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. Light scattered from the driven free surface of the smectic-A phase of octyloxy cyano-
biphenyl (80CB) provides a low-frequency measurement of second sound. This yields an
absolute measurement of the smectic elastic constant, B. There is no dispersion in either
the angular or frequency dependence of B for angles 35°~83° from the normal and for fre-
quencies from 10—100 kHz. Near the smectic-A—to—nematic phase transition the smectic
elastic constant can be described by B =(6.03+ 0.05) X 107 (I'y o — 1) 32005 qypn/ecm?,

PACS numbers:

A principal result of the theory that de Gennes
proposed in 1972' to describe second-order smec-
tic-A-to—nematic phase transitions was that the
elastic constant B that describes resistance to
changes in the smectic layer spacing should go
to zero continuously, B~ (Ty,—T)%. Almost all
previous measurements®” 7 of the temperature de-
pendence of B have been indirect in that the quan-
tity actually measured was x = (K/B)"2. Although
in many materials the Frank elastic constant, K,
is believed to be relatively independent of temper-
ature, direct measurements of K in the smectic-
A phase are very difficult. In contrast, second
sound provides a direct measurement of the tem-
perature dependence of B. There has been only
one previous study of B which makes use of the
second sound.®

In this Letter we present the first simultaneous
measurement of the frequency, wave-vector, and
critical-temperature dependence of second sound
near the smectic-A —nematic phase transition.’
From these measurements we have determined
the absolute value of the smectic elastic constant,
B.'° By using thin samples (~ 150~450 um thick)
of octyloxy cyanobiphenyl (80CB), in which the
top surface was a free liquid-crystal—air inter-
face, low-frequency second sound was observed
through light scattered by driven deformations of
the free surface. The measurements all yield the
same value of B indicating the absence of any dis-
persion effects over a wide range of wave vectors
(varying in angle by 35°-85° from the normal and
in magnitude from 100-400 em™?), and ranging in
frequency from 10-100 kHz. The material stud-
ied, 80CB, was chosen because of its chemical
stability; it was obtained from British Drug
House and used without further purification.

The experimental apparatus, shown schemat-
ically in Fig. 1, employs several techniques that
were developed in other laboratories.'»* An

64.70.Ew, 61.30.Eb, 78.20.Hp

argon-ion laser (~30 mW, 5145 A) is weakly fo-
cused onto the free surface of the sample. The
surface is driven by an alternating potential that
is applied between a knife edge approximately 25
um above the sample and a conducting substrate
that makes up the bottom surface of the liquid-
crystal cell. This surface was treated with the
surfactant hexadecyltrimethylammonium bromide
(HTAB) so that the 80OCB molecules stand normal
to the glass. To obtain a flat free surface the
slope of the side walls of the sample cell were
adjusted to equal the contact angle, «. The mo-
tion of the free liquid-crystal surface, in re-
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FIG. 1. Schematic of the experimental arrangement
and sample cell.
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- Heterodyne detection at a specific diffraction

(@) maximum of the grating selects a single known
component of the wave vector, q,, parallel to the

0781~ surface. The induced motion is kept small (<0.05

A) in order to minimize perturbations to the

smectic layers.

The frequency and wave-vector response x(q,w)
of the free surface to the applied force can be ob-
tained by solving the hydrodynamic equations®®
with the appropriate boundary conditions. To a
first approximation, x(q,w) is simply given by a
00 | . , | linear superposition of simple harmonic-oscilla-

° 20 40 FREQUEN cﬁo(m) 80 100 tor responses in which the characteristic frequen-

cies are obtained from the hydrodynamics of sec-
(b) ond sound. Specifically, for modes of the form
u(x,z)=ulz)expli (wt —g,x)], with w <v,q, (where
120 v, is the longitudinal sound speed), the dispersion
relation becomes

0.5
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where g, and g, are the components of the wave
0.00 L L L 1 J vector in the smectic planes and normal to them,
(o) 20 40 60 80 100 . . . . N . .
FREQUENCY (KHz) and v ¢, is the kinematic viscosity which is a func-
tion of the angle y =tan™'(g,/q,).** Further the

FIG. 2. (a) The experimental response as a function modes are wave-guide-like with
of frequency, for a sample with g, =7/2k =60 cm™!, qy
=125 cm™!, and AT =0.14 K. (b) The theoretical re- q.~@/2r)2m +1), m=0,1,2,....

sponse for B =3.51X10" dyn/cm?, 1=0.9 P (independent

of angle), k=262 um, g, =125 cm"!, and p=1 g/cm? The response is that of a driven harmonic oscil-
) ) dx , .

lator with a resonant frequency that is only slight-

ly shifted from w,=(B/p)*?q,q,q,>+q,°)"*/? be-
sponse to the applied voltage, scatters some of cause of viscous effects, and a full width at half
the laser light which is then mixed with a local maximum Aw =2v.4(q,” +¢,°). The measured and
oscillator produced by a weak diffraction grating. predicted signals as a function of frequency are
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FIG. 3. B(AT) for different thickness samples and different scattering wave vectors. The symbols represent the
different measurements: squares, g, =112 cm™!, ¢, =125 cm™!; triangles, g, =55 cm™!, ¢, =125 cm™!; diamonds,
g, =55 cm™!, ¢, =250 cm™%; plusses, g, =55 cm™!, ¢, =375 cm"; inverted triangles, g, =60 cm”}, g, =125 cm™}
hexagons, g, =33.4 em™, g, =125 em”l circles, g, =38.9 eni”l, q, =125 em”™!, The solid line represents the least-

squares fit to the data for AT <1.24 K; its continuation is the broken line.
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shown in Fig. 2.

The measured B(AT =T y, —T) for all the sam-
ples versus the respective AT for each of the
samples are shown in Fig. 3. Although the tran-
sition temperature, Ty,, was not the same for
all the samples, the B(AT) curve is universal.
The asymptotic region, corresponding to AT
< 1.24 K, was least-squares fitted to a simple
power law of the form B =B,(AT)® yielding B,
=(6.03+0.05)x 10" dyn/cm? and ¢ =0.32+0.015
with x*=1.06. Nelson and Toner® recently pro-
posed a model in which B is not zero but a con-
stant at the transition temperature. This could
be described by B=B,' +B,’(AT)®. A least-
squares fit of the data in Fig. 3 to this form
yields B, = (0.15+0.43)x 107 dyn/cm?®, B,’ = (5.9
£ 0.45)x 107 dyn/cm?, and ¢ =0.33+ 0,04, with x*
=1.0. Thus our data are consistent with either a
simple power law or the Nelson-Toner form in
which B’ < 5% 10° dyn/cm?.

A comparison between the wave-vector depen-
dence of the results at two different temperatures
and the hydrodynamic prediction is shown in Fig.
4(a). To reduce all of the data to a dimensionless
form that is independent of temperature the figure
shows Q@) =w,/|q| (Bg)"?, where w, is the reso-
nant frequency of the response, |g| is the magni-
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FIG. 4. (a) Q@) :w0/|ql(3ﬁt)l/2 for two temperatures.
The solid line is the hydrodynamic prediction. (b) B/
Byj, vs wy/2r for the same two temperatures. The sym-
bols represent the same measurements as Fig. 3. The
open symbols are for AT = 0.54 K and the closed sym-
bols for AT=0.17 K.

tude of the wave vector, and By, is the value of
B(AT) that is obtained from the best fit to the da-
ta in Fig, 3. It is clear that there are no observ-
able systematic deviations from the hydrodynam-
ic form. For the same two temperatures, Fig.
4(p) shows the frequency dependence of B/Bg,.
Once again there are no apparent systematic de-
viations from the hydrodynamic prediction. There
is no evidence for the angle- and frequency-de-
pendent corrections to the second-sound speed
proposed by Liu'® and Jahnig'” in the frequency
range of the present experiment (10-100 kHz).

In conclusion, we have presented the first com-
plete study of second sound near the smectic-A-
to—-nematic phase transition. There is no observ-
able angle- or frequency-dependent dispersion in
B for the frequency region 10-100 kHz, and for
wave vectors varying in angle 3 from 35°-83°,
Further, we have presented the first absolute
measurement of the critical properties of B at
low frequencies. Finally, the critical exponent
describing the smectic elastic constant B has
been dirvectly measured for the first time. If we
assume a simple—power-law form, we obtain a
value ¢ =0.32+0.015. This can be compared with
values obtained by other researchers by use of
indirect techniques, which measure ) = (K/B)Y2
rather than B.

In particular, for 80CB, Lister et al.® obtained
¢ =0.26+0.08. For 4-cyano-4’-octylbiphenyl
(8CB), Davidov et al.® found ¢ =0.26+ 0.06, for
N-p -cyanobenzylidene-p -octyloxyanilene (CBOOA),
Birecki ef al.* and Ribotta® measured ¢ =0.33
+ 0,05 and Clark® found ¢ =0.36+ 0.14, and for
butoxybenzilidene octylaniline (40.8) von Kanel
and Litster” obtained ¢ =0.32+ 0.03. For all of
these smectic-A -to—nematic transitions, ¢ is
close to a value of 3. Further measurements are
required to determine whether there is a univer-
sal exponent for the smectic elastic constant.

One of us (M.R.F.) is a recipient of an IBM Pre-
doctorial Fellowship. This work was supported
by the National Science Foundation under Grant
No. DMR-77-24295 and by the Joint Services
Electronics Program (U. S. Army, Navy, and
Air Force) under Grant No. N00014-75-C-0648,
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Direct Nuclear-Magnetic-Resonance Measurements of Biaxiality
in the Cholesteric Liquid Crystalline Phase
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We report what we believe is the first experimental measurement of biaxiality in a
cholesteric phase. This observation is made in a selectively deuterated nematic that
was twisted by the addition of a chiral compound. A theoretically predicted biaxial order
parameter (measured in terms of an asymmetry in the time-averaged deuterium quad-
rupole interaction) was found to be ~10 ~? for a pitch ~3 um and to increase both with de-
creasing pitch and as the isotropic phase is approached.

PACS numbers: 64.70.Ew, 61.30.Gd

The possibility of observing biaxial molecular
order in a twisted nematic has been a topic of dis-
cussion for several years.! The nematic liquid
crystal is normally uniaxial, but when it is twist-
ed the cylindrical symmetry is broken by the heli-
cal twist defined by the pitch axis and biaxial or-
dering, though perhaps very weak, has been ex-
pected in such systems. Several theoretical in-
vestigations have regarded biaxiality as an im-
portant feature of cholesterics®™ and of the blue
phases®® which often intercede between the cho-
lesteric and the isotropic phase. In an experi-
ment on light scattering” the data could be inter-
preted as a result of competing fluctuations of
both uniaxial and biaxial order parameters, but
no values of the biaxial order parameters were
reported. On the other hand, other optical experi-
ments' have not revealed any observable biaxiali-

ty. Nevertheless, theory has been encouraging
for further experimental study with some authors
suggesting the use of NMR to observe this fea-
ture.®®

In this paper we report a direct deuterium NMR
measurement of biaxial order in a nematic that
has been twisted by an optically active compound
added to the sample. The nematic material is a
binary mixture of 75 wt.% 4-methoxybenzylidene-
4’ -n-butylaniline (MBBA) and 25 wt.% 4-n-butyl-
oxybenzylidene-4’-n-heptyl-d,-analine (4.07-d,)
selectively deuterated on one aromatic ring. To
this material was added various concentrations of
chiral 4-cyano-4'-(2-methyl)butylbiphenyl (CB-15)
to yield the twisted structure.

In the untwisted material, the nematic aligns
in the magnetic field yielding the typical deuterium
spectrum illustrated in Fig. 1(a). Of interest in
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