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Abstract 

States participating in the Growth Model Pilot Program reference individual student growth 

against “proficiency” cut scores that conform with the original No Child Left Behind Act 

(NCLB).  Although achievement results from conventional NCLB models are also cut-score 

dependent, the functional relationships between cut-score location and growth results are more 

complex and are not currently well described. We apply cut-score scenarios to longitudinal data 

to demonstrate the dependence of state- and school-level growth results on cut-score choice. This 

dependence is examined along three dimensions: 1) rigor, as states set cut scores largely at their 

discretion, 2) across-grade articulation, as the rigor of proficiency standards may vary across 

grades, and 3) the time horizon chosen for growth to proficiency.  Results show that the selection 

of plausible alternative cut scores within a growth model can change the percentage of students 

“on track to proficiency” by more than 20 percentage points and reverse accountability decisions 

for more than 40% of schools.  We contribute a framework for predicting these dependencies, 

and we argue that the cut-score dependence of large-scale growth statistics must be made 

transparent, particularly for comparisons of growth results across states. 

 

Keywords: growth models, standard setting, NCLB 
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The Dependence of Growth-Model Results on Proficiency Cut Scores 

 U.S. Secretary of Education Margaret Spellings introduced the Growth Model Pilot 

Program (GMPP) in November of 2005 (U.S. Department of Education, 2005).  The GMPP 

encourages the incorporation of individual student growth into the accountability calculations of 

the No Child Left Behind Act (NCLB).  Growth models are based on longitudinal growth in 

individual achievement as opposed to the cross-sectional student status that anchors conventional 

NCLB calculations.  Whereas conventional NCLB models recognize students crossing a 

particular proficiency cut score, growth models offer states the potential to reward growth across 

a broader range of achievement. 

 The GMPP was introduced to provide greater flexibility to states challenged with meeting 

the goals of NCLB.  The U.S. Department of Education indicated that “[t]he purpose of this pilot 

is to determine whether measuring individual student growth over time would be another 

appropriate way to determine adequate yearly progress (AYP) under the Title I program”  (U.S. 

Department of Education, 2006a).  GMPP regulations thus constrain the architecture of growth 

models to accountability calculations that support current NCLB principles.  Specifically, GMPP 

requirements indicate that “[t]he accountability model must ensure that all students are proficient 

by 2013-2014” (U.S. Department of Education, 2006b).  Progress toward universal proficiency, a 

primary goal of NCLB, must thereby remain the reference point for accountability calculations 

(U.S. Department of Education, 2006c).   

 The NCLB focus on universal proficiency has been criticized for allowing unintended 

consequences and inaccurate interpretations of achievement (Rothstein, Jacobsen, & Wilder, 

2006).  For example, the variability of proficiency standards across states has confounded high 

student achievement with lenient proficiency standards (Braun & Qian, 2007; Linn, 2003; 
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McLaughlin & Bandeira de Mello, 2005).  Holland (2002) and Ho (2007) have shown that 

proficiency-based trends and gap trends are subject to surprising changes in magnitude and sign 

under alternative proficiency cut scores. And NCLB’s proficiency-based accountability 

framework may encourage the disproportionate allocation of school resources to students who 

are just below the proficiency cut score (Booher-Jennings, 2005; Neal & Schanzenbach, 2007).  

Although the GMPP allows for alternate approaches to determine AYP, it may also add an 

additional layer of complexity to proficiency-based calculations and increase the likelihood of 

misinterpretation of student, school, and state progress toward proficiency.   

 In this paper, we describe how GMPP-based accountability results are dependent on a) 

attributes of the cut scores adopted by states and b) attributes of growth model policies 

themselves.  Attributes of cut scores include features such as rigor—where more rigor implies 

higher cut scores across all grades and less rigor implies lower cut scores across all grades—and 

articulation, where the rigor of cut scores may vary systematically across grades.  We also 

review attributes of growth model policies, and we focus specifically on the impact of the chosen 

time horizon to proficiency.  For example, schools may receive credit for nonproficient students 

who are on track to proficiency in 3 years but not those who are on track to proficiency in 4 or 

more years. These two sets of attributes are responses to two different waves of federal policy.  

Cut-score decisions were made largely in response to the basic requirements of NCLB, and 

growth model policy decisions were made largely in response to the GMPP.  Before describing 

the impact of these attributes on growth model results, we discuss each of these sets of attributes 

and their policy contexts in turn. 

Attributes of Cut Scores: Rigor and Across-Grade Articulation 
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 When growth is referenced to cut scores, growth model results will depend upon both the 

rigor of cut scores and the patterns of cut score articulation across multiple grades.  The decision-

making process that leads to these attributes has many motivations.  Prior to NCLB 

implementation, most states tested at several benchmark grades, and only a few states tested 

contiguously across all or even most elementary and middle school grades (Olson, 2002).  The 

contiguous-grade testing paradigm that emerged under NCLB necessitated setting cut scores for 

the newly required assessments and, in many cases, resetting cut scores previously set without 

regard to NCLB consequences.  Two issues were addressed by state policymakers as they 

considered designs for setting or resetting cut scores on their NCLB assessments: the rigor of the 

cut scores within each grade and the articulation of cut scores across the grades. 

 Efforts to foster consistency of cut scores across grades were only moderately successful 

under the benchmark-grade testing paradigm, where standard setting tended to be a grade-by-

grade activity.  Substantial differences between cut scores for Grades 4 and 8, for example, are 

easier to reconcile than inconsistencies between cut scores for adjacent grades.  The contiguous-

grade testing paradigm impelled policymakers and standard-setting researchers to develop 

methods to vertically moderate, or articulate cut scores across grades (Cizek, 2005).  These 

methods were guided by the principle that the pattern of proficiency rates across grades should 

appear rational to the various constituents who use or interpret test results.  The pattern of cut 

scores in each grade should consider the scope and sequence of content across the grades and 

should reflect the regular progress that students tend to achieve from grade to grade.   

 There are no prescribed standards for what constitutes consistent across-grade results in 

terms of the percentage of students at or above a given performance standard.  However, several 

patterns of well articulated performance standards are frequently observed in state assessment 
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programs as a result of their explicit consideration in the standard setting process.  These models 

describe articulated, cross-grade performance standards in terms of the percentage of proficient 

students in each grade.  Three general models and interpretations of articulated across-grade 

performance standards are presented by Lewis and Haug (2005).   

 The decreasing model reflects a smoothly decreasing percentage of proficient students 

across grades.  There are multiple interpretations of this pattern of across-grade proficiency. It 

may reflect the changing nature of the domain across grades and, with it, a decrease in students’ 

ability to meet the goals of the grade.  For example, mathematics becomes increasingly complex, 

moving from the reasonably simple and concrete notions of counting, addition, and subtraction 

to the complex and abstract foundations of algebra and calculus.  Lewis and Haug (2005) also 

observe that standard-setting participants in upper grades are often content-area experts who may 

act as gatekeepers of the domain, whereas elementary teachers tend to be more student centered, 

considering what is best for the student and hesitating to label younger students as less than 

proficient. 

 The equal-percentage model reflects an equal or approximately equal percentage of 

proficient students in each grade.  This pattern reflects an attribute of proficiency that is inherent 

in many performance-level descriptors—that proficient students are well prepared to meet the 

challenges of the next grade.  Thus, proficient students tend to meet the challenges necessary to 

demonstrate proficiency in their next grade, resulting in similar percentages of proficient 

students from one grade to the next. 

 The increasing model reflects a smoothly increasing percentage of proficient students 

across grades.  There are also multiple interpretations of this pattern of across-grade proficiency. 

It may be that a somewhat higher bar is set at the lower grades to increase the likelihood that 
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students will be prepared for the more challenging material—and possibly higher stakes 

assessments—that come in subsequent grades.  Additionally, as students’ strengths and 

weaknesses are better understood through appropriate longitudinal record keeping, teachers and 

parents may provide better educational opportunities customized to individual learning styles, 

leading to an accelerated success rate with time. 

 This paper frames both the rigor and the across-grade consistency of cut scores as factors 

influencing the results of growth models under the GMPP.  Rigor is investigated by increasing 

cut scores in all grades from those that would set proficiency rates near 90% in all grades (low 

rigor) to those that would set proficiency rates near 30% in all grades (high rigor).  Articulation 

is investigated by setting cut scores that enforce increasing percentages of proficient students 

(decreasing rigor) across grades by 10 percentage points per grade, then 9, then 8, and so on.  

This rate of decline can be set to 0, an equal-percentage model, and then a rate of decreasing 

across-grade proficiency rates (increasing rigor) is investigated.  By varying cut-score attributes 

in a plausible range and holding other factors constant, we demonstrate that rigor and articulation 

can change growth percentages by up to 20 percentage points, and school-level accountability 

results can be even more dramatically affected.  In the next section, we discuss attributes of 

growth model policies that have similarly large influences on growth results under the GMPP.  

Attributes of Growth Model Policies 

 Under conventional NCLB accountability models, a student is classified as “proficient” at 

Time t if the student’s test score, Xt, is greater than or equal to a cut score designating 

proficiency at that time, ct.  Table 1 displays the conditions for student proficiency as well as 

other classifications soon to be introduced. The cornerstone statistic of NCLB is the percentage 

of proficient students, denoted here as PPS.  The PPS is calculated for each sufficiently large 
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subgroup in a school and compared to a benchmark called the Annual Measurable Objective 

(AMO).  While so-called safe-harbor provisions and, for some states, idiosyncratic confidence-

interval procedures may complicate matters, the baseline NCLB rule is that a school’s PPS 

statistics must be greater than the AMO for all valid subgroups in order to avoid sanctions. 

 Schools whose subgroups all have PPS statistics higher than the AMO are described as 

making Adequate Yearly Progress (AYP, Table 1).  In a simplified scenario with only one 

subgroup, this decision process may be represented by the statement: If PPS ≥ AMO, then AYP.  

Using this terminology, proficiency describes a student, PPS is a school-level percentage, and 

AYP describes a school. At the state-level, relevant statistics include the PPS, which can be 

calculated for a state as well as for a school, and the percentage of schools making AYP (PAYP).  

The PPS at both the state- and school-level is inversely related to the rigor of a cut score: the 

higher the cut score, the lower the PPS.  The PAYP is more complex, as it is dependent on the 

AMO.  However, for fixed AMOs, PAYP will also decline with increasing cut-score rigor.  This 

should seem fairly straightforward: School PPS will decline as cut-score rigor increases, and 

fewer school PPS will surpass the AMO.  We will demonstrate that the cut-score dependencies 

of growth statistics are just as predictable but much less straightforward. 

 To date, there are 11 growth models with full or conditional approval by the Department 

of Education (U.S. Department of Education, 2008).  Many of these growth models afford the 

classification of students as “on track” to proficiency at some point in the future.  We denote the 

percentage of “on track” students in a school or a state as POT.  A state’s growth model policy 

may count “on track” students as “proficient” for the sake of school accountability decisions; we 

adopt this policy throughout our analyses.  We identify schools whose accountability 

classification is reversed by using growth models: We count the schools that are not making 
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AYP, that is, PPS < AMO, but have surpassed the AMO through their “on track” students, that is, 

PPS + POT ≥ AMO.  We distinguish these schools from conventional AYP schools and describe 

them as having made Adequate Yearly Growth (AYG, Table 1). 

 A state’s growth model policies can dictate the definition of POT and the form of the 

inequality that decides AYG.  For some states, current status is subtracted from the equation 

entirely, and students must be predicted to be on track to proficiency whether they are currently 

proficient or not.  Under this system, there is no PPS; there is only POT, and a school makes 

AYP if POT ≥ AMO.  States may also use models that predict future scores from prior test 

scores using regression-type methods.  These models use longitudinal data from students from 

prior years to estimate prediction equations.  Other states may award fractional credit to on-track 

students based on the starting point and/or degree of their gains.  In order to focus on the 

functional relationships between select variables, we use a simplistic model that avoids 

confounding the multiple policy factors that make up AYP and AYG decisions in practice.  Dunn 

(2008, this issue) describes the effects of the policies of approved growth model states as they 

work in vivo, whereas we demonstrate how all states can expect results to change under 

systematic manipulation of select factors. 

 The model we use for illustration, described in Table 1, is commonly referred to as a 

gain-score or trajectory growth model.  Student scores must be located on a vertical scale that 

spans many grades, and cut scores are also mapped onto this scale.  The model assumes that a 

student’s gain over a past unit of time will be the same as that student’s gain over each similar 

unit of time into the future.  For example, a nonproficient student whose trajectory is projected 

from Time 1 and 2 scores of 425 and 475, respectively, is on track to 525 at Time 3, 575 at Time 

4, and so on.  The growth model policy, then, defines this nonproficient student as “on track” to 
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proficiency at Time 3 if the projected score of 525 is above the Time 3 proficiency cut score.  

This can be represented by the following conditions: X2 < c2 and X1 + 2*(X2 – X1) ≥ c3 (Table 1).  

In a straightforward extension of this logic, at Time 2, students are defined as “on track in N 

years” if the following inequalities hold: If X2 < c2 and X1 + (N + 1)*(X2 – X1) ≥ cN+2.   

This paper investigates how a particular growth model policy attribute—the time horizon 

to proficiency, N—affects accountability decisions.  We demonstrate that cut-score attributes can 

interact with growth model policy attributes to dramatically affect growth statistics for states 

(POT) and for schools (PAYG).  We show that increasing the time horizon to proficiency can 

more than double the percentage of students who are classified as “on track.”  In addition, we 

explain how changing cut scores can interact with AMOs with the potential to reduce school 

failure rates by more than 35 percentage points.  These policy decisions are among many that 

states must make in implementing a growth model, but we demonstrate that these particular 

decisions have systematic relationships with outcome variables and are easy to predict.  We 

conclude this paper with an argument for the generalizability of these dependencies to all growth 

models that reference growth to NCLB-type proficiency cut scores. 

Methods: A Theoretical Framework for Evaluating Cut-Score Dependencies 

 Visualization and prediction of the cut-score dependence of growth results can be assisted 

by a theoretical framework.  The cornerstone of the theoretical framework is a bivariate 

scatterplot with student scores at Time 2 (X2) plotted against student scores at Time 1 (X1).  We 

present an illustration of observed test score data generated from a bivariate normal distribution 

in Figure 1.  The bivariate normal distribution was chosen for convenience and because many 

tests have distributions that are either scaled to be or happen to be unimodal and roughly 

symmetrical.  Departures from bivariate normality will certainly change the findings presented.  
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However, our purpose here is illustrative, and the framework easily allows for alternative 

distributional choices or, as we will show, examples with real data. 

Figure 1 shows a sample of 1000 students drawn from this bivariate normal distribution 

and plotted as small gray dots.  The scale is arbitrary up to a linear transformation; the mean of 

the Time 1 distribution is set to 500, and the standard deviations of the Time 1 and Time 2 

distributions are set to 100.  The Time 2 mean is set to 550, resulting in an average gain of 0.5 

standard deviation units, a level commonly seen in practice.  The correlation between Time 1 and 

Time 2 scores is also set to be realistic at 0.75. 

 To establish a reference point, this framework assumes that the current year is Time 2, 

and the first year of data, Time 1, came from the previous year.  The centroid is indicated by a 

black circle.  The X2 = X1 diagonal is plotted for reference.  Points above this diagonal represent 

students whose scores have increased from Time 1 to Time 2, and points below the diagonal 

represent students whose scores have decreased from Time 1 to Time 2.  For illustration, Figure 

1 flags two students’ data; one student is represented as a triangle and one as a square.  The 

triangle identifies a student who scored 350 at Time 1 and 475 at Time 2 for a gain of 125.  The 

gain can be visualized as the vertical or, equivalently, horizontal distance from any point to the 

diagonal.  The square identifies a student who has a Time 1 score of 425 and a Time 2 score of 

475 for a gain of 50.  This student has a smaller gain and is closer to the diagonal.  We will 

demonstrate how this framework readily identifies which students are classified as “on track.” 

 Five reference lines have been drawn across each axis.  Each line marks the cut scores set 

at Times 1, 2, 3, 4, and 5; these are labeled c1, c2, c3, c4, and c5, respectively.  In Figure 1, the cut 

scores are set at 450 at Time 1, 500 at Time 2, 550 at Time 3, and so on.  Of the two flagged 

students, the triangle is below the Time 1 cut score on the horizontal axis and also below the 



Growth Models and Cut Scores 12

Time 2 cut score on the vertical axis.  In other words, this student is below proficient in both 

years.  The student has also made a gain of 125 points from Time 1 to Time 2.  If the student 

were to make the same gain from Time 2 to Time 3, the student would score a 600, which is 

above the Time 3 cut score.  The student represented by the black triangle is therefore on track to 

proficiency in 1 year. 

 The student represented by the black square has a Time 1 score of 425 and a Time 2 score 

of 475 for a gain of 50.  Note that this student is also below proficient in both years.  If the 

student makes the same gain from Time 2 to Time 3, the student will score a 525, which is not 

proficient in Time 3.  This student is not on track to proficiency in 1 year.  The usefulness of this 

framework is that students who are “on track” to proficiency can be easily identified by the area 

of the graph in which they are located.  The lightest shaded area identifies the students who are 

“on track in 1 year”  and is bordered by the horizontal line: X2 = c2, and the diagonal line: X2 = 

(X1 + c3)/2.  The area below the horizontal line identifies nonproficient students at Time 2.  The 

area above the diagonal line identifies students who have made gains that place them on track to 

proficiency by Time 3.  The equation for the diagonal line follows directly from the equation in 

Table 1 after solving for X2.  The percentage of students in this area are what the gain-score 

model in Table 1 would describe as POT1.  Note that the triangle has no border on its left side 

and is therefore semi-infinite. 

 Figure 1 also shows the successively darker shaded triangles that identify the students on 

track in 2 years (but not 1) and 3 years (but not 2 or 1), respectively.  The full percentage of 

students on track in 3 years, POT3, is the sum of the proportions calculated from all three shaded 

triangles.  The equation of each diagonal line can be found by solving the general equation in 

Table 1 for X2 given a particular time horizon of N years.  The figure shows that increasing the 
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time horizon to proficiency allows for greater and greater proportions of “on track” students 

under this growth model. 

 If the bivariate normal model adequately describes the distribution of observed scores, 

POT statistics can be calculated as the volume under the density function in the region of the 

semi-infinite triangles shown in Figure 1.  The appropriate double integral for the first triangle, 

representing the percentage of students on track for proficiency in 1 year, follows: 
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 In the scenario shown in Figure 1, the means would be 500 and 550, the standard 

deviations would both be 100, the correlation would be 0.75, and c2 and c3 would be 500 and 550 

respectively.  We calculate the integral using numerical quadrature in the program, Matlab, and 

we find that POT1 under these parameters would be 4.71%.  From here, it is straightforward to 

adjust cut scores in Equation 1 and recalculate POT under alternative cut score selections.  For 

example, the cut scores shown in Figure 1 could all be shifted much lower or much higher to 

represent less or more rigor respectively.  A generalized version of Equation 1 allows evaluation 

of percentages of students on track to proficiency in N years: 
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 The score scale shown in Figure 1 is hypothetical, and the implication of a Time 2 cut 

score of 500, for example, is difficult to discern on its own.  A more interpretable approach to 

describing cut scores references cut scores by the proficiency statistics they generate.  For 

example, a Time 1 cut score of 450 and a Time 2 cut score of 500, as shown in Figure 1, result in 

PPS of around 69% for both grades.  To explain the effects of the rigor of cut scores on growth 

statistics, we begin by assuming that cut scores follow an equal-percentage model across grades, 

that is, the percentage of proficient students is the same in all grades.  Distributions in higher 

grades are assumed to have equal standard deviations of 100 and equal average gains of 50 per 

year for convenience in calculating cut scores.  We then shift the entire set of cut scores so that 

the percentages of proficient students in all grades ranges from 90% (low cut scores and less 

rigor) to 30% (high cut scores and more rigor), a plausible range that spans the PPS statistics 

seen in practice (Swanson, 2008).  Visually, this is akin to taking the grid in Figure 1 and sliding 

it up and down the diagonal of the graph, calculating the proportion of students in the areas of 

the triangles while the grid moves. 

 Figure 2 shows results from calculations that vary both overall rigor of cut scores from 

90% (less rigor) to 30% (more rigor) and the time horizon to proficiency from N = 1 to 5 years.  

To maintain consistency with the framework presented in Figure 1, we order the horizontal axis 

by the increased rigor that comes from raising cut scores, thus the proficiency rates of figures 

will decrease from left to right.  Figure 2 shows that low levels of rigor lead to low POT statistics 
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of around 2%, whereas increasing rigor can increase POT statistics to 10% when the time 

horizon is 1 year and to over 20% when the time horizon is 5 years. 

 Most time horizons for GMPP states are 3 years, though time horizons may be shorter for 

students near graduation from a particular school or when the year approaches 2014, the deadline 

for 100% proficiency.  States that have equal time horizons but dramatically different levels of 

rigor may report POT differences of more than 15 percentage points due simply to cut score 

selection.  It may seem counterintuitive that increasing rigor leads to greater percentages of 

students who are on track.  The simple explanation for this is that increasing rigor results in more 

nonproficient students and thus more students eligible to qualify for growth calculations.  

Visually, this can be pictured in Figure 1, where increasing cut scores will result in greater and 

greater proportions of students bordered by the semi-infinite shaded triangles. 

 Figure 2 has striking implications for comparisons of growth-model results across states.  

It is a reminder that the percentage of students who are “on track” (POT) is confounded with cut-

score selection.  States reporting high PPS are expected to have relatively lower POT statistics, 

and states with more rigorous cut scores are expected to experience the greatest benefit from the 

GMPP under projection growth models.  These benefits would increase if the time horizon to 

proficiency were to increase, though the differences between 3-year and 4-year time horizons are 

not as dramatic as those between 1-year and 2-year time horizons. 

Real Data Confirmation of Theoretical Relationships 

 The relevance of the theoretical framework was evaluated by applying similar cut-score 

scenarios to longitudinal student data from a mid-sized state.  The dataset consists of a single-

grade cohort of almost 70000 students who have four years of test scores from Grades 3 through 

6 inclusive.  There are over 83000 eligible scores in Grade 6, so the match rate for the four-year 
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span is approximately 84%.  The test is an English Language Arts test that is vertically scaled 

with increasing grade means and decreasing variability over the four grades. 

 To calculate the cut-score dependence of POT1, the percentage of students on track to 

proficiency in 1 year, Grade 4 and Grade 5 scores are defined as X1 and X2 respectively.  The cut 

scores c1, c2, c3, are set by a similar equal-percentage model as the one that generated Figure 2.  

For example, for a target PPS of 80%, empirical cut scores are identified that result in 80% of 

students classified as proficient at each grade.  The cut scores associated with a given target 

percentile are denoted c1, c2, and c3, and the target PPS is then varied to investigate cut-score 

dependencies.  To calculate POT2, Grades 3 and 4 are defined as X1 and X2 respectively, and c1, 

c2, c3 and c4, are calculated as the percentiles of the empirical distributions of Grades 3, 4, 5, and 

6.  With a four-year dataset, only two different time horizons can be evaluated: a 1-year horizon 

using Grade 4-5 growth projected to Grade 6 and a 2-year horizon using Grade 3-4 growth 

projected to Grade 6.  Similar results could be obtained for a 1-year horizon using Grade 3-4 

growth projected to Grade 5 but were not included for the sake of parsimony. 

 Figure 3 shows the results of varying cut scores to reflect equal cross-grade PPS from 

90% to 30% in a similar manner to Figure 2.  As in Figure 2, the POT1 line runs from near 1% 

for less rigorous cut scores to near 10% for more rigorous cut scores.  The POT2 is slightly 

higher than the corresponding line in Figure 2 and shows greater cut-score dependence.  Looking 

at Figure 1, this can be explained by a greater density of students in the second semi-infinite 

triangle.  As the real data has a slightly higher correlation and a slightly lower gain than the 

theoretical data, there is indeed a greater density of students in the region of the second triangle, 

leading to the observed results.  The curves in Figure 3 are bumpy because of the usual 

awkwardness arising from calculating percentiles from discrete data.  The similarities between 
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Figures 2 and 3 support an argument for the consistent functional dependencies between cut-

score choice and POT statistics. 

Effects of Articulation of Cut Scores: Theoretical and Real Data Results 

 Cut scores may decline or increase in rigor across grades.  In order to model the effects of 

the articulation of cut scores across grades, we introduce a series of plausible PPS patterns in 

Table 2.  These patterns all have an average PPS of 60% across all grades, but higher patterns in 

the table show declining rigor across grades (increasing PPS) and lower patterns show increasing 

rigor across grades (decreasing PPS).  The central pattern is an equal-percentage pattern that 

generates 60% proficiency at each grade.  The cut scores that would establish these PPS statistics 

are calculated for the theoretical score distributions underlying Figure 1.  For example, for the 

first pattern in Table 2, the cut scores that generate the listed percentages are approximately 513, 

537, 561, and 583.  The integrals in Equations 1 or 2 can then be evaluated for cut scores 

generated from each of the patterns in Table 2.  In Figure 1, this exercise can be visualized by 

constricting the distance between the cut scores (for decreasing rigor) and then expanding the 

distance between the cut scores (for increasing rigor).  As the distances between cut scores 

increases, the diagonal lines in Figure 1 are pulled up and squeezed against horizontal line X2 = 

c2.  As a result, the proportion of students in the area of the triangle is decreased if rigor increases 

across grades.  Moving from the top rows of Table 2 to the bottom rows can be seen as an 

exercise in increasing the distances between cut scores. 

 The results of the evaluation of these integrals for time horizons of 1 and 2 years are 

shown in Figure 4.  Simply put, raising future goals will decrease the number of students who are 

on track to these goals.  Figure 5 confirms these findings with the real dataset previously 

described.  Similar to the contrast between Figures 2 and 3, Figures 4 and 5 are very similar for a 
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1-year horizon, but the empirical data for the 2-year horizon shows a greater dependence on cut-

score attributes than the theoretical data.  This may also be explained by a disproportionate 

weight of students in the “on-track-in-2-years” triangle.   

 The magnitudes of the dependencies in Figures 4 and 5 are slightly less dramatic than 

those shown in Figures 2 and 3.  Further, the extremes shown in Figures 4 and 5 are slightly less 

realistic, as declines or increases in proficiency rates of 30 percentage points across four grades 

are not common in practice.  In contrast, PPS ranges between 90% and 30%, as shown in Figures 

2 and 3, represent the actual PPS variation currently seen across states (Swanson, 2008).  This 

seems to suggest that the practical range of cut-score rigor has a greater impact than the practical 

range of cut-score articulation.  It is nonetheless impossible to fully disentangle the these two 

factors in longitudinal analysis, as increasing distances between cut scores naturally affects rigor 

in each grade.  These interactions can be visualized in Figure 1 through the stretching and 

shifting of the grid of cut scores over the density of data in the scatterplot.  Together, Figures 2-5 

demonstrate that increasing the overall rigor of cut scores increases POT statistics, and 

increasing rigor from grade to grade decreases POT statistics. 

School-Level Accountability Results 

 To this point we have described the effects of cut-score rigor, cut-score articulation, and 

time horizons on state-level results for students, as represented by the percentage of on-track 

students (POT) statistic.  A more relevant statistic for some policymakers may be the percentage 

of schools for whom growth models may make a difference in accountability decisions.  A 

school-level version of the theoretical framework in Figure 1 exists, however the number of 

variables and interdependencies becomes too complicated for the framework to support helpful 



Growth Models and Cut Scores 19

visualizations.  Instead, we simply show the empirical results for the dependence of the 

proportion of AYG schools on the rigor of cut scores. 

 The matched dataset contains information for approximately 70000 students in over 900 

elementary schools.  The data are longitudinal and stretch over four years for a single-grade 

cohort from Grade 3 to Grade 6.  For the purposes of stability, and in order to mimic the 

minimum subgroup size for this state and many others, we exclude all schools whose available 

matched data number fewer than 30 students.  This leaves around 640 schools for a 71% school-

inclusion rate.   

AYP decisions are made on multiple subgroups within schools, where all PPS must 

surpass AMOs.  For simplicity, we consider the single-grade cohort as the only subgroup in the 

school.  Additionally, we only use the 2-year time horizon, where the “current” Grade 4 includes 

growth results from Grades 3 to 4 and credits students on track to proficiency by Grades 5 or 6.  

Finally, we did not include safe-harbor or confidence-interval provisions whose interactions with 

growth models further complicates dependencies.  The implications of these findings to schools 

with multiple subgroups can proceed by referencing the PPS of the lowest-scoring subgroup, as 

schools are essentially accountable to this subgroup alone.  The school-level accountability 

decision, which is effectively a model for Grade 4 in our scenario, follows from Table 1: If PPS 

≥ AMO, then AYP, and, for growth model decisions for non-AYP schools: If PPS + POT ≥ 

AMO, then AYG. 

 AMOs are essentially cut-scores used to determine whether individual schools  have met 

their AYP goals.  As such, they have an effect on growth model results that is comparable to the 

impact of the student-level proficiency cut-score choice.  As NCLB took effect, the AMO was 

tied to PPS such that states were discouraged from setting excessively low standards for schools.  
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Our purpose is to demonstrate the dependence of PAYG on proficiency cut scores while fixing 

other factors, but it is unrealistic to model the shifting of cut scores without a corresponding shift 

in the AMO.  To appropriately model AMO correspondence to a given cut-score , we follow the 

federal formula that originally linked a state AMO to a state PPS.  NCLB requirements set the 

minimum AMO at the PPS of “the school at the 20th percentile in the State, based on enrollment, 

among all schools ranked by the percentage of students at the proficient level” (Pub. L. No. 107-

110, 2002).  This amounts to the following algorithm: For each grade and its associated 

proficiency cut score, 1) Rank all schools by their PPS; 2) Calculate the cumulative enrollment 

as a percentage of statewide enrollment from the lowest ranked school on up; and 3) Set the 

AMO equal to the PPS of the school at which 20 percent of the statewide enrollment is reached.  

As before, we generate sets of cut scores that lead to equal PPS across grades.  Following the 

algorithm above, each cut score sets a PPS which in turn determines an AMO. 

 Figure 6 illustrates the dependence of school-level growth model results on the rigor of 

cut scores by extending the student-level results of Figure 3 to schools.  Only the 2-year time 

horizon is shown, and AMOs are recalculated for each PPS using the calculation described above.  

The vertical axis represents PAYG, the percentage of schools that do not meet AYP but achieve 

AYG through the growth model. The darker, black line shows the dependence of PAYG on cut-

score rigor.  We find that increasing rigor increases the proportion of AYG schools.  This is 

similar to the student-level results shown in Figure 3, where increasing rigor also increases the 

proportion of “on track” students.  Reducing the proficiency rate from 90% to 30% increases 

PAYG from 10% to over 20%. 

 The lighter, gray line reflects the result of adding 5 percentage points to the AMO, 

effectively raising the minimum standard for schools while keeping all other data constant.  
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Under NCLB and the GMPP, all AMOs are required to rise from their baseline values to 100% 

by 2014.  The gray line illustrates the results of an increase in the AMO with no corresponding 

change in state proficiency rates.  While this would decrease PAYP, Figure 6 shows that this 

would increase PAYG by 5 to 10 percentage points.  The gray line’s position over the black line 

shows that, if AMOs increase over time and proficiency rates stagnate, the impact of growth 

models on school accountability decisions may become even greater. 

 It may seem surprising that PAYG never dips below 10%.  Figure 6 seems to suggest that 

all growth model states should have shown differences for at least 10% of schools after 

implementation.  Instead, many states observed changes at only a handful of schools (Klein, 

2007).  A more complete picture of the interaction between AMOs and cut-score rigor may help 

to resolve the apparent conflict between Figure 6 and real-world findings.  While the AMO was 

federally mandated at the advent of NCLB, it has since become uncoupled with PPS.  PPS 

statistics track observed student achievement annually while AMO trajectories are set by state 

policy, increasing from their baseline values to 100% in 2014.  When AMOs and PPS become 

uncoupled, even more dramatic dependencies can manifest. 

Figure 7 displays the results for fixed AMOs of 50% and 70%, levels that represent 

points along most state AMO trajectories towards 100% by 2014.  The results show that the 

impact of a growth model on a state’s schools can be both very large and deeply dependent on 

cut-score attributes.  A solid line at the 65% mark illustrates a scenario where a state sets cut 

scores such that 65% of its students are proficient across all grades.  For this state, the GMPP 

would positively affect 11% of schools if the state AMO were 50% and 31% of schools if the 

state AMO were 70%.  Figure 7 shows that states will have particularly large growth-model 

benefits when the PPS is just below the AMO.  In these cases, a large number of schools will be 
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on the AMO bubble, and adding POT to the calculation results in a larger proportion of AYG 

schools.  If proficiency rates rise faster than the baseline AMO, Figure 7 shows that PAYG is 

expected to be quite low.  For example, if 75% of students are proficient, and the AMO is set to 

50%, the empirical results from this state show only 5% of schools making AYG.   

Together, Figures 6 and 7 allow the following observations about the potential impact of 

the GMPP on states as a function of state PPS levels and its AMO.  First, states whose PPS far 

exceeds their AMO are likely to experience little benefit from the GMPP.  Second, the impact of 

the GMPP will be greatest, as measured by the peaks in Figure 7, when both the PPS and AMO 

are a) similar and b) in the middle range of percentages.  When both the PPS and AMO are large, 

PPS suppresses POT (see Figures 2 and 3) and thus suppresses PAYG.  Third, for states whose 

AMO trajectories rise to meet and then surpass their PPS levels, the impact of the GMPP will 

rise and then fall. This latter finding will be realized by many states should NCLB reach its 

endgame.  All of these observations are best described as straightforward consequences of a cut-

score-based growth model and not as meaningful differences in amounts of growth across states 

or over time. 

Generalizing Findings to Alternative Growth Model Policies 

 The number of variables involved in an operational state growth model is far too large to 

explore all possible interactions between cut-score attributes and policy decisions.  To this point, 

we have described how cut-score attributes affect one particular growth model approach—the 

gain-score or trajectory growth model—in combination with a time-horizon factor.  In this 

section, we briefly discuss how the cut-score dependencies of this model may or may not 

generalize to three alternative implementations of growth models.   
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 The growth model described to this point can only help students and schools.  The 

inequalities displayed in Table 1 leave all proficient students in place and can only add “on 

track” students to school accountability calculations.  An alternative formulation may choose to 

penalize proficient students who are not on track to proficiency.  Under this formulation, all 

students, regardless of their status, must be making gains that show them as “on track.”  The 

student-level and school-level equations reduce to: If X1 + 2*(X2 – X1) ≥ c3, then “on track,” and, 

if POT ≥ AMO, then AYG.  In this model, proficiency and AYP are irrelevant as long as 

students have growth data. 

 This model can be visualized in Figure 1 by extending the diagonal lines through to the 

other side of the X2 = X1 diagonal.  Everyone above these lines is “on track in N years,” and 

everyone below these lines is not.  The net change between a growth model and a conventional 

status model must incorporate both the addition of the shaded triangles already highlighted in 

Figure 1 and the subtraction of new triangles bordered by X2 = c2 and the diagonal lines on the 

right side of the graph.  These new triangles include currently proficient students who are not on 

track to proficiency and who would be classified as effectively nonproficient under the terms of 

this growth model. 

 It is clear that the growth model would no longer have a purely positive effect, but we 

argue that cut-score dependencies would certainly remain.  Keeping triangles on both sides of 

Figure 1 in mind, we can see that low cut scores would actually lead to a net negative impact on 

states, as many proficient students would be classified as “not on track.”  Higher cut scores 

would allow the positive effects of growth models to become more salient.  Thus, growth models 

that apply to all students regardless of their current proficiency status will be expected to have a 

less positive impact but remain dependent on cut-scores. 
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 The second alternative policy model that we consider is regression-based.  Regression-

based models use data from previous longitudinal cohorts to generate prediction equations.  If a 

student’s scores from a current cohort are substituted in to the prediction equation and the 

equation returns a score above a future cut score, that student may be deemed “on track.”   

Regression-based models are still interpretable within the framework of Figure 1.  The 

diagonal lines in Figure 1, for example, the “on track in 1 year” line: X1 + 2*(X2 – X1) = c3, are of 

exactly the same form as a regression-based prediction line.  In fact, if all of the parameters of 

the multivariate normal model stayed the same, and the Time 1 to Time 3 correlation were set to 

0.3 (admittedly a low value), the regression-based model would return a line with identical slope 

and an intercept around 15 points below the “on track in 1 year” line in Figure 1.  Resulting cut-

score dependencies would take on a similar form as the ones we have shown here.  The impact of 

a regression-based growth model on POT depends critically upon the parameters of the 

distributions and thus the slope of this prediction line.  Under different parameters, the regression 

line will change in slope, but its intercept will remain referenced by the future proficiency cut 

score.  The framework in Figure 1 will still apply: raising cut scores will still leave more students 

to be classified as “on track,” and raising future cut scores (increasing cut-score variability) will 

continue to decrease POT by raising the intercept of the regression line. Cut-score dependencies 

may therefore take on a different form but are not rendered negligible by regression-based 

growth models. 

 The third alternative policy we consider are value tables or categorical growth models.  

These use multiple cut-scores within a given grade to classify students, for example, into Below 

Basic, Basic, Proficient, and Advanced categories.  Student transitions across category 

boundaries may receive some form of credit for schools.  This model may also be visualized in 
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Figure 1.  Instead of diagonal lines, categorical growth models add greater numbers of vertical 

and horizontal lines corresponding to the cut scores separating, for example, the Below Basic and 

Basic category in each grade.  Instead of shaded triangles above the main diagonal that identify 

students receiving credit, categorical growth models will have shaded rectangles that are 

weighted by certain values.   

Categorical growth models will therefore exhibit similar patterns of cut-score dependence 

as their gain-score model counterparts.  Time horizons generally do not apply in categorical 

growth models.  Cut-score articulation becomes a more complex concept as multiple cut-scores 

interact within and across grades, however raising higher-grade standards with respect to lower-

grade standards will still decrease POT.  Finally, increasing cut scores increases the number of 

nonproficient students who will be included in the rectangles.  Across all of these alternative 

policy models, Figure 1 helps to demonstrate that cut scores will have a strong and often 

confounding effect on growth-based classifications and decisions. 

Discussion and Conclusions 

 This paper has provided a framework for the quantification of the cut-score dependence 

of growth model results.  We point out that the proportion of students credited by growth models 

should be larger for states with more rigorous cut scores primarily because of the increased 

proportion of nonproficient students eligible for growth calculations.  We also show that this 

credited proportion is smaller for states whose distances between cut scores increase up the 

vertical scale (declining PPS across grades) and larger for states whose distances between cut 

scores decrease up the vertical scale (increasing PPS across grades).  We show that the expected 

increase in credited students under different time horizons is much larger moving from a 1-year 

to a 2-year horizon than it would be moving from a 4-year to a 5-year horizon.  Finally, we 
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demonstrate that the proportion of schools that will be benefitted by a growth model will 

generally increase with more rigorous cut scores.  However, the effects ultimately depend on an 

interaction between cut scores and the state AMO: States with PPS close to their AMO will have 

the greatest proportion of benefited schools, particularly when that AMO is not too high. 

Under the GMPP, more rigorous cut scores result in greater proportions of students and 

schools credited as “on track” and meeting federal goals.  In this way, the GMPP provides a 

modicum of balance to the challenges states face under NCLB.  Policymakers adopted cut scores 

with a tension between national reform efforts demanding high standards and NCLB’s 

challenging goal to have universal proficiency by 2014; more rigor satisfies the former while less 

rigor supports achievement of the latter.  The result has been a wide range of proficiency results 

across states that is partially if not mostly explained by differences in rigor (Braun & Qian, 2005; 

McLaughlin & Bandeira de Mello, 2003).  States adopting more rigorous cut scores have a 

greater baseline challenge than states adopting less rigorous cut scores.  Our results indicate that 

the use of this type of growth model offsets the difference between the challenges facing these 

states. 

However, the findings of this study indicate that the interpretation of GMPP statistics as 

reflecting “growth,” per se, is inaccurate or at least incomplete.  Two hypothetical states with the 

same baseline level of student achievement, that adopt the same growth model at the same time, 

and that experience the same increase in student achievement over time, will experience different 

proportions of students and schools classified as “on track” as a direct result of levels of rigor, 

different patterns of vertical articulation of performance standards, or different time horizons.  

Consequently, growth results are only as comparable across states as their cut-score rigor, 

articulation, and time horizons are comparable across states.   
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The interpretation of NCLB results would be enhanced had cut scores been more 

consistent across states in the baseline year—relative progress toward meeting standards would 

acquire a common frame of reference.  This did not occur, and across-state comparisons of 

results that rely on this assumption may encourage substantive conclusions about state 

differences.  Instead, these differences are more appropriately attributed to the cut-score features 

that generated them.  Interpreting the differences illustrated in Figures 2 through 7 as meaningful 

differences in student growth for different states would be a mistake, given that the underlying 

bivariate score distributions were exactly the same.  It is the dependence of the growth-to-

proficiency metric on cut-score attributes that produced the result.  This degree of conflation 

between cut scores and growth results may be an undesirable attribute for models adopted under 

federal educational accountability systems.  

Policymakers and standard setters should be aware that decisions they make about 

proficiency standards have a direct, dramatic, and, as we show, predictable impact on growth 

results in a growth-to-proficiency framework.  For example, in 2001, Colorado adopted cut 

scores with an approximately equal percentage of proficient students across grades for its NCLB 

Reading assessment, whereas, in 2004, Indiana adopted Reading cut scores such that rigor 

increased and the percentage of proficient students decreased across grades.  The results of this 

paper indicate that the adoption of a projection growth model would likely result in more schools 

classified as making AYG in Colorado than in Indiana, although the relative rigor of the cut 

scores would moderate the effects.      

 To conclude, our concerns are twofold.  First, the cut-score dependencies demonstrated 

here are substantial.  Statistics of interest like POT and PAYG can swing by dramatic amounts 

over plausible alternative cut scores and time horizons.  These findings should be seen as parallel 
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to but contrasting with those of Allen, Briggs, Weeks, and Wiley (2008, this issue).  They 

address the impact of scaling and linking methods, whereas we address cut-score and policy 

attributes.  The factors that they investigate can be seen in Figure 1 as influencing the bivariate 

scatterplot, whereas the factors we investigate influence the grid overlaying the bivariate 

scatterplot.  Clearly, both sets of factors will have an impact on policy-relevant outcomes.   

Second, reporting growth from within a proficiency-based and therefore cut-score-

dependent framework makes it difficult to satisfy two important requirements: transparency and 

parsimony.  The degree of cut-score dependence is too substantial to disentangle growth from 

cut-score attributes and still allow for growth-related interpretations.  This does not mean that 

growth-to-proficiency models should be thrown out as a possible tool of policy.  However, it 

does require an honest recasting of results not as measures of growth but as indicators of 

progress toward a very particular standard.   

One strategy for defensible interpretations involves the separation of  growth-based 

accountability and growth-based reporting onto two parallel tracks.  Toward the latter goal, a 

more straightforward method of encouraging accurate growth interpretations may follow from 

setting norm-referenced standards for growth (Betebenner, 2008; this issue).  As these efforts 

progress, this paper stands as a reminder that the impact of the GMPP on state accountability 

metrics will be heavily moderated by cut-score attributes in systematic and predictable ways.   
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Table 1. A simplified accountability model for evaluating cut-score dependencies of student- and 

school-level accountability classifications at Time 2.  Assumes a single subgroup per school, two 

years of student scores (Time 1 and 2), and cut scores on a vertical scale. 

 
 

Classification Definition Abbreviations for Percentages  

Student-Level Classifications 

 Proficient If X2 ≥ c2. Percentage of Proficient Students (PPS) 

 “On Track” to proficiency in 1 year If X2 < c2 and X1 + 2*(X2 – X1) ≥ c3. Percentage of On Track Students (POT1) 

 “On Track” to proficiency in N years If X2 < c2 and X1 + (N + 1)*(X2 – X1) ≥ cN+2. Percentage of On Track Students (POTN) 

School-Level Classifications   

 Adequate Yearly Progress (AYP) If PPS ≥ AMO. Percentage of AYP Schools (PAYP) 

 Adequate Yearly Growth (AYG) If PPS < AMO and PPS + POT ≥ AMO. Percentage of AYG Schools (PAYG) 

Legend:  Xt is a student score at Time t. 

 ct is the proficiency cut score at Time t.  
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Figure 1. Theoretical growth framework with shaded areas indicating students “on track” to 

proficiency in 1, 2, and 3 years. 
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Figure 2. Theoretical dependence of the percentage of “on track” students on cut-score choice 

and time horizon to proficiency. 
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Figure 3. Empirical dependence of the percentage of “on-track” students on cut-score choice and 

time horizon to proficiency. 
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Table 2. Patterns of percentages of proficient students across grades, from decreasing rigor to 

equal percentages to increasing rigor across grades. 

 
 

Change Time 1 Time 2 Time 3 Time 4 
+10%pts 45% 55% 65% 75% 
+8%pts 48% 56% 64% 72% 
+6%pts 51% 57% 63% 69% 
+4%pts 54% 58% 62% 66% 
+2%pts 57% 59% 61% 63% 
0%pts 60% 60% 60% 60% 
-2%pts 63% 61% 59% 57% 
-4%pts 66% 62% 58% 54% 
-6%pts 69% 63% 57% 51% 
-8%pts 72% 64% 56% 48% 
-10%pts 75% 65% 55% 45% 
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Figure 4.  Theoretical dependence of “on track” students on the articulation of standards as 

indexed by the change in proficiency rates by grade, ordered from decreasing to increasing rigor. 
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Figure 5.  Empirical dependence of “on track” students on the articulation of standards as 

indexed by the decrease or increase of proficiency rates across grades. 

 

0%

5%

10%

15%

20%

25%

-10%-8%-6%-4%-2%+0%+2%+4%+6%+8%+10%

Change in Percentage of Proficient Students Per Year (%pts)

Pe
rc

en
ta

ge
 o

n 
Tr

ac
k

2 Years
1 Year

 



Growth Models and Cut Scores 39

Figure 6. The empirical dependence of the percentage of “growth” schools on cut-score rigor 

with a set AMO and an AMO that has been raised 5 percentage points.  The figure shows results 

for a time horizon of 2 years and a minimum grade size of 30. 
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Figure 7. The empirical dependence of the percentage of “growth” schools on cut-score rigor 

with two fixed AMOs of 50% and 70%.  An illustration of a state with 65% proficiency is 

referenced. 
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