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Food-Web Models Predict Species Abundances
in Response to Habitat Change
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Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these
changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the
food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path
models that incorporated food-web structure better predicted population sizes of food-web constituents than did
simple keystone species models, models that included only autecological responses to habitat volume, or models
including both food-web structure and habitat volume. These results provide the first experimental confirmation that
trophic structure can determine species abundances in the face of habitat loss.
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Introduction

The loss of natural habitat area often is accompanied by
the disappearance of large-bodied top predators and the
upper trophic levels of food webs [1–3]. However, several
pieces of evidence suggest that habitat area alone may be
insufficient to predict changes in population size. Predictions
of ecological models [4,5], patterns of food-web structure in
small versus large habitat fragments [6], and recent observa-
tions of collapsing island communities [1,7] all suggest that
trophic interactions must be considered in order to predict
how abundances of populations will change in the face of
habitat loss and alteration. However, existing tests of the role
of trophic interactions in determining species abundances as
habitats contract are correlative only. In this study, we
provide the first evidence from a controlled field experiment
for the importance of trophic structure in controlling
abundances of multiple species in an aquatic food web.
Moreover, we demonstrate that models of trophic structure
account for the results better than do simpler models that
focus only on responses of individual species to changes in
habitat size or structure, or models that include both food-
web structure and habitat volume.

For multitrophic assemblages, two broad classes of com-
munity models predict the potential responses of populations
to habitat change. (1) Single-factor models emphasize the
unique responses of individual species to variation in habitat
area. This framework includes island biogeographic models
[8], as well as single-species demographic analyses [9] and
assessments of extinction risk. Single-factor models also
include keystone species effects, which emphasize responses
of populations to changes in the abundance of a single
keystone species, such as a top predator [10,11]. This
framework includes much current research on habitat
alterations by foundation species [12] and ecosystem engi-
neers [13]. (2) Food-web models emphasize the shifts in
abundance that result from multiple trophic interactions and
the transfer of energy and biomass through a food web. This
framework includes top-down and bottom-up processes [14],
trophic cascades [15], and more complex interactions across
multiple trophic levels [16].

Unfortunately, published studies of the effects of habitat
contraction have relied on conventional analyses that do not
explicitly compare these alternative frameworks [17,18].
Although analysis of variance and other statistical protocols
can quantify community change, they cannot be used to
distinguish between simple responses of species to habitat
contraction (single-factor volume model) and more complex
responses to changes in the abundance of other species (food-
web and keystone species models). A third possibility is that
trophic responses dominate the responses, even in the face of
habitat alterations. In this study, we used realistic field
manipulations of habitat volume and removal of top trophic
levels of entire aquatic communities. These manipulations
induced major alterations in habitat size and community
structure that have been studied previously in nonexper-
imental settings [1]. For the first time, we have experimentally
assessed the relative importance of autecological responses,
keystone species effects, and trophic interactions in account-
ing for changes in species’ abundance.

Results

The Aquatic Food Web of Sarracenia
The macroinvertebrate community associated with the

northern pitcher plant Sarracenia purpurea (Figure 1) is a
model system for testing mechanisms controlling abundance
in the face of habitat change [19]. S. purpurea is a long-lived
perennial plant that grows in peat bogs and seepage swamps
throughout southern Canada and the eastern United States
[20]. The plant grows as a rosette and produces a set of six to
12 new tubular leaves each year. During the growing season,
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leaves open approximately every 17 d and fill with rain water;
an aquatic food web quickly develops in these water-filled
leaves [21]. Leaves are photosynthetically most active in their
first year, but persist, capture prey, and are used as macro-
invertebrate habitat for 1 to 2 y [22]. The base of the food web
is captured arthropod prey (predominantly ants and flies),

which is shredded and partially consumed by midge (Metri-
ocnemus knabi) and sarcophagid fly (Fletcherimyia fletcheri) larvae
[23]. Shredded prey are then processed by a subweb of
bacteria and protozoa [24], which respectively are prey to
filter-feeding rotifers (Habrotrocha rosi) and mites (Sarraceniopus
gibsonii). Larvae of the pitcher plant mosquito Wyeomyia smithii
feed on bacteria, protozoa, and rotifers [25]. Large (third
instar) larvae of F. fletcheri feed on rotifers and small (first and
second instar) larvae of W. smithii [26]. Thus, the Sarracenia
food web exhibits the same complex linkages across multiple
trophic levels that characterize other aquatic and terrestrial
food webs [16]. Furthermore, the same assemblage of macro-
invertebrate species can be found associated with S. purpurea
throughout its broad geographic range—from the Florida
panhandle to Labrador and west to the Canadian Rocky
Mountains [27].
In a replicated field experiment, we simultaneously

manipulated habitat volume (adding or removing water from
leaves) and simplified the trophic structure of the Sarracenia
food web (by retaining or removing larvae of all three
dipterans: Metriocnemus, Wyeomyia, and Fletcherimyia). We
measured the abundance of the resident species in each
replicate leaf (Dataset S1) and compared the fit of food-web
models, keystone species models, and autoecological response
models to the data (see Materials and Methods).

Model Fit Statistics
The overall fit of the set of ecological models to the

abundance data was food-web models . single factor models
(Figure 2, lower panels versus upper panels). The fit of the
food-web and keystone models was not improved by
incorporating partial links or complete links with habitat
volume (Figure 2, left panel versus center and right panels).
The single best-fitting model was the Wyeomyia keystone
model (blue symbol and dashed line in Figure 2), and the
worst-fitting model was the Sarraceniopus partial-volume
response model. The best-fitting group of models was
composed of the four food-web models with no volume
linkage (red symbols and red band in Figure 2). These models
and the Wyeomyia keystone model did not reject the statistical
hypothesis of a ‘‘close fit’’ with the variance-covariance
structure of the data. Candidate models of other keystone
species or of other food-web models with volume linkage
performed more poorly.
The Wyeomyia keystone model correctly identified the role

of mosquito larvae as predators of rotifers and as prey of
Fletcherimyia (Figure 3A) [26]. These path analyses are
consistent with other studies suggesting that Wyeomyia is a
keystone predator with both top-down and bottom-up effects
in this food web [25,27]. The latent variable analysis of the
food-web models suggested that strong trophic links were
associated with bacteria (Figure 3B), which supports the view
of the Sarracenia food web as a commensal processing chain in
which shredders, detritivores, and filter feeders sequentially
process and transform arthropod prey [23]. Although it fit the
data relatively poorly (Figure 2), the simple model linking
species abundances only to volume identified a strong link
from pitcher-plant volume to prey abundance and a strong
link from volume to Metriocnemus abundance (Figure 3C).
Weaker links were from volume to Wyeomyia abundance and
Habrotrocha abundance, and all other links in this model were
close to zero.

Figure 1. The Sarracenia Food Web

Each leaf of the northern pitcher plant Sarracenia purpurea contains an
entire aquatic food web, with a resource base consisting of captured
arthropod prey. Sarracenia occurs in Sphagnum bogs and seepage
swamps throughout the eastern United States and Canada (sites at
which similar species assemblages can be found [27] are shown as black
dots).
(Photo Montage: Aaron M. Ellison)
DOI: 10.1371/journal.pbio.0040324.g001
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Discussion

The overall superiority of the Wyeomyia keystone model and
the simple food-web models demonstrates the importance of
trophic interactions in controlling species abundances in an
aquatic food web. Even though habitat volume was radically
altered by our manipulations (Table S1), the abundances of
species in the food web were better predicted overall by
trophic interaction models than by direct measures of habitat
volume or the abundance of basal prey resources alone, or by
models linking habitat volume partially or completely to
food-web structure (Figure 2). Although a few taxa did show
correlations with habitat volume (Figure 3C), the fit of the
food-web models to the abundance data was worse when
habitat volume linkages were included (Figure 2). Our

experimental study confirms the importance of trophic
interactions that have been observed on terrestrial islands
that have been sharply reduced in area [1] or altered by an
invasive species [7]. Explicit statistical models of the trophic
structure of communities may provide more accurate
forecasts of plant and animal abundances in the face of
habitat change than models that focus on the idiosyncratic
responses of individual species to habitat loss alone.

Materials and Methods

At Moose Bog, a peat bog of northeastern Vermont, United States
[28], we assigned 50 adult pitcher plants randomly to one of five
treatment groups in which we experimentally manipulated the water
level of the leaf and/or removed all of the dipteran larvae from the
aquatic food web (see Protocol S1). The food web in each of three

Figure 2. Cross-Validation Indices and 90% Confidence Intervals for Path Analysis Models of Macroinvertebrate Abundance

The smaller the index, the better is the fit of the data to the predictions of the model. The upper row of panels includes all single-factor models (Tables
S3 to S6). The single-factor model that has only habitat volume as a predictor variable (see Table S3) is indicated by a triangle to the left of the dashed
vertical line. The lower row of panels includes all food-web models (Tables S7 to S9). Food-web models designated with a (B) include a latent variable to
represent bacteria. The first column of panels includes models with no links to habitat volume (Tables S3, S4, and S7). The second column of panels
includes models with limited links to habitat volume (Tables S5 and S8). For the bottom-up food-web models, the link was from habitat volume to prey
abundance, and for the top-down food-web models, the link was from habitat volume to the abundances of Fletcherimyia and Wyeomyia. The third
column of panels depicts models with all taxa linked to habitat volume (Tables S6 and S9). The single best-fitting model (Wyeomyia keystone with
neither partial nor complete links with habitat volume) is indicated with a blue symbol. The group of best-fitting models (food-web models with no
volume links) is indicated with red symbols. For reference in each panel, the cross-validation index for the Wyeomyia model is indicated by a dashed
blue line, and the average cross-validation for the food-web models with no habitat links is indicated by a solid red band.
DOI: 10.1371/journal.pbio.0040324.g002
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leaves of the plant underwent census nondestructively once a week
through the summer 2000 growing season. We calculated average
abundance of each taxon for each food web during the interval that
the leaf was open. This averaging eliminated pseudoreplication and
autocorrelation of temporal census data. Our analyses thus consid-
ered the average conditions that communities achieve in the face of
sustained habitat alteration. The experimental treatments signifi-
cantly altered average invertebrate abundances and generated
substantial variation among leaves in habitat volume, prey avail-
ability, and assemblage structure (Table S1).

We used path analysis [29] (a form of structural equation modeling)
to compare the fit of these abundance data to different models of
community organization (see Protocol S1). We developed a priori
models of cause-and-effect to potentially account for patterns of
covariation in abundance of taxa among leaves that had been
manipulated experimentally (Table S2). Two groups of models were
developed: (1) single-factor models, in which abundances of each
species respond individually to differences in habitat volume (Table
S3), prey resources, or the presence of other species (‘‘keystone’’
models; Tables S4 to S6), and (2) food-web models, in which species
abundances respond to direct and indirect trophic interactions
(Tables S7 to S9). We did not model the experimental treatments as
dummy categorical variables because the habitat volume and
dipteran manipulations were not orthogonal and because habitat
volume and dipteran abundance are more appropriately treated as
continuous variables, along with the other variables in our models.
For the food-web models, we also introduced a latent variable to
represent the effects of the unmeasured bacterial component of the
assemblage.

The single-factor and food-web models were orthogonally crossed
with three other groupings, based on the inclusion of habitat volume
(¼ leaf pitcher liquid volume) in the path models. In the first grouping
(left pair of panels in Figure 2), habitat volume was not included in
the models, so that abundances were predicted entirely on the basis
of single-species effects (Table S4) or trophic interactions (Table S7).
In the second grouping (middle pair of panels in Figure 2), we
introduced habitat volume with only a link to the focal taxon (Tables
S5 and S8). In the bottom-up food-web models, this link was from
habitat volume to prey, and in the top-down food-web models, the
link was from habitat volume to the abundances of Fletcherimyia and
Wyeomyia, the two top predators in this food web (Table S8). In the
third grouping (right pair of panels in Figure 2), we modeled links
from habitat volume to all food-web components (Tables S6 and S9).
All models were fit to the observed correlation matrix for the
Sarracenia food web (Table S2).

Supporting Information

Dataset S1. Average Abundances of Inquilines, Average Habitat
Volume, Leaf Age, and Treatment

Found at DOI: 10.1371/journal.pbio.0040324.sd001 (283 KB DOC).

Protocol S1. Experimental Manipulations, Model Structure, and Path
Model Analysis

Found at DOI: 10.1371/journal.pbio.0040324.sd002 (192 KB DOC).

Table S1. Split-Plot Analysis of Variance Results for Tests of
Treatment and Leaf Age on Inquiline Abundances

Found at DOI: 10.1371/journal.pbio.0040324.st001 (31 KB DOC).

Table S2. Observed Correlation Matrix for Path Analyses

Found at DOI: 10.1371/journal.pbio.0040324.st002 (34 KB DOC).

Table S3. Path Structure for Simple Volume Model

Found at DOI: 10.1371/journal.pbio.0040324.st003 (34 KB DOC).

Table S4. Path Structure for Wyeomyia Keystone Species Model

Found at DOI: 10.1371/journal.pbio.0040324.st004 (33 KB DOC).

Table S5. Path Structure for Wyeomyia Keystone Species Model with
Simple Volume Linkage

Found at DOI: 10.1371/journal.pbio.0040324.st005 (33 KB DOC).

Figure 3. Path Models of Sarracenia Food-Web Structure

Each circle indicates a taxon abundance, prey abundance, or average
habitat volume, and each link indicates a hypothesized cause-and-effect
relationship within a particular model. Standardized path coefficients are
estimated for each link, and the size of the arrow is roughly proportional
to the magnitude of the coefficient.
(A) Wyeomyia single-factor (‘‘keystone’’) model in which abundances of
all taxa are determined only by direct links with the filter-feeding
mosquito larva W. smithii.
(B) Bottom-up trophic model in which abundances are controlled by
links from prey to predator. The triangle represents a latent variable for

bacteria, which was not directly measured, but whose trophic linkages
(shown in red) in the Sarracenia web are known [21,24].
(C) Single-factor volume model, in which the abundance of each taxon is
determined solely by habitat volume.
DOI: 10.1371/journal.pbio.0040324.g003
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Table S6. Path Structure for Wyeomyia Keystone Species Model with
Full Volume Linkages

Found at DOI: 10.1371/journal.pbio.0040324.st006 (33 KB DOC).

Table S7. Path Structure for Top-Down Food-Web Model

Found at DOI: 10.1371/journal.pbio.0040324.st007 (33 KB DOC).

Table S8. Path Structure for Top-Down Food-Web Model with
Simple Volume Linkage

Found at DOI: 10.1371/journal.pbio.0040324.st008 (33 KB DOC).

Table S9. Path Structure for Top-Down Food-Web Model with Full
Volume Linkages

Found at DOI: 10.1371/journal.pbio.0040324.st009 (34 KB DOC).
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