utility model, labeled SP ,
achieved a significantly higher reward than theNE, NB andHU (t-test comparison
for mean reward was p < .05, p < .05, p < .1, respectively). SP and HU had the
highest number of accepted proposals. Interestingly, the SP agent proposed the
same offer as the human proposer in 4 of the games, whereas the Nash equilibrium
agent did not match a human proposal in any game, and the Nash bargaining agent
matched human proposals in 2 games.

The distinguishing behavior of the SP agent is illuminated by the examples in
Tables 4 and 5 in which the NNA heading gives the no-negotiation alternative
scores. Table 4 presents a round in which SP proposed an exchange which was
accepted; the (human) responder was altruistic in this case. This example is an
interesting illustration of generalization in the learning systems. There was only
one observation in the learning phase in which a responder altruistically agreed to
such an exchange. In the evaluation, the SP agent proposed exchanges that were
asking such a favor from a respondent who was much better off four times, and
these offers were consistently accepted by the (human) subjects. The ability of the
SP agent to make the right kind of trade-offs — when to ask for favors and when
not to ask for favors from the responder — was a contributing factor to its success.

Table 5 displays an example in which the proposed outcome of the exchange
proposed by NE, while beneficial for the responder, was lower than the exchange
proposed by SP . The NE exchange was rejected, while the SP exchange was
accepted. This difference seems to indicate that the responders in this game cared
about the equality of outcomes. Note that in this exchange, the SP exchange and
the exchange proposed by the human were equal.

4.5. Related Work: Learning from People. The results reported in this sec-
tion relate to several different strands of prior research that address, in a vari-
ety of contexts, the importance of learning for agents working with people. Past
works in AI have used heuristics, equilibrium strategies, and opponent modeling
approaches toward building computer agents that negotiate with people. For a re-
cent comprehensive review, see Lin and Kraus [2010]. Within repeated negotiation
scenarios, Kraus et al. [2008] modeled human bilateral negotiations in a simulated
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Table 5. An example of the offers made by all agents in a single game

Model Proposer Responder Accepted
Score Score

NNA 75 150
SP 170 170 Yes
NE 180 160 No
NB 150 190 Yes
HU 170 170 Yes

diplomatic crisis characterized by time constraints and deadlines in settings of com-
plete information. They adapted equilibrium strategies to people’s behavior using
simple heuristics, such as considering certain non-optimal actions. Jonker et al.
[2007] designed computer strategies that involve the use of concession strategies to
avoid impasses in the negotiation. Byde et al. [2003] constructed agents that bar-
gain with people in a market setting by modeling the likelihood of acceptance of a
deal and allowing agents to renege on their offers. Traum et al. [2003] constructed
agents for the training of individuals to develop leadership qualities and interview-
ing capabilities. Recent approaches have used learning techniques to model the
extent to which people exhibit different social preferences when they accept offers
in multiple interaction scenarios [Oshrat et al., 2009, Lin et al., 2008].

Our work is also related to approaches for elicitation of users’ preferences for
automated negotiation [Luo et al., 2006, Castro-Schez et al., 2004]. In these works,
people were asked to disclose information about their preferences over various nego-
tiation deals, and evaluate various acquisition models that trade-off the importance
of different features of an agreement to learn a parsimonious representation of users’
preferences. However, the participants of open, mixed networks directly negotiate
in task settings and it is not possible to ask people about their preferences directly.
Indeed, people are generally reluctant to reveal their goals and preferences when
they negotiate in task settings [Gal et al., 2009]. Thus we took a different approach,
namely to infer people’s utility functions from their negotiation behavior.

Lastly, this work is also related prior work include adaptation to user preferences
for improved human-computer interface design or computer-supported collaborative
agents that infer users’ goals and intentions [Horvitz, 1999]. These user models
inform agent-design for applications such as office assistants [Bocionek, 1995], and
scheduling and meeting management [Pynadath et al., 2000]. Our work differs
from these in its focus on learning people’s decision-making in strategic—rather
than collaborative—settings, and adapting to the social factors that guide their
play.

5. Repeated Negotiation in Settings of Full Information

This section describes a novel agent design for a mixed-network setting that
extends the one described in the previous section to include multiple negotiation
rounds and non-binding agreements. Such settings characterize many types of
real-world scenarios, including diplomatic relations, trade agreements and contract
negotiations, but have not been considered before in the design of agents that
interact with people. These settings pose additional challenges to the design of
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effective computer negotiation strategies. In particular, when agreements are not
enforceable, negotiators may initially behave reliably, but eventually take advantage
of others that trust them.

The study described in this section focuses on negotiation between computer
agents and humans under conditions of full information, while Section 6 focuses on
negotiation solely between computer agents under conditions of incomplete infor-
mation. Together, they demonstrate CT’s flexibility in allowing to configure more
complex negotiation protocols that support repeated negotiation and allow to con-
trol the extent to which participants abide to agreements. To date, all work on
human-computer negotiation assumes that agreements are binding, and uses con-
strained negotiation protocols that do not allow people to reveal information or
to argue their positions when they negotiate. An exception is an agent proposed
by Kraus and Lehmann [1995] that was developed for a specific domain, that of
diplomacy, and which did not reason about behavioral traits of participants.

We hypothesized that to be successful in settings where agreements are non-
binding, agents need to (1) model behavioral traits that affect the negotiation
behavior of other participants; and (2) adapt its negotiation strategy to the way
these traits change over time. To this end, we designed an agent that explicitly
modeled the extent to which its negotiation partners were reliable and helpful. We
begin the section by describing the CT setting, then outline the strategy used by
the agent and provide an empirical evaluation of this strategy when negotiating
with other people.

5.1. The CT Setting. The CT setting described in Section 3.1 was extended as
follows: First, players were allowed to renege on their agreements in part or in
full. This was done by introducing a transfer phase which immediately followed the
negotiation phase, and required chips to be transferred manually. In contrast, in
the CT setting described in Section 3.1 the chip transfer was automatic. Second,
the negotiation protocol included a recurring sequence of negotiation interactions
that allowed players to make and agree to offers, transfer chips and move about the
board.

This study used two different board configurations. In all of these boards there
was a single distinct path from each player’s initial location to its goal square.
One of the board configurations exhibited a symmetric dependency relationship
between players: Neither player could reach the goal given its initial chip allocation,
and there existed at least one exchange such that both players could reach the
goal. We referred to players in this game as task co-dependent. The other board
type exhibited an asymmetric dependency relationship between players: One of the
players, referred to as task independent, possessed the chips it needed to reach the
goal, while the other player, referred to as task dependent, required chips from the
task independent player to get to the goal. An example of the task co-dependent
board is shown in Figure 4. In this game both “me” and “O” players are missing
three chips to get to the goal. The relevant path from the point of view of the “me”
player is outlined.

At the onset of the game, one of the players was randomly allocated the role of
proposer, while the other was given the role of responder. The interaction proceeded
in a recurring sequence of communication, transfer and movement phases. In the
communication phase the proposer could make an offer to the responder, who could
accept or reject the offer. In the transfer phase, both players could choose chips
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(a) Board Panel (b) Chip Display Panel
(showing the chips in the

possession of both par-

ticipants)

Figure 4. Snapshots of CT GUI

to transfer to the other player. The transfer action was done simultaneously, such
that neither player could see what the other player transferred until the end of the
phase. In particular, players were not required to fulfil agreements: A player could
choose to transfer more chips than were agreed, or any subset of the chips that were
agreed, including transferring no chips at all. In the movement phase, players could
manually move their icons on the board across one square by surrendering a chip in
the color of that square. At the end of the movement phase, a new communication
phase began. The players alternated roles, such that the previous proposer was
designated as a responder, and vice versa.

These phases repeated until the game ended, which occurred when one of the
following conditions held: (1) at least one of the participants reached the goal
square; or, (2) at least one of the participants did not move for three consecutive
movement phases. At this point, both participants were automatically moved as
close as possible to the goal square using the chips in their possession and their
score was computed as follows: 100 points bonus for getting to the goal square, 5
points bonus for any chip left in a player’s possession; 10 points penalty for each
square left in the path from a player’s final possession and the goal square.

5.2. The Personality-Based Agent. The agent that we constructed for this
setting, called the Personality Based (PURB) agent, modeled other participants
in terms of two behavioral traits: helpfulness, and reliability.10 The helpfulness
measure of participants, denoted h, represented the extent to which they shared
resources with their negotiation partners through initiating and agreeing to pro-
posals. This was computed as the percentage of proposals in the game in which
participants offered more chips to their negotiation partners than they requested
for themselves. The reliability measure of participants, denoted r, represented the

10We use the term “participants” to refer to both people and computer agents.
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extent to which they kept commitments with their negotiation partners. This was
computed as the ratio between the number of chips transferred by participants and
the number of chips they actually offered, averaged over all proposals in the game.
Together, we refer to the pair (h, r) as the cooperativeness measure of a participant.

5.3. Social Utility Function. The PURB agent used a social utility function to
negotiate with people which was a weighted combination of the several features. For
the remainder of this section we will use the term “agent” to refer to the PURB
agent, and “person” to refer to its negotiation partner.

(1) The expected future score for the PURB agent. This score was estimated
using a heuristic function that estimated the benefit to i agent from a
potential exchange. It depended on the probability that PURB will get to
the goal given that proposal O is fulfilled at a state s which comprises a
board game, the positions of both participants on the board, and the chips
in their possession. We denote this probability as P (G | s,O), and define
the expected future score to i as

(P (G | s,O) · 100) + (1− P (G | s,O) · 10 · d) + c · 5

where 100 is the number of bonus points to get to the goal according to
the CT scoring function; d is the Manhattan distance of the agent from its
final position on the board and the goal square, given that the agreement
was fulfilled the p; 10 is the number of penalty points for each square in
the distance from the final position of PURB and the goal square; c is the
number of chips left in the player’s possession after it advances to the goal
using the shortest possible path, and 5 is the number of points awarded
to the player for each chips left in its possession at the end of the game.
The probability P (G | s,O) to get to the goal at state s given proposal
O was estimated as the ratio between the number of chips that the other
participant delivered to the PURB agent, and the number of chips that the
PURB agent was missing to get to the goal at state s given that O was
fulfilled.

(2) The expected future score for the other participant (computed in the same
way as for the PURB agent).

(3) The cooperativeness of the other participant (in terms of helpfulness and
reliability).

(4) The perceived cooperativeness of the other participant. This feature repre-
sented the PURB agent’s model of the other participant’s beliefs about its
own reliability and helpfulness.

The weights for the features of the social utility function were set by hand, and
depended on the dependency relationships between participants as well as their
cooperative measures. Generally, as the other participant increased its coopera-
tiveness measures, the weighting in the social utility function for PURB that was
associated with the score of the other participant were increased. This was to pro-
vide an incentive to the PURB agent to be more generous when its negotiation
partner was cooperative. Each time an agreement was reached and transfers were
made in the game, the PURB agent updated the helpfulness and reliability mea-
sures of both agents. Using this social utility allows the PURB agent to vary its
strategy based on its estimate of the other participant’s cooperativeness measure.
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For example, if the reliability of the other participant was high, this would increase
the social utility of actions that favour the other participant.11

5.4. Rules of Behavior. The second component of PURB’s decision-making par-
adigm was a set of rules that narrowed the search space of possible actions to be
considered by the agent when using its social utility. These rules depended on as-
pects relating to the state of the game (e.g., the number of chips each agent had,
whether a participant can independently reach the goal). At each step of the game,
the PURB agent used its social utility function to choose the best action out of the
set of possible actions that were constrained by the rules. The rules were designed
such that the PURB agent begins by acting reliably, and adapts over time to the
individual measure of cooperativeness that is exhibited by its negotiation partner.
These rules are based in part on a decision-making model designed to adapt to
people’s negotiation behavior in different cultures [Gal et al., 2010, to appear].

To enable to specify a finite set of rules for different measures of reliability and
helpfulness, the possible values that these traits can take were divided into three
equal intervals representing low, medium or high measures. For example, low re-
liability measures ranged from 0 to 1

3 . We then defined the cooperativeness of an
agent to depend on the extent to which it was reliable and helpful. Specifically, we
defined the cooperativeness of a participant to be high when it exhibited high help-
fulness and high reliability measures, or high helpfulness and medium helpfulness
measures; the cooperativeness measure of a participant was medium when it ex-
hibited medium reliability and medium helpfulness measures, or medium reliability
and high helpfulness measures; the cooperativeness measure of a participant was
low when it exhibited low reliability measures (regardless of its helpfulness mea-
sure) or medium reliability measures and low helpfulness measure. These values
were tuned by hand on games that were not considered in the evaluation.

We now list the set of rules used by the PURB agent in combination with its
social utility function:

a) Making Proposals The PURB agent generated a subset of possible offers and
non-deterministically chose any proposal out of the subset that provided a max-
imal benefit (within an epsilon interval) according to its social utility function.

Before outlining the rules by which the set of possible proposals were gener-
ated, we will introduce the following notation: We say an agent i is “stronger”
than agent j if i is able to reach the goal independently of j, or if it requires
less chips to reach the goal than j. Let Oi=j represent the number of proposals
in which agent i asks for as many chips as it receives; Oi>j represents the set
of proposals in which i asks for more chips than it receives; Oj>i represents the
set of proposals in which i asks for less chips than it receives.

Offers were generated by PURB in a way that considered which participant
was stronger than the other. Let i denote the PURB agent and j denote the
other participant. When participants were co-dependent, the set of possible
offers i considered included those offers that favoured the stronger agent. If i
was stronger than j, then the set Oi>j was considered (i.e., i requested from j
more chips than i proposed to j) And conversely for the case in which j was

11Although this strategy may resemble the principle behind the Tit-for-Tat paradigm, de-

pending on PURB’s model, its strategies can be more nuanced. For example, depending on the

dependency relationships that hold in the game, the PURB agent may offer a generous exchange
in response to a selfish offer made by a person.
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stronger than i. In both cases, the set Oi=j was also generated and considered
(i asks for as many chips as it sends).

In the other dependency roles, the offers that were generated depended on
the cooperativeness measure of j:
1) When the cooperativeness of j was high or medium, then if i was stronger

than j, then the set of possible offers that i considered included Oi>j . This is
because that when the reliability of j was high, there was a higher likelihood
that j would keep its commitments, and thus the set of possible exchanges
for i included exchanges that were highly favorable to i. However, if j was
stronger than i, then offers were chosen from the set Oj>i. This was because
that i wished to minimize the chances that j would reject its offers given that
j did not need i to get to the goal.

2) When the cooperativeness of j was low, then offers were chosen from the set
Oi>j , regardless of which agent was stronger. This was because i did not
expect j to fulfil its agreements, and thus it proposed offers that were less
beneficial to j.

b) Accepting Proposals As a responder, the PURB agent accepted an offer if it
was more advantageous to it than the offer it would make as a proposer in the
same game state, or if accepting the offer was necessary to prevent the game
from terminating. To state this formally, let ui(O, accept | s) denote the social
utility for i from an offer O made by j at state s. Let O′ denote the offer that
agent i would make at state s according to the rules in (a). Agent i accepted an
offer O if ui(O, accept | s) ≥ ui(O′, accept | s). In addition, i would accept any
proposal that prevented the game from ending, which occurs when the following
conditions hold: (1) the chips in the possession of agent i do not allow it to
move on the board at state s; (2) the offer Oj allows agent i to move; and (3)
if i rejects the offer, the limit for dormant turns will be reached and the game
would end.

c) Transferring Chips These rules specify the extent to which the PURB agent
fulfilled its agreements in the game. This behavior directly depended on its
model of the other’s reliability:

If the reliability of j was low, it was likely that the other participants would
not fulfil its agreement. Therefore i did not send any of its promised chips.
However, if both agents were task dependent, and the agreement resulted in both
agents becoming task independent then i sent half of the promised chips with a
given probability, because it was not certain that j would fulfil the agreement.

If the reliability of j was high, then i sent all of the promised chips.
If the reliability of j was medium, then the extent to to which i was reliable

depended on the dependency relationships in the game:
1) If j was task dependent, and the agreement resulted in j becoming task

independent, then i sent the largest set of chips such that j remained task
dependent.

2) If the exchange resulted in the PURB agent becoming task independent, and
j remaining task dependent, then the PURB agent sent all of the promised
chips, or two thirds of its promised chips, depending on its confidence level of
j’s reliability measure being medium. This confidence level depended on the
number of times in which the PURB agent interacted with j and j exhibited
a medium measure of reliability.
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Co-Dep. Task Ind. Task Dep. Total
PURB agent vs. People (n = 28) 163 (n = 12) 187 (n = 18) 82 (n = 58) 143

People vs. People (n = 50) 131 (n = 30) 181 (n = 30) 102 (n = 110) 136

Table 6. Performance for different Dependency Conditions

3) If both agents were task dependent, and the agreement resulted in both agents
becoming task independent, then i sent all of the promised chips.

Combining the PURB agent’s social utility function with these rules allows it to
adapt its negotiation behavior to that of the other participant.

5.5. Empirical Methodology and Results. Fifty-four human subjects partici-
pated in the study drawn from a pool of undergraduate computer science students
at Bar Ilan University. Each participant was given an identical 30 minute tutorial
on Colored Trails that did not disclose the actual boards used in the study. Each
participant was seated in front of a terminal for the duration of the study, and
could not speak to any of the other participants.

There were two conditions in the study. In the first condition, people played
other people while in the second condition, people played the PURB agent. In all,
there were 110 games that were played by people, and 58 games that were played
by the PURB agent and people. Subjects were not told whether they would be
playing a person or a computer agent.12

Unless otherwise stated, the following results compare the behavior of the PURB
agent playing people with that of people playing people. We list the number of
observations and means for each result. Significance of results were confirmed for
p < 0.05 using parametric statistical tests. Table 6 shows the average performance
for the PURB agent and people, measured as the average score obtained in all
games played.

5.5.1. Analysis of Performance. As shown by the “total” column in the table, the
PURB agent was able to negotiate as well as people: There was no statistically sig-
nificant difference between its total average performance (143 points) and people’s
performance (136 points). However, there were distinct difference in performance
for different dependency relationships between players. When players were co-
dependent, the PURB agent significantly outperformed people (163 points versus
131 points). People outperformed the PURB agent in the task dependent condition
(102 versus 82 points), but the difference was not statistically significant. There was
also no significant difference in performance between the PURB agent and people
in the task independent condition. In addition (and not shown in the table), in the
co-dependent setting, the PURB agent was able to reach the goal 90% of the time,
significantly more often than people, who reached the goal 67% of the time. There
was no significant difference between people and the PURB agent in the extent to
which the goal was reached when one of the players was task independent and the
other player was task dependent.

12The exact wording given to subjects were “you may be interacting with a computer agent
or with a person”.



AGENT DECISION-MAKING IN OPEN MIXED NETWORKS 27

Co-Dep. Task Ind. Task Dep. Total
PURB agent vs. People (0.79, 0.27) (0.92, 0.62) (0.74, 0.62) (0.81, 0.38)

People vs. People (0.53, 0.56) (0.63, 0.58) (0.41, 0.58) (0.49, 0.53)

Table 7. Actual Reliability (left) and probability of acceptance
(right) Measures

Co-Dep. Task Ind. Task Dep. Total
PURB agent vs. People (74, 86) (79, 23) (10, 81) (54.33, 63.33)

People vs. People (40, 52)) (66, 15) (14, 89) (40, 52)

Table 8. other-benefit (left) and self-benefit (right) Measures

5.5.2. Analysis of Behavior. The purpose of this section is to analyze the extent to
which both people and the PURB agent fulfilled their commitments in negotiation.
For any two participants i and j, let Ci denote the set of chips in possession of i
at round n in the game. Let O = (Oi, Oj) denote a proposal at round n, where
Oi ⊆ Ci was the set of chips that i agreed to send to j. Let O∗i ⊆ Ci be the set
of chips actually sent by i following the agreement. (And similarly define Cj , Oj ,
and O∗j .) Let ri({Ci ∪ Oj}) denote the score to player i in the case that j sent all
of its promised chips Oj , and i did not send any of its chips. We assume that the
score is computed using the scoring function for the CT game that is described in
Section 5.1. We refer to this value as the score that was promised by j in proposal
O. The factor ri({Ci ∪ O∗j }) denotes the score to player i given the chips O∗j that
j actually delivered to i. We refer to this as the actual score to i given the chips
that j transferred. The actual reliability of j given proposal O at round n is the
ratio between the promised score to i from the chips Oj in proposal O and the
actual score to i given the chips that O∗j chose to transfer. This is computed as
ri({Oi∪O∗

j })
ri{Ci∪Oj} . Note that this score-based measure of reliability is different than the

chip-based measure of reliability that was used by the PURB agent (Section 5).
Table 7 compares the actual reliability and probability of acceptance for the

PURB agent playing other people, and people playing other people. As shown in
the Table, for all dependency relationships the PURB agent was consistently more
reliable than people. Also shown by the table is that the PURB agent accepted
offers significantly less often than did people (38% vs. 53%). In addition there was
a significant correlation of 0.42 between the PURB agent’s reliability and perfor-
mance, while there was no such effect for people. (This result is not shown in the
table). Thus, although the performance of the PURB agent was similar to people in
score, the negotiation strategy used by the PURB agent was different from that of
people in several ways. First, the PURB agent was significantly more reliable than
people; and second, the PURB agent was less likely to accept offers than people.

We also compared the types of offers made by people and those made by the
PURB agent, as well as how often these offers were accepted. Table 8 shows the
average benefit from all proposals in a game that are associated with the proposing
player (self-benefit), and the responding player (other-benefit). These results show
that when both players were co-dependent, the PURB agent made offers that Pareto
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dominated (these offers were significantly more beneficial to both participants) the
offers made by people.

Although the PURB agent we designed was able to negotiate as well as people,
our analysis showed that its negotiation strategy differed from people: When it was
task co-dependent its offers Pareto dominated those of people. In this condition,
people exhibited medium reliability, and the PURB agent responded to this by
generating offers that benefited itself more than people, as described in its strat-
egy. Interestingly, the proposals made by the PURB agent also offered more to
people than did proposals made by people (74 versus 52 points). On average, the
PURB agent was less likely to accept offers than people; also, it was more reliable
than people in all conditions, and there was a significant correlation between the
reliability of the PURB agent and its performance.

We conclude this section by describing an example that highlights the way the
PURB agent was able to adapt to the different behavioral traits. The example is
taken from two games in which the PURB agent was task independent, and its
negotiation partner was task dependent. In both of these games, there was an
identical offer made by the human participant that would allow both players to
reach the goal. This example consisted of the person asking 1 chip from the PURB
agent and offering 3 chips in return. The proposal was accepted by the PURB agent
in both games. In the first game, the PURB agent chose to fulfil the agreement and
sent the promised chip. However, in the second game, the PURB agent chose not
to fulfil the agreement and did not send the promised chip. This was because the
reliability of the person in the first game was considerably lower than the reliability
of the person in the second game.

6. Repeated Negotiation in Settings of Incomplete Information

In this section, we describe a variant of the PURB agent that was designed to
negotiate in a setting that modified the one in Section 5 as follows: (1) the par-
ticipants were agent-based, some of which were designed by human subjects; (2)
the participants in the negotiation lack pertinent information about each other’s
resources when they make decisions; and (3) the negotiation included multi-party
interactions of four participants. The relevance of this mixed-network setting to ne-
gotiations of the type that may occur in the real world is in its inclusion of agents
playing unknown negotiation strategies. Such negotiations are already common-
place in electronic commerce applications such as ebay, where people can construct
automatic bidders to serve as proxies and represent themselves in the bidding pro-
cess. The object of the study was to build an agent that is able to negotiate
proficiently in this setting, despite its uncertainty about others’ resources as well
as their negotiation strategy.

Because our setting included numerous negotiation partners and limited infor-
mation, the agent-design we describe in this section modified the PURB design in
two ways: First, it was endowed with a separate adaptation mechanism for each
negotiation partner, and second, it estimated the cooperativeness of the negotia-
tion partners without knowing the actual benefit associated with potential actions
in the game.

6.1. Experimental Design. We modified the CT repeated interaction setting de-
scribed in Section 5 so that each participant could observe its own chips, but not
the chips of the other participants. Three types of agents were used in the study.
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Perceived Matched
Cooperativeness Cooperativeness

LL LL
LM LM
LH LM
MM LM
MH MM
HM HM
HH MM

Table 9. Matching scheme used by VP agent to adapt its coop-
erativeness to the cooperativeness of its negotiation partners

The first type of agents were Peer-Designed (PD) agents, created by graduate-level
computer science students at Bar Ilan University who were not given any explicit
instructions beyond designing an agent that will represent themselves in a negoti-
ation.

The second type of agent was a Constant Personality (CP) agent. This agent
used a technique to estimate the cooperativeness of the other participants that was
similar to the PURB agent described in Section 5.

The third type of agent was a Varying Personality (VP) agent. This agent was a
variant of PURB that extended its utility function described in Section 5 to adopt a
separate measure of cooperativeness for different levels of cooperativeness exhibited
by the other participants. Table 9 specifies a match between cooperativeness mea-
sures exhibited by the VP agent given the cooperativeness measures exhibited by its
negotiation partners. The matching process was done empirically, using a held-out
test-set of PD agents that were not used again in the evaluation process. Both VP
and CP agents were adaptive: they changed their behavior as a function of their
estimate of others’ cooperativeness, given the history of their observations. How-
ever, the VP agent adopted a unique measure of cooperativeness for each player,
whereas the measure of cooperativeness for the CP agent was constant.

A series of repeated games were played between the VP agent and with the other
agents in the systems. Each agent’s final outcome was the aggregate of its scores in
all of the games it participated in. For purpose of analysis, we classified PD and CP
agents as either “cooperative” or “non-cooperative” according to the following: Co-
operative CP agents were those that engaged in helpful exchanges more than 50% of
the time and reneged on their commitments less than 20% of the time. We expected
cooperative agents to realize opportunities for exchange with each other more often
than non-cooperative agents and to exceed them in performance, as measured by
the score in the game. We also expected that in some cases, non-cooperative agents
would be able to take advantage of the vulnerability of those cooperative agents
that allow themselves to be exploited. Additionally, we hypothesized that the VP
agent would be able to identify and reciprocate cooperative agents more quickly
than CP or PD agents, while staying clear of agents that are non-cooperative. As
a result, the VP agent would perform better than all other agents in the game.

We ran 5,040 games in our experiment, played in 1,080 rounds of three consec-
utive games each. The board games we used in each round varied the task depen-
dency relationships between players. There were 4 players in each game, consisting



30 GAL, GROSZ, KRAUS, PFEFFER, AND SHIEBER

VP agent PD and CP agents

Cooperative 170.6 114.8
Non-Cooperative 142.5 98.2

Table 10. Average performance of VP agent against
cooperative/non-cooperative agents (3 repeated games)

Exchange Cooperative Non-Cooperative
Type agents agents

Reciprocal 60% 25%
Idle 20% 39%

Table 11. Percentage of exchange types proposed by VP agent

of a VP agent, two CP agents, and one of the PD agents. The boards used were
generated to span all possible task dependency role (dependent, co-dependent). Ta-
ble 10 presents the average score for the VP agent when playing against cooperative
and non-cooperative agents across all games. The scores reported in the table sum
over the other players in the game.

As shown by the table, the average score achieved by the VP agent was sig-
nificantly higher than all other agents, regardless of their level of cooperativeness.
Also, the VP agent’s score when playing against cooperative agents (170.6) was
higher than its score when playing against non-cooperative agents (142.5). Cooper-
ative agents also benefited from cooperating with the VP agent: their performance
was significantly higher than their non-cooperative counterparts (114.8 vs. 98.2).

In addition, the VP agent engaged in cooperative exchanges with cooperative
agents significantly more often than the other agents, while the amount of time the
VP agent remained idle when dealing with non-cooperative agents was longer than
the amount of time other agents remained idle (Table 11).

To conclude, in repeated game settings, the VP agent, which conditioned its own
personality based on its estimate of others, outperformed all of the other agents
in the system. Some types of agents escaped identification in intermediate rounds,
resulting in an increase in their scores. However, the general performance of the
VP agent was not affected. It performed better than all of the other agents in
all of the games we played, and increased its score from game to game during
the final rounds of the experiment. This shows that adopting a separate measure
of cooperativeness for different agents is key to agents’ success in task settings of
incomplete information.

6.2. Related Work: Adapting to Agents’ Behavioral Traits. The results
reported in this section relate to recent approaches for learning to adapt to others’
negotiation behavior in repeated interactions under uncertainty13. One strand of
research involves learning and adapting to agents’ behavioral traits. Zhang et al.
[2002] explored the trade-off between selfishness and helpfulness in environments in
which agents were uncertain about the helpful nature of others in the system. They
showed that although realizing every opportunity for cooperation was impossible,

13Other works have considered negotiation settings that allow reputation and revelation mech-
anisms, which does not directly relate to our work.
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selfish agents do better than helpful agents as the rate of uncertainty in the system
grows. Hogg and Jennings [2001] proposed a model in which agents’ utilities were a
weighted summation of each others’ expected outcomes. By learning these weights
from observations, agents changed their measure of helpfulness over time. When
all agents in the system were adaptive, high exploration rates led agents to seek out
new negotiation opportunities and increased the overall social welfare of the group.
All these models allowed agents to change their measure of helpfulness over time
as a function of their model of others, and investigated the effects of this behavior
on agents’ cooperation and system performance. However, these works assumed
that players fulfil their commitments following agreements, and did not model the
behavioral types of others.

7. Conclusion and Future Work

This paper has presented studies which demonstrate the importance of learning
and of incorporating social factors into agents’ decision-making models when they
operate in open, mixed networks. The studies focused on the design of computer
agents for negotiation with each other, or with people, in settings that varied the
availability of information, the negotiation protocol and the interdependence’s that
held between agents. For settings of complete information, our findings showed
that

• Computer agents can successfully learn the extent to which different people
are affected by social factors, and that this improves their decision-making.
• Agents that learn can outperform computational agents using traditional

game- and decision-theoretic strategies.

For settings in which complete information about agents’ resources is not available,
or in which agents can renege on agreements, we have shown that

• Computer agents that adapt their level of cooperation to the varying degree
of helpful behavior exhibited by others outperform computer agents that
do not adapt.
• This adaptation process also facilities successful interaction among com-

puter agents and people.

These studies used different configurations of the CT test-bed, a framework
designed to investigate decision-making in such networks. The advantage of using
CT is that it presents decisions to people in a context that mirrors task settings
in the real world. People are more likely to engage in cooperative behavior in CT
environments than when in the context of traditional representations such as payoff
matrices.

Additional work by the co-authors and others further demonstrate the usefulness
of the CT framework in investigating a variety of questions about decision-making
in group settings. In particular, the Colored Trails system has been used to con-
struct and evaluate computational models of human reciprocity [Gal and Pfeffer,
2007], to investigate the role of gender and social relationships in people’s negotia-
tion behavior [Katz et al., 2008], the way people reason about belief hierarchies in
negotiation [Ficici and Pfeffer, 2008] and the way people respond to interruptions
from computers [Kamar et al., 2009b]. CT has proved to support the rapid pro-
totyping and ease of analysis of different kinds of decision-making models that is
made possible when using CT. It has also been used as a pedagogical tool in for
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teaching agent design to students in courses at Harvard, Ben-Gurion and Bar-Ilan
Universities.
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