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Abstract

The rapid proliferation of antibiotic-resistant pathogens has spurred the use of drug combinations to maintain clinical
efficacy and combat the evolution of resistance. Drug pairs can interact synergistically or antagonistically, yielding inhibitory
effects larger or smaller than expected from the drugs’ individual potencies. Clinical strategies often favor synergistic
interactions because they maximize the rate at which the infection is cleared from an individual, but it is unclear how such
interactions affect the evolution of multi-drug resistance. We used a mathematical model of in vivo infection dynamics to
determine the optimal treatment strategy for preventing the evolution of multi-drug resistance. We found that synergy has
two conflicting effects: it clears the infection faster and thereby decreases the time during which resistant mutants can arise,
but increases the selective advantage of these mutants over wild-type cells. When competition for resources is weak, the
former effect is dominant and greater synergy more effectively prevents multi-drug resistance. However, under conditions
of strong resource competition, a tradeoff emerges in which greater synergy increases the rate of infection clearance, but
also increases the risk of multi-drug resistance. This tradeoff breaks down at a critical level of drug interaction, above which
greater synergy has no effect on infection clearance, but still increases the risk of multi-drug resistance. These results
suggest that the optimal strategy for suppressing multi-drug resistance is not always to maximize synergy, and that in some
cases drug antagonism, despite its weaker efficacy, may better suppress the evolution of multi-drug resistance.
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Introduction

As antibiotic-resistant pathogens become more common,

clinicians increasingly turn to multi-drug treatment to control

infection [1–5]. The inhibitory effect of two drugs in combination

can be larger or smaller than expected from their individual

effects, corresponding to synergistic or antagonistic interactions

between the drugs respectively [6–9]. Synergistic interactions are

usually thought of as advantageous since, for a given amount of

drug, they more effectively inhibit the growth of drug-sensitive

pathogens. However, in vitro studies have suggested that, for the

same level of inhibition, more synergistic drug pairs may foster

antibiotic resistance [10–12]. Antagonistic drug combinations, on

the other hand, are less effective at inhibiting drug-sensitive

pathogens, but can reduce and even invert the selective advantage

of single-drug resistant mutants, causing selection against resis-

tance [13].

These recent observations point to a possible tradeoff in the

choice of synergistic versus antagonistic drug combinations with

respect to their effects on treating infection and suppressing

antibiotic resistance. However, while antagonistic drug combina-

tions increase selection against resistance, and should therefore

minimize resistance, they also kill the infection more slowly, giving

resistance more time to emerge. Antagonism therefore has two

contradicting effects on the evolution of resistance: on one hand, it

increases the risk of resistance by decreasing antibiotic inhibition

and allowing more time for resistance to evolve; on the other hand,

it decreases the risk of resistance by decreasing the selective

advantage of single drug resistant mutants. We ask which of these

opposing effects is stronger, and therefore which type of drug

interaction – synergistic or antagonistic – best prevents the overall

chance of emergence of multi-drug resistance.

We frame this problem in the context of a clinical infection,

formalizing the two main factors in the success of an antibiotic

treatment as ‘‘treatment efficacy’’ and ‘‘prevention of multi-drug

resistance.’’ Treatment efficacy is the rate at which the infection is

cleared by the treatment, and can be defined as the reciprocal of

the time, tclear, at which the total infection is eliminated, 1=tclear.

Prevention of multi-drug resistance is defined as the reciprocal of

the number of double-drug resistant mutants expected to arise

during the course of treatment, 1=Ndouble. In real infections, multi-

drug resistance can arise either through a single mutation

conferring cross-resistance to both drugs simultaneously, or

through the sequential acquisition of mutations conferring

resistance to each drug individually [10,14–16]. Furthermore,

resistance to a single drug can develop in several small steps or in

one large step [15,17–19]. For simplicity, and to emphasize the

role of drug interactions, we concentrate here on an idealized case

in which resistance to the two-drug combination evolves through

sequential acquisition of two spontaneous mutations, each

conferring strong resistance specific to one of the two antibiotics

(Fig. 1).

We asked what level of drug interaction (ranging from strong

synergy to strong antagonism) maximizes treatment efficacy

(1=tclear) and prevention of multi-drug resistance (1=Ndouble).

Maximizing 1=tclear is straightforward: as more synergistic drug
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pairs have increased killing potency and clear the infection more

quickly, maximally synergistic drug pairs should maximize 1=tclear

[4,20]. In attempting to maximize 1=Ndouble, however, the best

choice of drug interaction is less clear. Assuming sequential

acquisition of resistance to each drug, the rate at which multi-drug

resistance arises will depend on the size of the single-drug resistant

mutant population. The size of this single-mutant population, in

turn, depends on two factors: the rate at which such mutants arise,

and their selective advantage over the wild-type. Synergistic drug

pairs decrease the first factor because they more quickly kill the

source wild-type population from which single mutants arise.

However, synergistic drug pairs also increase the second factor:

single-drug resistant mutants will have a strong selective advantage

in a synergistic treatment because resistance removes both the

burden of one drug, and its enhancing effect on the other drug

[13] (Fig. 1B). Synergistic drug pairs therefore decrease the rate at

which single-drug resistant mutants appear, but increase their

selective advantage. Antagonistic drug pairs do the opposite:

though they allow a larger number of single-drug resistant mutants

to arise, they also diminish the selective advantage of these

mutants. The net effect of a given drug interaction on the

evolution of multi-drug resistance is therefore not obvious, and

requires a quantitative model to determine the overall impact of

mutation and selection’s countervailing effects.

To better understand how drug interactions affect the risk of

multi-drug resistance, we used a population genetic model of

microbial infection previously applied to predict single-drug

resistance in vivo in mice [21], and modified it to account for the

sequential acquisition of mutations leading to multi-drug resis-

tance. We used this model to ask what level of drug interaction

maximizes treatment efficacy (1=tclear) and prevention of multi-

drug resistance (1=Ndouble).

Results

Simple model for the evolution of resistance in multi-
drug treatment

We based our model on work by Jumbe et al. [21], which

investigated a mouse-thigh P. aeruginosa infection model [22–24]

and provided a mathematical model that quantitatively described

the relationship between exposure to the fluoroquinolone

antibiotic levofloxacin, and changes in drug-susceptible and

drug-resistant bacterial subpopulations over time. This mathemat-

ical model was successful both in reproducing the observed

changes in drug-susceptible and –resistant subpopulations over

time, and in predicting the dose of levofloxacin needed to suppress

amplification of levofloxacin-resistant (efflux-pump-expressing)

mutants. To investigate the effect of antibiotic interactions on

Figure 1. Model of the evolution of resistance in synergistic
and antagonistic drug treatments. (A) Graphical representation of
model ODEs describing three bacterial subpopulations: the wild-type
sensitive to both drugs (black, Eq. 1), single-drug resistant mutants
(blue, Eq. 2), and double-drug resistant mutants (red, Eq. 3). Wild-type
and single-drug resistant subpopulations grow with rate G (Eq. 4),
mutate with rate mG and die with antibiotic killing rates K ~DDWT

� �
and

K ~DDsingle

� �
, where ~DDWT and ~DDsingle are the effective drug doses they

experience, respectively (Eq. 5). We do not model the growth of the
double-drug resistant strain, but simply follow the number of such
mutants expected to arise via mutation. (B) The wild-type, single-drug
resistant and double-drug resistant mutants experience different
effective doses, ~DD, in the multi-drug treatment. The wild-type (black
bars) is affected by both the drugs and their interaction, yielding
~DDWT ~D 2zeð Þ, where D is the dose of each of the drugs A and B (we
assume the two drugs are given at the same dose) and e is the level of
their interaction (ew0, synergistic; e~0, additive; ew0, antagonistic).
We assume strong resistance, such that resistant mutants are
completely unaffected by the drug to which they are resistant; the
effective drug dose felt by the single-drug resistant mutant is therefore
that of one of the drugs alone, ~DDsingle~D, and is independent of e (blue
bars have a fixed value). Because double-drug resistant mutants are
fully resistant to both antibiotics, they feel an effective dose of 0 (red
bars). Increased synergy therefore increases killing of the wild-type, but
also increases the selective advantage of the single-drug resistant
mutants. Antagonistic drug pairs reduce this selective advantage, and
can completely eliminate (e~{1) or even invert it (ev{1).
doi:10.1371/journal.pcbi.1000796.g001

Author Summary

The use of antibiotics against bacterial infections has led to
the emergence of multi-drug resistant pathogens such as
tuberculosis and MRSA. In order to control resistance,
clinicians have increasingly turned to multi-antibiotic
therapies. The common wisdom is to use combinations
of drugs that act synergistically to kill the infection, but the
impact of drug synergy on the evolution of resistance is
unclear. Using mathematical simulations of an in vivo
infection model, we asked what level of drug synergy
would minimize the risk of multi-drug resistance while
preserving the efficacy of treatment. We found that
synergy may increase or decrease the risk of multi-drug
resistance in a given treatment, depending on infection
properties such as mutation rate and the availability of
resources. Surprisingly, under conditions of strong com-
petition for resources within the host, we found that
maximal synergy—currently favored in clinical settings—
can actually increase the risk of multi-drug resistance. Our
results identify conditions under which drug synergy
exacerbates the problem of multi-drug resistance, and
offer guidelines for the selection of drug pairs that
suppress it.

Optimal Antibiotic Synergy
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treatment efficacy and the prevention of multi-drug resistance in a

simple scenario, we modified the Jumbe et al. model in four ways:

we include a second antibiotic in our model; we assume a constant

antibiotic dose; we assume a low hill coefficient, consistent with the

mechanisms of a range of antibiotics [25]; and we assume no cost

for antibiotic resistance. The consequences of these assumptions

are discussed throughout the text.

Our model incorporates treatment with two antibiotics, A and

B. It uses a set of ordinary differential equations (ODEs) to follow

the population sizes of the drug-sensitive wild-type strain (NWT ),

the total single-drug resistant population (Nsingle~NARzNBR ; we

assume symmetry between drugs A and B such that their

respective resistant populations are equal, NAR~NBR ), and the

expected number of multi-drug resistant mutants (Ndouble) arising

over time (Fig. 1A; Methods):

_NNWT~NWT G{K ~DDWT

� �� �
{2mGNWT ð1Þ

_NNsingle~Nsingle G{K ~DDsingle

� �� �
z2mGNWT{mGNsingle ð2Þ

_NNdouble~mGNsingle ð3Þ

Populations are affected by growth, antibiotic killing and

mutation, where G, K and m are the growth rate, antibiotic

killing rate and frequency of resistance mutations per generation,

respectively, and ~DDWT and ~DDsingle are the effective doses of

antibiotic felt by the wild-type and single-drug resistant mutant

populations. We assume for simplicity that antibiotic resistance

imposes no fitness cost, so that the growth rates of the sensitive and

resistant populations are the same. To account for competition for

resources, we assume this growth rate is given by the logistic

equation,

G~g 1{
Ntot

Nmax

� �
, ð4Þ

where g is the maximal growth rate, Ntot~NWTzNsingle is the

total population size, and Nmax is the maximal carrying

capacity (Fig. S1B). This competition for resources was

included in the in vivo murine infection model [21], and has

been observed in or inferred from a range of infections [26],

including S. pneumoniae [27], and Methicillin-Resistant S. aureus

(MRSA) [28].

While we assume the growth rates of the wild-type and single-

drug resistant mutants are the same, the rates K at which they are

killed by antibiotic are different and depend on the effective

antibiotic dose, ~DD, felt by each population:

K ~DD
� �

~
k

1z~DD{H
ð5Þ

where k is the maximal killing rate and H is the Hill coefficient,

which determines the steepness of the killing rate as a function of

drug dose. In contrast to Jumbe et al., we set H~1, which is

representative of many common antibiotics [25], although

different values of H give rise to similar overall model behavior

(Fig. S2). The effective drug dose, ~DD, depends on the dosage of the

two drugs and on their interaction (Fig. 1B, Text S1, Fig. S1A).

For simplicity we assume both drugs are administered at the same

dose, D, defined in units of their minimum inhibitory concentra-

tion (MIC), the single-drug dose at which the wild-type death rate

equals its growth rate at resource-unlimited conditions:

DMIC~
k

g
{1

� �{1=H

. For the wild-type, the effective dose is

the sum of the dosage of the two drugs plus their level of

interaction e: ~DDWT~ 2zeð ÞD. Values of e are positive, zero, or

negative for synergy, additivity and antagonism, respectively.

While in practice the value of e is specific to a given drug pair [29],

we treat it as continuous in order to investigate all potential

treatment strategies. We assume that single-drug resistant mutants

are affected by only one of the drugs, which is reasonable in the

case of resistance mechanisms that decrease the intracellular

concentration of antibiotic, such as efflux pump expression or

enzymatic degradation [11,13,30]. The effective dose of single-

drug resistant mutants is therefore ~DDsingle~D, and is independent

of e (Fig. 1B). Except where indicated, we set D~7 MIC (general

model behavior is robust to changes in drug dosage, Fig. S2A),

which for an additive drug pair is consistent with the drug dosage

used in Jumbe et al. [21].

Mutations from wild-type to single-drug resistance, or from

single- to double-drug resistance, arise at a rate m per individual

per replication, or mG per individual per unit time. Since in any

effective treatment the number of double mutants arising is smaller

than 1, we do not account for the growth or death of this fractional

population, but rather define Ndouble as the integrated number of

double mutants generated via mutation during treatment (Eq. 3).

Prevention of multi-drug resistance is then defined as 1=Ndouble.

The model therefore consists of Eqs. 1–5. Parameter values,

following Jumbe et al. [21], are given in Table S1. Initial conditions

for the model are N0
WT , N0

single, N0
double - the population sizes at the

onset of treatment. We assume that prior to treatment, the infections

have grown from a single cell to the initial population size N0
tot while

mutating; while the overall mutation rate is a function of model

parameters m, g and Nmax (Eqs. 2, 3), N0
single and N0

WT are functions

of m alone: N0
single~2mN0

tot, N0
WT~ 1{2mð ÞN0

tot. No double-

drug resistant mutants are present: N0
double~0. We integrate the

ODEs with these initial conditions (Methods) and define tclear as the

time at which the total population size drops below one (tclear is

defined as infinity if the population reaches a non-zero steady state).

Antibiotic interactions create a saturable tradeoff
between treatment efficacy and prevention of multi-drug
resistance

To determine the impact of drug interaction on treatment

outcome, we first looked at the differences in treatment efficacy

(1=tclear) and prevention of multi-drug resistance (1=Ndouble) over a

range of drug interaction values (e~{1:5 to 1:5) while holding drug

dosage fixed (Fig. 2, D~7 MIC). We observed two distinct and

robust (Fig. S2) behaviors, depending on whether e falls above or

below a critical value, e� (Fig. 2; for the parameters used, e�&0:14).

For eve�, we observed a tradeoff between treatment efficacy and

prevention of resistance. In this regime, increasing synergy yields

greater 1=tclear (Fig. 2, unshaded region); this is expected, as

increasing the synergistic interaction between the drugs kills the

wild-type more quickly. Despite faster infection clearance, however,

greater synergy actually decreases 1=Ndouble; namely, it increases the

risk of multi-drug resistance. Conversely, more antagonistic drug

pairs increase 1=Ndouble, albeit at the expense of reduced efficacy.

This tradeoff between efficacy and prevention of resistance

breaks down at a critical threshold, e�, above which increasing

synergy no longer increases 1=tclear, but still decreases 1=Ndouble

(Fig. 2, shaded region). Above this ‘‘synergy ceiling,’’ further

increasing synergy therefore has only undesirable effects, since it

Optimal Antibiotic Synergy
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increases the risk of multi-drug resistance without increasing

efficacy. Optimal drug pairs for treating the given infection must

therefore have a level of drug interaction lower than e� and, due to

the tradeoff between 1=tclear and 1=Ndouble, the optimal value of e
will depend on the relative importance assigned to these two

conflicting goals.

The frequency of resistance mutations determines the
‘‘synergy ceiling’’ e�

To understand what determines the level of the synergy ceiling,

e�, we asked what causes the transition from tradeoff behavior at

eve�, to plateau behavior at ewe� (Fig. 2). Due to the sharp

biphasic behavior of efficacy (1=tclear) around e�, we looked to

population time courses to determine how the time of clearance,

tclear, was affected by drug interactions below, at or above e�

(e~{1:5,0:14,1:5, respectively; Fig. 3A). For eve� (Fig. 3A, top),

the wild-type subpopulation outlives the single-drug resistant

mutants and tclear~tWT
clear. Since wild-type killing is stronger for

more synergistic drug pairs, increasing e decreases tWT
clear, explaining

why efficacy increases with e in this region (Fig. 2, unshaded region).

For ewe� (Fig. 3A; bottom), however, the wild-type is eliminated

before the single-mutant population, and tclear~t
single
clear . Because the

killing rate of the single-drug resistant mutants is independent of e,

t
single
clear is effectively independent of e, causing 1=tclear to plateau for

ewe� (Fig. 2, shaded region). e� is therefore the level of drug

interaction for which wild-type and single-mutant populations are

cleared simultaneously (tWT
clear~t

single
clear ; Fig. 3A, middle).

Since e� represents the level of drug interaction for which

tWT
clear~t

single
clear , parameters that differentially alter tWT

clear and t
single
clear will

alter e�. While we found that a number of model parameters had

some effect on e� (Fig. S2), the strongest effect was due to changes

in the frequency of resistance mutations, m. m differentially affects

tWT
clear and t

single
clear because, although it has virtually no effect on tWT

clear,

the single-mutant population size at the onset of treatment

increases linearly with m, N0
single~2mN0

tot, thereby increasing

t
single
clear . For tWT

clear to match this increase in t
single
clear , the wild-type

killing rate must decrease; namely, e� must be reduced. We

therefore expected e� to decrease with increasing m and, indeed,

increasing the frequency of resistance mutations gave rise to

consistent decreases in e� (Fig. 3B). Interestingly, for high

frequencies of resistance (mw2|10{6) the synergy ceiling e� falls

below zero (representing an antagonistic drug interaction); in this

case mildly synergistic and even additive interactions fall in the

undesirable regime where the risk of multi-drug resistance

increases without any corresponding gain in treatment efficacy.

Competition for resources underlies the tradeoff
between treatment efficacy and prevention of multi-drug
resistance

Why does synergy, despite clearing the infection faster, increase

the risk of multi-drug resistance (Fig. 2)? Since synergistic drug pairs

clear the infection more quickly than antagonistic drug pairs,

the rate at which they generate double mutants must also be

higher. The overall rate at which double mutants arise,

_NNdouble~mGNsingle~mgNsingle 1{
Ntot

Nmax

� �
(Eqs. 3, 4), is affected

by two variables: it increases with the size of the single-mutant

population, Nsingle, and decreases with total population size, Ntot,

due to the inhibitory effect of resource limitation on growth and

mutation (Fig. 4A). The total number of double mutants expected to

arise is simply the integral of this instantaneous rate over the

treatment course. In order to determine why synergistic treatments

increase _NNdouble, we therefore analyzed the trajectories of synergistic

and antagonistic treatments through the space of Nsingle versus Ntot

(Fig. 4A; e~1:5, solid line, e~{1:5, dashed line). The initial slopes

of these trajectories (Fig. 4A, arrows) are determined by the relative

fitness of the wild-type and single-drug resistant populations under

antibiotic treatment. The synergistic treatment selects strongly

against the wild-type population, producing a trajectory with a steep

slope that drives treatment into a region of high _NNdouble (Fig. 4A, red

region); this is because the rapid decrease in wild-type population

size relieves competition for resources, creating a window of

opportunity in which the still-large single-mutant population can

rapidly grow and mutate. Conversely, the antagonistic treatment

selects only weakly against the wild-type, producing a trajectory

with a shallow slope that skirts the high _NNdouble region. Antagonistic

drug pairs therefore decrease _NNdouble in a competition-dependent

fashion: weak killing of the wild-type maintains competition for

resources, limiting growth and mutation of the single-drug resistant

population until it is eliminated.

It is important to note that resource competition is significant only

at the beginning of treatment, when Ntot&Nmax. If competition for

resources is required for the advantage of antagonism over synergy

in preventing resistance, then we should expect a decrease in initial

population size to decrease this advantage. To test this prediction,

we looked at the relative ability of our representative synergistic

(e~1:5) and antagonistic (e~{1:5) drug pairs to prevent multi-

drug resistance, tant
clear=t

syn
clear, over a range of N0

tot (Fig. 4C, circles;

sensitivity to other model parameters is minimal, Fig. S2). Indeed,

we found that the advantage of antagonistic drug pairs in prevent-

ing resistance (tant
clear=t

syn
clearv1, below dashed line) was limited to

cases where N0
tot is close to Nmax. In fact, for N0

tot significantly lower

than Nmax, the trend reverses and synergy better prevents resistance

(tant
clear

�
t
syn
clearw1, above dashed line). This is because, for low

population sizes, resource competition effects are negligible;
_NNdouble therefore no longer depends on Ntot, and becomes a

Figure 2. Choice of drug interaction presents a tradeoff
between treatment efficacy and prevention of multi-drug
resistance. Below a critical level of drug interaction (unshaded region,
eve�), treatment efficacy (1=tclear, blue) and prevention of multi-drug
resistance (1=Ndouble, black) exhibit a tradeoff: increased synergy yields
higher efficacy, but at the expense of lower resistance prevention.
Above e� , however, efficacy plateaus: increasing synergy beyond this
‘synergy ceiling’ fails to improve treatment efficacy, but continues to
diminish resistance prevention (shaded region, ewe�).
doi:10.1371/journal.pcbi.1000796.g002
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function of Nsingle alone. Because synergistic drug pairs better limit

Nsingle by quickly killing the wild-type population from which single

mutants arise, they therefore also better limit multi-drug resistance

in cases of weak competition. Indeed, this advantage of synergy

disappeared entirely when we artificially turned off wild-type to

single-mutant mutation, allowing only those single mutants present

at the start of treatment to contribute to _NNdouble (Fig. 4C, triangles).

Importantly, when competition for resources is weak (N0
tot

significantly less than Nmax, tant
clearwt

syn
clear), the tradeoff between

treatment efficacy and prevention of multi-drug resistance no

longer exists (Fig. 4D; compare with Fig. 2). As a result, e� is no

longer useful as a ‘‘synergy ceiling’’ because, although drug pairs

with ewe� do not further improve 1=tclear, they do improve

1=Ndouble. For infections with weak competition, the use of

maximally synergistic drug pairs therefore represents the best

possible treatment strategy.

Discussion

We used a population dynamic model of bacterial infection to

determine what drug interactions best suppress the emergence of

multi-drug resistance. Whereas antagonistic drug pairs kill

bacterial populations more slowly, and therefore allow more time

for resistance to emerge, they also decrease the selective advantage

of resistant mutants. Which of these two opposing effects of

antagonism dominates in determining its overall impact on the

chance of evolving multi-drug resistance? Framing this problem in

the context of a clinical infection, we asked how two measures of

treatment outcome, treatment efficacy and prevention of multi-

drug resistance, depend on drug interaction.

We found that the optimal drug interaction can be determined

primarily as a function of two infection parameters: population

size at the outset of treatment, and the frequency of resistance

mutations (see summary of our results in Fig. S3). For clinically

relevant scenarios where initial population sizes are well below the

carrying capacity, competition for resources is weak and synergy,

which is typically preferred in clinical settings for its superior

treatment efficacy [3,4,20], is also expected to best prevent the

emergence of multi-drug resistance.

Where resource competition is significant, however, strong

synergy may not always be the optimal treatment strategy. Real

infections frequently exhibit competition, due either to a scarcity of

Figure 3. The synergy ceiling e� is determined by clearance of the wild-type population before the single-mutant subpopulation. (A)
Population sizes of the wild-type (NWT , black) and single-drug resistant mutants (Nsingle, blue) over treatment courses with levels of interaction

below, at or above the critical value e� (e~{1:5, 0:14, 1:5). Populations start with sizes N0
WT , N0

single and are killed by antibiotics until they are cleared

at times tWT
clear and t

single
clear respectively; the overall time of clearance of the infection is simply tclear~max tWT

clear, t
single
clear

	 

(orange markers). The interaction

level e affects the order in which the wild-type and the single-drug resistant subpopulations are eliminated: below the synergy ceiling (eve� , top), the

wild-type is eliminated after the single-drug resistant mutant and tclear~tWT
clear; at the synergy ceiling (e~e� , middle), the two populations die

simultaneously and tclear~tWT
clear~t

single
clear ; above the synergy ceiling (ewe� , bottom), the single-drug resistant mutant outlives the wild-type, such that

tclear~t
single
clear . Because increasing e increases the wild-type killing rate but has no effect on the single-mutant killing rate, efficacy increases with e

below the synergy ceiling (tclear~tWT
clear), but plateaus at and above it (tclear~t

single
clear ; vertical dashed line: notice that tclear~t

single
clear is the same both at and

above the synergy ceiling). (B) Increased mutation rates, m, give rise to lower e� . Inset: treatment efficacy, 1=tclear, plateaus at lower levels of drug

interaction e for higher mutation rates (m~10{7 , blue; m~10{6 , orange; m~10{5 , green; blue and green lines are shifted slightly along y-axis for

clarity); e� values for each line are indicated by vertical dashed lines, and by circles in the main panel. Orange markers indicate the treatment efficacy

achieved for different values of e when m~10{6 , corresponding to the tclear values in panel A.
doi:10.1371/journal.pcbi.1000796.g003
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carbon or iron [26,31,32], or saturation of available adhesion sites

(e.g. in biofilm formation [33,34]). In our model, such competition

is predicted to give rise to a tradeoff between treatment efficacy

and resistance prevention: increased synergy leads to greater

efficacy, but at the expense of an increased risk of multi-drug

resistance. Importantly, this tradeoff saturates for levels of synergy

greater than a critical value e�, above which greater synergy does

not further increase efficacy, but still increases the risk of multi-

drug resistance. If the goal is to minimize multi-drug resistance,

then choosing drug interactions above this ‘‘synergy ceiling’’ may

be counterproductive. This is especially important given the

dependence of e� on the frequency of resistance mutations: our

model predicts that for infections where resistance rates are high

(mw2|10{6) e� may be negative (antagonistic), favoring the use

of antagonistic drug pairs over mildly synergistic or even purely

additive antibiotic combinations. Indeed, for the modified Jumbe

Figure 4. Prevention of multi-drug resistance by drug antagonism depends on resource competition. (A) Heat map of instantaneous
rates of double-mutant formation, _NNdouble, as a function of single-mutant and total population sizes: _NNdouble increases with the size of the single-
mutant population, and decreases with total population size due to resource competition. Treatment course trajectories for synergistic (e~1:5, solid
line) and antagonistic (e~{1:5, dashed line) drug treatments begin with total initial population size N0

tot~Nmax and initial single-mutant population
size N0

single~2mNmax (magenta circle), and move toward the origin as the infection is cleared (black circles indicate 20-minute intervals). The different
initial slopes of these trajectories (arrows), determined by the relative fitness of the wild-type and single-drug resistant mutants in synergistic versus
antagonistic treatments, lead them to different regions of the heat map: synergistic drug pairs quickly kill the wild-type, relieving resource
competition before the single-mutant population is killed and leading to a region with high _NNdouble (solid trajectory goes through red region), while
antagonistic pairs kill the single mutants before competition is relieved, leading to a region of low _NNdouble (dashed trajectory goes through green
region). (B) The _NNdouble over each treatment plotted as a function of time; black circles indicate 40-minute intervals in this panel. (C) Relative ability of
these strongly synergistic and antagonistic drug pairs to prevent multi-drug resistance, tant

clear=t
syn
clear, for different initial population sizes (circles). For

strong resource competition at the start of treatment (N0
tot close to Nmax), antagonistic drug pairs prevent resistance better than synergistic drug

pairs (tant
clear=t

syn
clearv1). For weak competition, however (N0

tot significantly less than Nmax), synergistic drug pairs better prevent resistance

(tant
clear=t

syn
clearw1). Artificially turning off wild-type to single-drug resistant mutation during treatment (leaving only the single-mutant population that

exists at the onset of treatment) eliminates the advantage of synergy over antagonism at low N0
tot (triangles). (D) When initial population size is low

and synergy is advantageous, the tradeoff between treatment efficacy and prevention of multi-drug resistance is eliminated, such that maximally
synergistic drug pairs yield both the greatest treatment efficacy and greatest prevention of multi-drug resistance (compare panel C to Fig. 2).
doi:10.1371/journal.pcbi.1000796.g004
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et al. model that we study, e� is nearly additive; and while the

resistance frequency we use may be an overestimate (Jumbe et al.

determined this as the rate of all mutations conferring only a 3-fold

increase in the MIC), these and higher mutation rates have been

identified in human pathogens [35,36]. Together, the potential for

strong competition and high mutation rates in infection suggest

that the tradeoff and synergy ceiling behaviors observed in our

model – as well as the ability of antagonistic drug pairs to

minimize multi-drug resistance – may describe the properties of

some clinical infections.

We emphasize that drawing concrete therapeutic conclusions

from this study would be beyond its scope. Our model

incorporates many simplifying assumptions: we assume e to be a

fixed value, although it has been observed to change with both the

absolute and relative doses of the antibiotics administered [37,38];

drug administration and pharmacokinetics are not considered,

although they may significantly impact the evolution of resistance

[23,39–42]; resistance mutation rates per generation are assumed

to be independent of growth and antibiotic-killing rates; and while

we consider an idealized case in which multi-drug resistance arises

from strong, sequential mutations conferring resistance to each

antibiotic, real mutations may confer cross-resistance to both drugs

simultaneously, or only partial resistance to a single drug

[10,14,16]. One consequence of partial resistance is antibiotic

killing of drug-resistant mutants for drug interactions above e�;
while for strong resistance this killing would be minimal, weak

resistance may allow enough killing to undermine synergy ceiling

behavior (Fig. S4). Finally, we note that this model does not

consider the impact of host immune defenses, which may

substantially impact microbial growth and death rates in clinical

infections [43,44]; whether the influence of host defenses favors

the use of some drug combinations over others, however, remains

to be seen.

While these caveats indicate the limitations of this simple model

and suggest important avenues for future study, our results make a

number of novel predictions about the relationship between drug

interaction and multi-drug resistance: that there exist conditions

under which antagonistic drug pairs may better prevent multi-

drug resistance despite their weaker efficacy; that there is a synergy

ceiling to how much efficacy can be achieved by modulating drug

interaction; and that, below this ceiling, changes in drug

interaction may produce a tradeoff between inhibition and

multi-drug resistance. By basing our model on a previous

experimental model of infection [21], we have identified regions

of parameter space in which such behaviors may be relevant in a

clinical scenario, and which could be tested in future experimental

models of infection. Finally, our model highlights the idea that the

optimal choice of drug pair in treating an infection may be

contextual: while strongly synergistic drug pairs seem the preferred

strategy in scenarios where resource limitation and other forms of

competition are negligible, antagonistic drug pairs may best

prevent resistance in cases of high mutation rates and strong intra-

infection competition. While present therapeutic knowledge

generally favors synergistic drug pairs, our work motivates further

research into the impact and potential utility of antagonistic

interactions both in clinical and in ecological settings.

Methods

Model details
Our model consists of 3 ODEs (Eq. 1–3) describing the

population sizes of the wild-type and single-drug resistant mutants

(NWT , NWT ), as well as the number of double mutants expected to

arise during a treatment course (Ndouble). Parameter values for this

model include first-order maximal growth (g) and death rate (k)

constants, carrying capacity Nmax and mutation rate m (per

individual per generation), which were taken from the in vivo

murine model investigated in Jumbe et al. [21] (Table S1). Initial

population sizes (N0
WT , N0

single) were determined by assuming that,

prior to treatment, the infections grew from a single cell to the

initial population size N0
tot while mutating, such that

N0
single~2mN0

tot and N0
WT~ 1{2mð ÞN0

tot; unless otherwise indicat-

ed, N0
tot~Nmax. ODEs were solved in MATLAB (Version 7.1,

MathWorks, Natick, MA) using a built-in, numerical ODE solver

(ODE45). To avoid artifacts associated with using continuous

ODEs to describe finite populations, each step was modified with

the assumption that the wild-type or single-drug resistant

population is eliminated (size decreases to zero) if its size drops

below one.

Supporting Information

Figure S1 Models of drug interaction and logistic growth. (A)

Model of drug interaction. The effective drug dose for the wild-

type strain, ~DDWT , is a function of three variables: the doses of drugs

A and B (DA, DB) and the interaction parameter e (Text S1).

Isoboles of the wild-type effective dose ( ~DDWT~1 MIC), are shown

for additive (e~0, black), synergistic (ew0, red) and antagonistic

(ev0, blue) drug pairs. While for additive drug pairs the effective

dose is a simple sum of the drugs’ individual doses, synergistic or

antagonistic drug pairs achieve the same effective dose with

smaller or larger drug doses, respectively. All model simulations

fall on the dashed line, where drug doses are equal: DA~DB. (B)

Logistic growth model. As the population size, Ntot, increases,

competition causes the growth rate, G, to fall from its maximal

value, g, to 0 at the carrying capacity, Nmax (Eq. 4). Unless

otherwise indicated, in model simulations Ntot~Nmax at the outset

of treatment (black circle).

Found at: doi:10.1371/journal.pcbi.1000796.s001 (0.11 MB TIF)

Figure S2 Prevention of resistance, and the synergy ceiling e�,
are robust to changes in model parameters. To test the robustness

of the model to parameter changes, we varied each parameter

independently and measured its effect on both the relative ability

of strongly synergistic and antagonistic drug pairs (e~1:5,{1:5) to

prevent multi-drug resistance, ssyn=sant (solid black line), and the

level of the synergy ceiling e� (solid blue line). All lines have

undergone 5-point smoothing. Dashed lines indicate the points at

which synergistic and antagonistic drug pairs prevent resistance

equally well (ssyn=sant~1, black), or the synergy ceiling is additive

(e�~0, blue). In each panel, those points corresponding to the

original set of model parameters are indicated by circles. (A)

ssyn=sant and e� vary little with changes in drug dose D, (B)

carrying capacity Nmax, or (C) maximal growth rate g. (D) As

previously discussed, increases in the frequency of resistance

mutations m decrease e� substantially (Fig. 3), while having no

significant effect on ssyn=sant. (E) Likewise, increases in the initial

population size, N0
tot, significantly decrease ssyn=sant (Fig. 4), but

also decrease e�. (F) Changes in the Hill coefficient, H, of

antibiotic killing had a more complex effect on ssyn=sant and e�:
while ssyn=sant was consistently less than 1 over a wide range of H
(antagonism better prevents resistance), its magnitude was

parabolic with H , with antagonistic drug pairs having the greatest

advantage for H&3. e� also appeared parabolic with H and was

lowest (most antagonistic) at H&2. In the limit of large H,

maximal antibiotic killing rates are achieved for both wild-type

and single-drug resistant populations, regardless of drug interac-

tion. Synergistic and antagonistic drug pairs therefore fail to

differentially impact wild-type killing rates, and ssyn=sant~1 at
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high H (black line). Furthermore, saturation of killing rates causes

tWT
clear to be greater than t

single
clear for all values of e; e� is therefore

undefined for Hw3 (blue line), though saturation of the wild-type

killing rate still causes efficacy to effectively plateau for low values

of e.

Found at: doi:10.1371/journal.pcbi.1000796.s002 (0.37 MB TIF)

Figure S3 Optimal drug interactions as a function of resistance

frequency and initial population size. The contour map shows the

synergy ceiling, e�, for a given combination of resistance mutation

frequency, m, and population size at the start of treatment, N0
tot. e�

decreases monotonically with increasing m (as in Fig. 3), but is

nearly unaffected by N0
tot. The black line is a single contour above

which antagonistic drug pairs prevent multi-drug resistance better

than synergistic drug pairs (ssyn=santv1). Above this contour,

greater synergy increases the chance of multi-drug resistance; the

optimal drug interaction must therefore fall below e�, with its

specific value depending on the priority assigned to treatment

efficacy versus prevention of multi-drug resistance. Below the

contour, however (ssyn=santw1), greater synergy decreases the

chance of multi-drug resistance; the optimal drug interaction is

therefore maximal synergy (region below the black contour is

colored dark red), regardless of e�. The magenta circle indicates

the combination of m and N0
tot corresponding to the original set of

model parameters.

Found at: doi:10.1371/journal.pcbi.1000796.s003 (0.10 MB TIF)

Figure S4 Partial antibiotic resistance weakens synergy ceiling

behavior. In the model we assume strong antibiotic resistance,

such that the antibiotic-resistant subpopulation feels the effect of

only a single drug; effectively, this makes the MIC of the drug to

which it is resistant infinite and produces the familiar synergy

ceiling, in which efficacy increases with e up to a critical level e�

and plateaus above it (blue line, Fig. 2; all lines have been shifted

on the vertical axis for clarity). As previously discussed (Fig. 3), this

plateau is due to the resistant subpopulation dying after the wild-

type when ewe�. When we weaken the assumption of strong

resistance, however (MIC,‘), drug interactions still affect drug-

resistant mutants, even when such mutants are killed after the

wild-type. This results in efficacy increasing over all e, but

retaining its characteristic biphasic profile (red, green, orange

lines). This biphasic behavior is due to the stronger killing of the

wild-type than the resistant mutant, which persists even with only

partial resistance. While stronger resistance produces behavior

similar to the typical synergy ceiling (MIC increases 100-fold, red

line), weaker resistance (MIC increases 4-fold, orange line) yields a

still-biphasic curve, but one in which increases in e improve

efficacy substantially in all cases. The synergy ceiling behavior is

therefore most relevant in cases of strong antibiotic resistance.

Found at: doi:10.1371/journal.pcbi.1000796.s004 (0.08 MB TIF)

Table S1 Parameters used in this study.

Found at: doi:10.1371/journal.pcbi.1000796.s005 (0.03 MB

DOC)

Text S1

Found at: doi:10.1371/journal.pcbi.1000796.s006 (0.02 MB

DOC)
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