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Surface-induced atomic layering in liquid gallium has been observed using x-ray reflectivity, ultrahigh
vacuum conditions, and sputtered clean surfaces. Reflectivity data, collected on a supercooled liquid
sample to momentum transfers as largeqas= 3.0 A~!, exhibit a strong maximum near 2.4°A
indicating a layer spacing that is comparable to its atomic dimensions. The amplitude of the electron
density oscillations decays with a characteristic length of 6 A. This is unexpectedly twice that of recent
results for Hg, and the difference may be related to covalent bonding or supercooling.

PACS numbers: 61.10.—i, 61.25.Mv, 68.10.—-m

The similarity of the bulk structure for both metallic metals or Hg and which has been attributed to a relatively
and nonmetallic liquids obscures fundamental differencekigh degree of covalent bonding, leading to orientational
in the basic physics of the two. The structure of nonmetaleorrelations in bulk liquid Ga [17,18]. This is probably
lic liquids can be understood in terms of classical pairwiseelated to other unusual properties of Ga, with respect to
interactions; however, for metals, Coulombic interactionsnost other metals, such as an exceptionally large liquid
couple the quantum electron gas and the classical ions leadange ~2000°C), a large crystalline unit cell, and anoma-
ing to interatomic interactions that strongly depend on denlous expansion upon solidification. Competition between
sity [1,2]. The strong density variation associated with thehe covalent and metallic bonding could explain the ob-
free surface provides a natural and convenient way of testerved differences between the surface order for Ga [see
ing this aspect of the theory [3—6]. This was realized earlyFig. 1(c) below] and that of Hg [15]; however, the micro-
by Rice and co-workers, who proposed to study the surfacgecopic origin of these differences is not yet clear, and, from
density profile directly by x-ray reflectivity measurementsthis point of view, it is critical to understand surface layer-
[3,7]. The problem of surface structure has attracted coning for a variety of liquid metals. Finally, in comparison
siderable attention and there are now a number of theoretvith Hg, Ga has a higher surface tension, leading to mean
ical, both analytic [4—6] and molecular simulation [8,9], square thermal fluctuations (capillary waves) in the local
and experimental studies [10—12] of liquid metal surfacesheight of the surface that are only 70% of that of Hg.

One of the more interesting ideas generated from these ef- Direct observation of atomic layering requires that
forts is that partial delocalization of the near surface conspecular reflectivity measurements be extended to a wave-
duction electrons suppresses positional fluctuations of theector transfei. ~ 27/d ~ 2—2.5 A1, whered is of

near surface ion cores. A direct consequence of this is thiae order of the atomic diameter, 2.5-3.0 A. Here we
prediction of atomic layering at the surface of liquid met-report the results of an x-ray reflectivity study from the
als, in contrast to nonmetallic liquids. liquid Ga surface under ultrahigh vacuum (UHV) which

The most convenient elements for liquid metal experi-shows the existence of a quasi Bragg peakgat=
ments are Ga and Hg, since both are liquid at relatively lov2.4 A~! (Fig. 1). This is a clear indication of surface-
temperatures. Earlier experimental efforts to search foinduced atomic layering. Although different models can
surface-induced layering were inconclusive [13,14], and ibe constructed to agree with the reflectivity data, the
is only very recently that Magnussetal. [15] were able unique feature that must be present in each of these is
to unambiguously demonstrate layering at the surface od layered electron-density profile with a surface-induced
liquid Hg. Gallium, on the other hand, exhibits severallayer spacing similar to the Ga atomic dimensions and
unique qualities which distinguish it from Hg and mostwith the layering extending an exponential decay length
other liquid metals. Perhaps the most striking of these i®f ~3 atomic diameters into the bulk [Fig. 1(d)].
the asymmetry in the first peak of the bulk liquid struc- The reflectivity data were collected on a shallow
ture factor [16], which is not observed in typical liquid supercooled{22°C, melting point at 29.8C) liquid Ga
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with 2-keV Ar ions. This approach differs substantially
from measurements on Hg [15], which are simplified by
its relatively small reduction potential and consequently
allows the surface to be kept oxide free by enclosing it in
a reducing atmosphere of,Hjas. For most other metals
this is not possible, and surface studies will require UHV
techniques.

The data were collected at the wiggler beam line X-25
at the NSLS using a toroidal mirror and a liquid reflec-
tometer with a water-cooled Ge(111) crystal monochro-
mator set to reflect at = 0.6532 A. Figure 1(b) illus-
trates the kinematics of the experiment. The angle of the
beam with respect to the horizontal, was varied by tilt-
ing the monochromator, and the position where the beam
strikes the sample was varied by adjusting the vertical po-
sition of the samples. For a curved sample surface and
a givena (8a = 0.006°), the local surface normal(s)
determines the angle of incidence relative to the surface
as well as the angle of reflectigB(s); the extent of the
illuminated area determines the divergeré@(s) of the
. . . reflected beam. Careful mapping Bfs) and 6 B(s) vs
0 05 1.0 15 a0 25 30 s allows a determination of the local and average sample

q, (F") curvature [14,19].
In Figs. 2(a) and 2(b) we show typical profiles of
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FIG. 1. (a) Measured reflectivity curve for liquid Ga. Data the reflected beam as a function @ (in the plane
marked with anX were collected prior to the sample cleaning . . N
procedure; « collected during the sputter cleaning procedure®! reflection) measured forr = 2.33°and6.9°. For

O from integrating the@ scans on a clean surfaca; from  Sufficiently smalle, the reflected signal is large and easy
a relative comparison witl2é scans;v from the low-angle to separate from the diffuse scattering. For largenear

method described in Ref. [14M are data from Ref. [14]. the peak in the bulk liquid structure factor, the diffuse

The Fresnel reflectivity is denoted by a solid line, and P ; ; .
the dotted line is the Fresnel model convoluted with thescatterlng is considerably larger than the reflected signal,

combination of a 0.82 A rough capillary wave and the Gahowever, th_ey can be separated by making use of their
atomic scattering factor. (b) Schematic diagram of curvedneasured line shapes [19]. For a givenand s, the
liquid-surface kinematics (curvature exaggerated for clarity)reflectivity R(g,) at g, = (4o /A) sif(a + B(s))/2] is

(c) Reflectivity normalized by the Fresnel reflectivity. The determined by integration oveB after removal of the

best fit by the exponentially decaying sine model is a solidy; ; ; ; .
line, and the dashed line is the fit by the distorted crystallinedlffuse scattering. Comparison of reflected intensities

model. (d) Corresponding electron density profiles, which ardO! different a, s, and B(s) established thaR(q:) is
indistinguishable in the figure for the two models. insensitive to the precise location of illuminated surface

area. With this approach, the reflectivity is obtained by

measuring within the plane of reflection; a supplementary
film supported by a 32 mm diameter Mo substrate. Thenode of measurement entails scanning the detector across
thin layer (~0.2 mm thick) is necessary for suppressionthe plane of reflection (i.e., @6 scan). Examples of
of mechanically excited surface waves by viscous dra@# scans [Figs. 2(c) and 2(d)] show the reflected profiles
at the Ga/Mo interface. The sample was prepared bwgs resolution limited peaks above an essentially constant
sputter cleaning the Mo surface for 30—45 min in abackground.
dc glow discharge of Ar and then dropping the liquid The reflectivity obtained from analysis of both tife
Ga onto the glowing Mo. Although contact angles asand 26 scans are plotted in Figs. 1(a) and 1(c), and
small as~10° (as judged by the eye) were possible, thethere is good agreement. The importance imf situ
large surface tension for Ga leads to a curved surfacesurface cleaning is clearly demonstrated by inclusion in
with the measured radius of curvature at the top othe figure of data collected on oxidized Ga surfaces and
the drop on the order of 800 mm. The samples werghen on sputtered clean surfaces, as well as during the
then frozen in a nitrogen environment, transported to théirst ~2—3 h into the sputtering procedure. Also included
National Synchrotron Light Source (NSLS), melted, andin Fig. 1(a) are previous measurements from our group
placed into the UHV chamber where x-ray measurementfor ¢. = 0.55 A~! [14], the theoretical Fresnel reflectivity
were made at @ partial pressures less thd®~!'! Torr.  (Rr) and that expected for a monotonic density profile
Surface oxides that form during transport, when thewith the theoretically predicted capillary wave roughness
samples are exposed to air, are removed by sputteringf 0.82 A. The data obtained on the clean Ga show
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interfacial profile (widthe and offset byzy) modulated
(®) by an exponentially decaying sine wave:

(p(2))/p = erfl(z — z0)/0] + 0(z2)Asin2mz/d)e ¥/%.
3 2

|5 18 20 22 24 26 28 30 74 78 82 86 0(z) is the step function,d the interlayer spacing,

B (deg) B (deg) £ the exponential decay length, and an ampli-

tude. Fits by this model are shown in Fig. 1(c) (solid

line), with d=256=001A ¢&=58+04A

A =020 = 0.02, o =050 * 0.04 A, and

20 = —024 = 0.06 A. The electron density profile

is shown in Fig. 1(d); profiles computed within the errors

of the parameters would be indistinguishable in the figure.
0 04 T -02.-01 0 o1 02 Similar results are obtained with the distorted crystal

26 (deg) 26 (deg) model that has been used for liquid Hg [15]. In this

FIG. 2. Scans of intensity in the plane of reflection (sggn Model, the root-mean displacement of thth layer, o,

20 = 0) for (@) a = 2.33° (¢. = 0.782 A~")and (b)a = 6.9° increases with depth into the bulk liquid. To simplify and

(. = 2.48 A="). Dashed lines are fits to the diffuse scattering, [imit the number of parameters, lef =~ U% + no? with

and solid lines are fits to the reflection superimposed on th(? a measure of the increasing root-mean displacement
diffuse scattering. Corresponding scans through the plane o

reflection (scar2f; B set at the specular reflection), for (c) as the density approaches the bulk qu_uid ang a .
a =233 and (d) « = 6.9°, illustrate a second method to displacement common to each layer. With the spacing
distinguish the reflection. To compensate for the decrease id between layers fixed, the reflectivity is
reflectivity for « = 6.9°, the height of the incident beam was 5
approximately X greater than forw = 2.33°. The horizontal R(q:) _ f(q:)q.d | @7 ,—igd _
detector resolution was set at 0.&n (c) and 0.2 in (d). Rr(q.) 7 er e
Confidence limits for these fits are included in the error bars ‘ 3)
shown in Fig. 1.
where f(g,) is the Ga atomic scattering factor [atomic
no appreciable deviation from Fresnel theory except foflispersion correctiong’(¢;) and f"(q:) are negligible]
q: > 2.0 A~!, where a well-defined maximum is evident. 21d Z the atomic number. Figure 1(c) shows the best
The marked difference in reflectivity from a dirty surface, fit (dashed line) of this model, witd = 2.50 + 0.01 A,
which deviates greatly fronk; and was not measurable o = 0.67 = 0.01 A, anda = 0.40 = 0.01 A.
for g, > 1 A~!, and then from a clean one, highlights Analysis with either model leads to essentially the same
the importance of maintaining a UHV-clean, oxide-freerésults. The interlayer spacing is ~10% less than
surface for these studies. the near neighbor spacing in the bulk liquid, which is
When scaled by the Fresnel reflectivity [Fig. 1(c)], the€Xpected from the stacking of neighboring layers. For the
data are of a rather simple form. The raigR; can be Second model, in particular, the electron density profile
generally described with as few as four parameters in re1an be interpreted as a local structure that is broadened
space that are equivalent to the amplitude, decay lengtRy thermally induced capillary waves, denoted by a
and spacing of the electron density oscillations intoWidth oc, [21]. Given the Ga surface tension at the
the bulk liquid and the interfacial roughness. Although™Melting pointy = 0.718 N/m, atomic diameter-2.5 é
a number of density models can be constructed witfnd an experimental resolution 6£062 X 0.0008¢. A%,
additional parameters that lead to even better agreemefiglculated values fow,, range from 0.75 to 0.90 A over
with the data, only two of the simplest models will the measured;. range. These values are in agreement
3.0 A1, it is not possible to determine much more thanis given directly byyog + o> = 0.78 A, and indicate
the basic features of the layering profile. that the liquid metal surface is extremely flat with no
For g, larger than 45 times the critical wave vector, measurable roughness except for the broadening expected
R/Ry is related to the average electron density along thé&om capillary wave theory. S
surface normakp(z)), by [20] The layering extends into the bulk liquid with an expo-

R(q.) ) dp(2) ’ nential decay I_ength 0f.8 + 04 A, Which correqunds
R\ VA f[L}ei‘”dz , (1) to~3 atomic diameters. This is approximately twice the
Rr(q;) P dz decay length that has been measured for Hg at room tem-
with p.. the known bulk electron density. The simplestperature and, although the origin of the difference is not
layering profile that can be constructed, similar to previ-understood, it may result from either a supercooled Ga
ous liquid crystal models, is based on an error-functiorsample or basic differences in the surface properties of
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tude for Ga is not well characterized by the decay present
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