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Abstract
Background: Like microarray-based investigations, high-throughput proteomics techniques
require machine learning algorithms to identify biomarkers that are informative for biological
classification problems. Feature selection and classification algorithms need to be robust to noise
and outliers in the data.

Results: We developed a recursive support vector machine (R-SVM) algorithm to select
important genes/biomarkers for the classification of noisy data. We compared its performance to
a similar, state-of-the-art method (SVM recursive feature elimination or SVM-RFE), paying special
attention to the ability of recovering the true informative genes/biomarkers and the robustness to
outliers in the data. Simulation experiments show that a 5 %-~20 % improvement over SVM-RFE
can be achieved regard to these properties. The SVM-based methods are also compared with a
conventional univariate method and their respective strengths and weaknesses are discussed. R-
SVM was applied to two sets of SELDI-TOF-MS proteomics data, one from a human breast cancer
study and the other from a study on rat liver cirrhosis. Important biomarkers found by the
algorithm were validated by follow-up biological experiments.

Conclusion: The proposed R-SVM method is suitable for analyzing noisy high-throughput
proteomics and microarray data and it outperforms SVM-RFE in the robustness to noise and in the
ability to recover informative features. The multivariate SVM-based method outperforms the
univariate method in the classification performance, but univariate methods can reveal more of the
differentially expressed features especially when there are correlations between the features.
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Background
Accurate classification of patients with complex diseases
such as cancer is crucial for successful treatment of the dis-
eases. High-throughput proteomics techniques based on
mass spectrometry (MS) have made it possible to investi-
gate proteins over a wide range of molecular weights in a
style similar to gene expression studies with DNA micro-
arrays. The advancement of these techniques has gener-
ated many analytic challenges, among which a central task
is to discover 'signature' protein profiles specific to each
pathologic state (e.g. normal vs. cancer) or differential
profiles between experimental conditions (e.g drug
responses) from high-dimensional data [1]. The tech-
nique of Surface Enhanced

Laser Desorption/Ionization Time-of-Flight Mass Spec-
trometry (SELDI-TOF-MS) [2] has been used in many
recent disease studies [3-5]. Although it is a convenient
method for screening a cohort of samples and finding
promising protein markers from serum or plasma sam-
ples, it suffers from a relatively low sensitivity and specif-
icity and a high noise level [6].

Like in many other biological studies, a key difficulty in
such high-throughput studies is the noisy nature of the
data, which can be caused by the intrinsic complexity of
the biological problems, as well as experimental and tech-
nical imperfections. Another difficulty arises from the
high dimensionality of the data. Similar to the situation in
microarray studies, typically one proteomics investigation
only involves several tens of samples but the measured
points on the mass spectrum can be in the thousands or
more. Even after pre-processing steps such as peak and/or
biomarker detection, the dimensionality is usually still
larger than or comparable to the sample size. This makes
many standard pattern classification algorithms fail. For
those that do work theoretically, there is a high risk of
overfitting due to the small sample size. Thus, there is an
algorithmic need for feature selection in addition to the
biological need of discovering a manageable set of key
molecular factors (genes or biomarkers) behind the dis-
ease. As observed in [7] and other investigations, for
machine learning methods such as support-vector
machines (SVMs) that can work at high-dimensionality,
dimension reduction could still improve the performance
dramatically. However, it should be noted that when val-
idating the performance of a classification algorithm with
feature-selection steps, the feature selection procedure
should also be validated simultaneously to avoid bias in
the assessment. Also, due to the small sample size, the
cross-validation prediction of the algorithm's perform-
ance tends to have a high variance. Thus, we should pay
more attention to properties related to generalization
ability rather than the prediction performance per se. We
suspect that failing to do so may be a reason why good

results published from one investigation may not be
reproduced by other investigations.

Guyon et. al. [7] proposed a SVM-RFE (support vector
machine recursive feature elimination) algorithm to
recursively classify the samples with SVM and select genes
according to their weights in the SVM classifiers. We pro-
posed a method R-SVM with a similar recursive strategy
but used a different criterion to evaluate and select the
most important genes [8], and a correct scheme to esti-
mate the prediction performance. In this paper, we
describe the R-SVM method with a voting scheme for fea-
ture selection and compare its performance with SVM-RFE
on simulation data and two SELDI-TOF-MS datasets, one
on rat liver cirrhosis and another on human breast cancer.
We found that cross-validation prediction performances
of R-SVM and SVM-RFE were nearly the same, but R-SVM
was more robust to noise and outliers in discovering
informative genes and therefore has better accuracy on
independent test data.

R-SVM and SVM-RFE represent typical machine-learning-
based multivariate approaches for the task. Conventional
univariate methods are also frequently used for feature
selection and classification. We compared the SVM-based
methods with the weighted-voting (WV) method [9] on
simulation studies, and discussed their respective
strengths and weaknesses. Although our real applications
were conducted on MS data, the method can be applied
broadly to microarray data and other high-throughput
genomics and proteomics data.

Results and discussion
Simulated data sets
We generated three types of simulated data to investigate
the characteristics of the feature selection and classifica-
tion methods. The basic simulation model for the first two
types of data is as follows: Each sample contains simu-
lated expression values of 1000 genes. Among all the
genes, 300 are "informative" ones, each following inde-
pendently the Gaussian distribution N(0.25, 1) for class 1
and N(-0.25, 1) for class 2. The rest 700 "uninformative"
genes follow independently N(0,1) for both classes. For
each simulation experiment, we generated a training set of
100 samples (50 for each class) and an independent test
set of 1000 samples (500 for each class). The two types of
simulated data were generated by adding noises to this
general model in different ways. The first type (Data-G)
mimics the situation where some of the gene expressions
in some samples are outliers. For the informative genes,
we randomly chose 5% of expression values in all samples
as outliers by making them to follow N(0.25, 100) for the
class-1 sample and N(-0.25, 100) for the class-2 sample.
The second type of simulated datasets (Data-S) is con-
structed to contain 5% "outlier samples," which were
Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:197 http://www.biomedcentral.com/1471-2105/7/197
made by randomly picking 5% of the samples and
increasing the standard deviation of every gene in these
samples by 10 fold. We did 100 simulations for each type
of the data (Data-G and Data-S).

The above two simulation models are over-simplified in
many aspects. To mimic more realistic situations, we gen-
erated the third type of simulated data based on a real
human breast cancer microarray dataset obtained with
Affymetrix U133 Plus 2.0 microarrays. The dataset origi-
nally contains 78 estrogen receptor positive (ER+) cases
and 54 estrogen receptor negative (ER-) cases. The data
were normalized by the GCRMA algorithm [10,11], and
the gene (probe-set) expression levels were log2-trans-
formed. According to our previous experiments as well as
published work (e.g., [12,13]), the ER status is one of the
most predominant partitioning factors for molecular clas-
sification of breast cancer. We therefore took the differen-
tially expressed genes between the two classes as "truly
informative" genes. We extracted the genes whose average
differences between the two classes are greater than 0.3,
which gave us 16,722 genes (if we use t-test tofind the dif-
ferentially expressed genes, there will be 24,414 genes
come out with FDR-adjusted p-value cutoff 0.05). From
these genes, we randomly selected 300 to be the "inform-
ative genes" in the simulation dataset. Then, we randomly
took another 700 genes and "force" them to be unin-

formative by permuting their sample labels. By combin-
ing the "informative genes" and "uninformative genes",
we obtained a simulated dataset in which there are 300
informative genes and 700 uninformative genes. The cor-
relations among the informative genes and among the
uninformative genes are the same as those in the original
dataset. From this dataset, we randomly took 45 ER+ and
30 ER- samples as the training set, and used the remaining
samples as independent test set. We generated 100 sets of
data by this strategy. We call this type of datasets Data-R
in our experiments.

Real SELDI proteomics data sets
We applied the two SVM-based methods to two real
SELDI-TOF-MS proteomics datasets. The first dataset is
from a rat model used to discover serum biomarkers of
liver cirrhosis [14]. It contains serum protein profiles of
26 normal rats and 69 thioacetamide-induced liver cirrho-
sis rats. The biomarker function of Ciphergen ProteinChip
software 3.0 detected 93 biomarkers from the raw data.
They were normalized according to their mean values,
small values were truncated to 1 and all biomarkers were
log transformed. The second proteomics dataset came
from a human breast cancer study. We obtained plasma
samples from 75 breast cancer patients and 61 healthy
women [15]. The plasma samples were pH-fractionated
and analyzed by SELDI-TOF-MS. The Ciphergen Protein-

Table 1: Comparison of R-SVM and SVM-RFE on Data-G (with gene outliers)

Levela ReduceSVb P(sv-diff)c ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g

800 4.01% 1.81E-42 -7.70% 4.72E-03 -3.90% 1.71E-39
600 5.77% 1.74E-49 -2.50% 4.64E-01 -1.70% 5.21E-15
500 6.83% 2.75E-51 -4.00% 1.62E-01 -0.30% 0.079189
400 8.35% 3. 26E-60 2.80% 3.48E-01 1.10% 4.48E-06
300 9.33% 3.83E-58 7.40% 3.65E-02 3.70% 1.77E-31
200 8.22% 1.28E-48 19.20% 6.36E-09 6.30% 5.79E-44
150 8.55% 1.51E-53 19.50% 1.16E-08 7.10% 9.76E-46
100 4.97% 6.20E-22 11.90% 1.83E-04 6.00% 6.43E-40
90 5.84% 1.66E-27 13.70% 4.20E-06 4.60% 1.07E-30
80 5.17% 8.20E-29 12.40% 4.14E-06 4.50% 7.12E-29
70 4.14% 1.46E-27 8.50% 4.77E-04 3.80% 1.05E-24
60 3.10% 1.23E-20 10.20% 3.14E-05 3.40% 4.99E-24
50 2.27% 2.01E-15 10.20% 4.11E-06 2.90% 2.37E-21

a Level: The number of features selected in each recursive step. With all of the 1000 features, there is no difference between R-SVM and SVM-RFE 
because no feature selection happened.
b ReduceSV: Relative reduction in the mean number of support vectors used by R-SVM comparing to that by SVM-RFE, calculated as: (average 
#SVSVM-RFE - average #SVR-SVM)/(average #svSVM-RFE).
c P(sv-diff): The p-value of the observed difference in numbers of SVs, by paired t-test.
d ReduceTest: Relative reduction in the mean test error rates of SVM models with R-SVM-selected features comparing to that with SVM-RFE 
selected features, calculated as: (average TestErrorSVM-RFE - average TestErrorR-SVM)/(average TestErrorSVM-RFE).
e P(test-diff): The p-value of the observed difference in test error rates, by paired t-test.
f ImproveRec: Relative improvement in the proportion of recovered informative genes by R-SVM than that by SVM-RFE, calculated as: (average 
#RECR-SVM - average #RECSVM-RFE)/(average #RECSVM-RFE), where #REC is the number of recovered true informative genes with the method stated 
in the subscript.
g P(rec-diff): The p-value of the observed difference in proportion of recovered true informative genes, by paired t-test.
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Chip software 3.1 detected 98 biomarkers, which were
preprocessed in the same way as for the rat liver cirrhosis
data.

Comparison of R-SVM with SVM-RFE on simulated 
datasets
We first compared the performance of R-SVM to SVM-RFE
on Data-G and Data-S. For each of these datasets, we
applied R-SVM and SVM-RFE to perform gene selection,
built SVM models on training data with selected genes,
and tested the models on the independent test data.
Experiments were done 100 times for each data type. The
following aspects of performances are inspected at each
level of gene selection: number of SVs (support vectors,

see Method) used in the SVM model, test error, the per-
centage of true informative features recovered in the selec-
tion, and for Data-S the number of outlier samples used as
SVs. Tables 1 and 2 show the relative improvements of R-
SVM over SVM-RFE with regard to these factors averaged
on the 100 experiments for each data type, as well as the
p-values (by paired t-test) of the differences. The cross-val-
idation (CV) errors on training sets are similar between
the two methods so the comparison is not shown in the
tables (Slight improvement of R-SVM over SVM-RFE can
be observed on average errors but the improvement is not
significant).

Table 2: Comparison of R-SVM and SVM-RFE on Data-S (with sample outliers)

Levela ReduceSVb P(sv-diff)c ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g Redu-
ceOSVh

P(osv-diff)i

800 3.25% 4.49E-41 -65.19% 5.65E-36 -10.14% 3.36E-75 50.37% 5.97E-35
600 5.80% 1.90E-57 -70.27% 3.04E-35 -7.14% 5.18E-56 72.28% 1.10E-49
500 7.02% 8.20E-63 -59.63% 1.81E-37 -5.13% 3.37E-39 80.54% 1.17E-56
400 8.26% 1.68E-67 -41.43% 8.31E-25 -2.57% 4.53E-12 89.04% 2.51E-64
300 7.72% 1.20E-58 -19.14% 2.18E-13 0.75% 4.92E-02 93.44% 7.46E-65
200 7.21% 4.54E-51 -6.53% 2.56E-04 4.00% 7.15E-16 93.91% 1.47E-61
150 9.13% 1.29E-71 2.63% 1.20E-01 6.47% 8.41E-23 93.59% 6.27E-61
100 8.30% 1.42E-64 5.56% 8.04E-04 7.69% 3.50E-22 92.44% 1.33E-61
90 8.36% 2.01E-72 4.31% 1.15E-02 6.99% 8.74E-19 91.37% 2.60E-61
80 8.01% 6.63E-71 4.45% 1.99E-02 6.99% 9.33E-18 90.26% 2.65E-60
70 7.17% 1.29E-67 6.59% 3.78E-04 7.52% 2.80E-16 88.56% 7.55E-62
60 6.67% 2.65E-65 6.16% 2.32E-03 7.27% 5.72E-13 86.38% 2.60E-62
50 5.82% 1.08E-58 7.70% 1.34E-04 7.42% 3.71E-12 83.82% 1.23E-61

a,b,c,d,e,f,g same as in Table 1.
h ReduceOS V: Relative reduction in the number of outlier support vectors (the outlier samples being taken as support vectors) in R-SVM 
comparing to that in SVM-RFE, calculated as: (average #OSVSVM-RFE - average #OSVR-SVM)/(average #OSVSVM-RFE), where #OSV denotes the number 
of outlier samples being taken as support vectors by the method mentioned in subscript.
i P(osv-diff): The p-value of observed difference in OVS, by paired t-test.

Table 3: Comparison of R-SVM and SVM-RFE on Data-R

Levela ReduceSVb P(sv-diff)c ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g

800 15.35% 1.24E-53 -3.59% 1.26E-05 -3.60% 1.50E-23
600 18.65% 3.14E-56 -7.06% 4.09E-04 2.69% 2.20E-09
500 19.58% 7.71E-58 -6.46% 1.79E-03 9.18% 1.24E-37
400 21.07% 1.80E-63 -2.74% 3.22E-05 17.32% 4.25E-59
300 22.51% 5.12E-67 -4.64% 1.26E-05 24.14% 5.43E-65
200 22.16% 9.38E-68 -0.93% 1.83E-04 30.64% 2.25E-71
150 21.78% 4.57E-64 -3.44% 8.74E-04 29.14% 5.86E-71
100 21.01% 3.21E-57 0.31% 3.22E-05 29.95% 7.74E-69
90 22.57% 1.88E-60 -2.52% 3.52E-03 27.51% 9.74E-66
80 22.88% 1.67E-65 1.84% 7.85E-05 27.92% 4.03E-62
70 21.42% 2.96E-59 0.59% 4.09E-04 27.16% 1.15E-58
60 20.20% 1.64E-55 6.16% 1.83E-04 26.83% 2.55E-60
50 18.67% 4.40E-52 4.23% 8.74E-04 25.89% 9.63E-53
40 15.37% 5.66E-46 8.99% 4.69E-06 25.39% 1.09E-55
30 11.85% 6.90E-33 9.61% 1.67E-06 24.19% 2.07E-45
20 7.87% 2.19E-18 11.43% 3.22E-05 20.86% 1.09E-34

a,b,c,d,e,f,g same as in Table 1.
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It can be seen on both Data-G and Data-S that at most of
the selection levels, especially at those lower levels (with
fewer selected genes), the number of SVs used by R-SVM
is 5 %~8 % fewer than that of SVM-RFE, indicating the
better generalization ability of R-SVM. One can also see
that at the same selection level, R-SVM recovers signifi-
cantly more of the informative genes than SVM-RFE, and
the improvement is about 3 %~7 % at lower selection lev-
els. These two factors can explain the observation that
independent test errors of R-SVM were significantly lower
than that of SVM-RFE (by 5–10%) at lower selection lev-
els. On the Data-S with outlier samples, R-SVM also shows
a better ability to avoid taking the outlier samples as SVs

(R-SVM reduces up to 94% of the outlier SVs than SVM-
RFE).

As simulation models for Data-G and Data-S are too sim-
plistic, we compared on Data-R and the results are shown
in Table 3. It can be seen that the improvement of R-SVM
over SVM-RFE with regard to both the number of SVs used
and the number of informative genes recovered are more
significant. In terms of testing errors on the independent
data, SVM-RFE outperformed R-SVM initially at high
selection levels. When fewer genes were selected, R-SVM
gradually out-raced SVM-RFE, and the improvement of R-
SVM over SVM-RFE became more obvious as the number

Table 4: The CV results on the rat cirrhosis data

Levela R-SVM SVM-RFE

CV2b AveSV c CV2b AveSV c

93 4.2% 14.75 4.2% 14.75
80 4.2% 11.91 4.2% 14.74
70 4.2% 9.95 4.2% 14.73
60 3.2% 9.22 4.2% 13.91
50 3.2% 9.03 4.2% 13.82
40 3.2% 9.02 4.2% 14.65
30 3.2% 8.95 4.2% 13.65
20 3.2% 8.93 4.2% 9.98
18 4.2% 8.14 4.2% 9.97
16 4.2% 8.08 3.2% 7.26
15 4.2% 7.60 3.2% 7.15
14 4.2% 7.54 3.2% 7.94
13 6.3% 7.58 4.2% 7.98
12 6.3% 7.41 4.2% 8.05
11 6.3% 7.65 4.2% 8.02
10 6.3% 7.64 3.2% 9.83
9 5.3% 6.50 3.2% 8.83
8 4.2% 5.97 4.2% 7.01
7 4.2% 6.73 4.2% 6.05
6 4.2% 5.98 3.2% 5.97
5 5.3% 5.94 4.2% 5.05

a Level: The number of features selected in each recursive step.
b CV2: Total cross-validation error rate (CV2 error rate).
c AveSV: Average number of support vectors used in the cross-validations at each level.

Table 5: The top 6 R-SVM-selected biomarkers with their t-test and ROC statistics

m/z (Da) t-test ROC curve

ranka t-statistics p-value AUC AUC seb

3526.68 1 11.916 2.05E-19 0.969 0.024
3548.26 3 11.234 4.02E-18 0.955 0.029
1754.12 7 9.784 2.55E-15 0.936 0.034
4195.07 15 5.341 8.46E-07 0.821 0.043
8211.04 30 3.660 4.51E-04 0.712 0.063
4912.63 34 3.339 1.28E-03 0.696 0.057

a Rank by t-statistics
b Standard error of the AUC (area under curve).
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of selected features decreased. This tendency was also
observed on Data-G and Data-S. It is likely due to the fact
that R-SVM selected more informative features and that it
is more important to include truly informative ones when
fewer features are used in a classifier.

Application on the rat liver cirrhosis data
We applied R-SVM and SVM-RFE to the two real SELDI-
TOF-MS datasets. Table 4 shows the results on the rat liver
cirrhosis data. Since there is no independent test set and
there is no standard answer about the true informative
features, we only list the cross-validation errors and the
number of SVs in Table 4. It can be seen that at some selec-
tion levels R-SVM achieved smaller CV errors, while at
others SVM-RFE gave smaller CV errors, but the differ-
ences are not significant. However, at most levels, R-SVM
uses fewer SVs than SVM-RFE. (Note that in Tables 4 and
6, the number of SVs is the average among the cross-vali-
dation experiments, different from that in Tables 1 and 2.)

The top 6 biomarkers selected by R-SVM were reported for
further biological investigation. They are listed in Table 5
along with their t-statistics and ROC statistics. We see that
the top 6 markers are all significantly correlated with the

sample classification on their own, but not necessarily be
ranked at the top according to the univariate criterion.
Among the top 6 biomarkers, the 3,495 Da protein was
down-regulated in the liver cirrhosis rats. On-chip purifi-
cation and tryptic digestion was conducted. Combined
data from PMF (peptide mass fingerprint) and MALDI-
TOF/TOF MS/MS spectra suggested that this 3495 Da pro-
tein shares homology to a histidine-rich glycoprotein
[14]. It has been reported that the mRNA of this gene was
found to be specifically expressed only in liver [16]. We
speculate that down-regulation of histidine-rich glycopro-
tein in cirrhotic liver may be a manifestation of loss of
normal liver function, including secretary pathways upon
treatment with thioacetamide [14].

Application on the human breast cancer data
The results of R-SVM and SVM-RFE on the breast cancer
dataset are listed in Table 6. Error rates and SV numbers
on this dataset were higher than in the rat liver cirrhosis
study, due to the complexity of the problem under study
and individual variations among human individuals.
Still, we found that R-SVM tends to use fewer SVs at most
selection levels and, hence, may have a better generaliza-
bility than SVM-RFE.

Table 6: The CV results on the human breast cancer dataset

Levela R-SVM SVM-RFE

CV2b MeanSVc CV2b MeanSVc

98 28.7% 54.65 28.70% 54.65
88 27.9% 50.10 29.40% 55.25
79 29.4% 49.28 30.10% 52.21
71 29.4% 47.48 30.90% 50.88
63 27.9% 44.65 27.90% 48.42
56 27.2% 42.50 27.90% 46.02
50 27.9% 40.04 26.50% 40.13
45 25.7% 38.65 26.50% 40.25
40 24.3% 37.04 27.90% 34.88
36 23.5% 35.16 27.90% 34.51
32 22.1% 33.26 27.90% 30.75
28 22.8% 32.04 27.20% 27.77
25 22.1% 31.24 30.90% 24.61
22 22.1% 31.15 34.60% 23.93
19 22.8% 32.10 30.10% 26.79
17 25.7% 33.26 29.40% 31.28
15 23.5% 35.68 25.70% 35.10
13 19.9% 37.40 26.50% 42.15
11 22.1% 37.83 25.00% 46.03
9 21.3% 42.01 24.30% 50.18
8 17.6% 44.07 22.10% 49.93
7 23.5% 50.29 20.60% 51.43
6 22.1% 54.73 20.60% 52.39
5 22.1% 57.98 20.60% 52.18
4 22.8% 59.75 25.00% 58.92
3 27.2% 78.90 32.40% 77.46

a,b,c Same as in Table 4.
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The minimal CV error rate (17.6%) is achieved at the 8-
feature level by R-SVM. These 8 markers and their t-statis-
tics and ROC statistics are listed in Table 7. Six of the top
8 R-SVM selected markers are called significant by t-statis-
tics (p-value<0.01; 5 of them with p-value<0.0001). The
top marker, Marker-5, has an AUC (area under the ROC
curve) of only 0.775, but the 8 markers jointly classify
82.4% of all cases correctly. The AUC of the SVM model
built on the R-SVM-selected with 8 markers is 0.928,
much larger than that of the best single marker, Marker-5.
Using direct on-chip sequencing provided by Ciphergen,
one important peptide (Peptide A) was identified and was
selected for further study. Follow-up biological study

showed that this peptide may be an important indicator
of the disease status of breast cancer patients [15].

We also applied the Random Forest (RF) method [17] to
this human breast cancer dataset. With the DecreaseGi-
niDistance criterion [17], we selected the 8 most impor-
tant markers from this data, of which 6 are also among the
8 markers selected by R-SVM. The out-of-bag error
reported by the RF method was 25.7%, which is higher
than the minimal CV error of 17.6% reached by R-SVM.
However, these two error rates are not directly compara-
ble. The out-of-bag error reported by RF is based on a resa-
mpling approach, which makes the effective sample size

Table 7: T-statistics and ROC statistics of the 8 R-SVM-selected markers on the breast cancer data

t-test ROC curve
Markera Rankb t-statistics P-value AUC AUC se

+Marker-5 1 -5.867 3.31E-08 0.775 0.041
+Marker-28 2 -5.229 7.68E-07 0.745 0.043
Marker-29 3 5.169 9.29E-07 0.708 0.044

+Marker-58 4 -4.911 2.79E-06 0.754 0.043
Marker-74 6 4.103 7.07E-05 0.700 0.044
Marker-81 10 -2.963 3.61E-03 0.626 0.048
Marker-92 52 1.639 0.104 0.638 0.047
Marker- 97 94 0.162 0.872 0.570 0.049

a The biological study based on these and other data will be published elsewhere. Here we use the relative sequential position of the markers on the 
m/z axis to represent them.
b Rank ordered by t-statistics among the 98 markers.
+ Biomarkers corresponds to "peptide A"

Table 8: The comparison of SVM vs. WV on Data-G

Levela ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g

800 36.36% 1.16E-17 1.02% 2.13E-06
600 38.95% 6.74E-17 9.49% 2.14E-62
500 39.51% 8.72E-21 14.82% 3.77E-71
400 44.84% 3.86E-23 20.83% 1.68E-79
300 49.75% 6.86E-25 28.72% 3.48E-86
200 54.22% 2.02E-27 36.75% 3.70E-91
150 54.83% 9.37E-30 36.14% 2.65E-86
100 43.56% 6.63E-25 33.61% 4.42E-75
90 42.35% 1.85E-26 31.09% 4.23E-73
80 37.37% 7.35E-25 29.08% 3.79E-67
70 32.23% 1.20E-20 26.54% 9.22E-63
60 27.79% 1.16E-20 24.39% 1.24E-61
50 23.47% 8.64E-15 21.80% 1.83E-53

a Level: The number of features selected in each recursive step.
dReduceTest: Relative reduction in the mean test error rates of SVM comparing to that of WV, calculated as: (average TestErrorWV - average 
TestErrorR-SVM)/(average TestErrorWV).
e P(test-diff): The p-value of the observed differences in test error rates, by paired t-test.
f ImproveRec: Relative improvement in the proportion of recovered informative genes by R-SVM comparing to that by WV, calculated as: (average 
#RECR-SVM - average #RECWV)/(average #RECWV), where #REC represents the number of recovered true informative genes with the method 
stated in the subscript.
g P(rec-diff): The p-value of the observed difference in proportion of recovered informative genes, by paired t-test.
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of its training set smaller than the full size and, therefore,
causes the estimated prediction error to be biased
upwards. When the sample size is small, the bias of resa-
mpling error without any correction can be large. On the
other hand, although cross validation error by the CV2
scheme (see Method) is unbiased, selecting the minimal
error among multiple levels of feature eliminations may
lead to a slightly over-optimistic estimate. Taking these
two factors together, we conclude that the two tested
methods performed similarly on this dataset.

Comparison with the univariate method
Many researchers believe that it is beneficial to use multi-
variate methods to analyze microarray and proteomics
data as genes usually work in collaborative ways rather
than as independent factors. However, univariate meth-
ods are still useful for identifying differentially expression
features and continue to play important roles in many

applications. Therefore it is worthwhile to compare the
performances of the SVM-based methods with more con-
ventional univariate approaches, of which we take the
weighted-voting (WV) method as a representative in this
work.

Tables 8 and 9 show the comparison of R-SVM and WV on
Data-G and Data-S. It can be seen that R-SVM outper-
formed WV on Data-G in both test accuracy and the recov-
ery of informative genes at all selection levels, and the
improvement is very significant. However, R-SVM was sig-
nificantly inferior to WV in both aspects on Data-S, and
the difference was more obvious when fewer genes are
selected. These observations suggest that R-SVM is more
robust than WV to outlier values spreading randomly in
the dataset, but suffers more when some samples are
entirely corrupted. Indeed, although R-SVM uses the class
means to represent the samples for feature selection, the

Table 9: The comparison of R-SVM vs. WV on Data-S

Levela ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g

800 -12.32% 1.58E-04 -4.01% 8.77E-33
600 -30.90% 1.38E-19 -0.16% 0.482
500 -40.09% 2.98E-32 -0.03% 0.940
400 -48.92% 2.95E-37 -2.21% 1.29E-11
300 -58.87% 1.54E-44 -6.81% 2.56E-35
200 -64.05% 1.72E-48 -13.73% 2.35E-53
150 -60.96% 1.83E-47 -15.52% 2.15E-52
100 -56.41% 2.62E-49 -19.58% 1.29E-57
90 -52.91% 1.58E-42 -19.14% 1.18E-51
80 -50.73% 2.35E-41 -19.08% 1.31E-51
70 -47.11% 4.02E-40 -18.27% 6.03E-47
60 -43.29% 6.80E-38 -17.58% 1.18E-42
50 -36.01% 1.06E-34 -16.35% 1.34E-37

a,d,e,f,g Same as in Table 8.

Table 10: Comparison of R-SVM vs. WV on Data-R

Levela ReduceTestd P(test-diff)e ImproveRecf P(rec-diff)g

800 26.23% 6.15E-11 -14.40% 1.76E-72
600 21.40% 5.51E-08 -20.69% 4.32E-74
500 20.28% 1.12E-09 -22.89% 1.23E-75
400 18.40% 2.70E- 10 -25.16% 2.38E-75
300 14.86% 5.51E-08 -28.52% 1.01E-76
200 18.18% 5.64E-07 -26.47% 3.99E-83
150 13.35% 1.26E-05 -23.87% 4.98E-77
100 13.07% 5.64E-07 -18.37% 1.21E-63
90 13.53% 1.26E-05 -17.91% 1.03E-60
80 15.34% 4.69E-06 -16.69% 1.16E-57
70 12.04% 4.09E-04 -15.49% 4.30E-52
60 12.76% 5.64E-07 -13.95% 4.61E-47
50 9.09% 4.09E-04 -12.68% 3.89E-42
40 8.75% 1.79E-03 -10.50% 1.00E-35
30 8.90% 1.83E-04 -7.77% 2.22E-32

a,d,e,f,g Same as in Table 8.
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standard SVM uses only boundary samples (SVs) in build-
ing the classifiers, thus a few outlier samples can make big
effect on degrading its performance. (On this specific sim-
ulation model, the effect of the outlier samples can be eas-
ily cancelled by taking a normalization step on the
samples.)

Table 10 gives the comparison of R-SVM and WV on Data-
R. It is interesting to note that, unlike on Data-G or Data-
S, R-SVM is superior to WV in terms of test accuracy on
independent test sets, but is inferior to WV in terms of the
number of recovered informative genes. The differences
become smaller when fewer genes were used, but they are
still significant. This phenomenon has not been observed
in the other types of simulated data, and is likely caused
by the fact that some genes in Data-R are correlated as in
real microarray and MS data, whereas the genes in Data-G
and Data-S are independently generated. As a multivariate
method, SVM uses the genes not according to their indi-
vidual differences between the classes, but rather accord-
ing to the collaborative information of multiple genes.
Thus, some correlated genes will not be selected due to the
redundancy of information, even if they are all differen-
tially expressed. This is not a disadvantage for SVM when
the major goal is better classification. However, if the goal
includes discovering all genes that are informative, new
strategies will be needed for improving SVM-like methods
on this aspect.

We should note that all our simulation designs (Data-G,
Data-S, and Data-R) are favorable to univariate methods
since the true underlying classification information is in
the differential expression of individual genes. The mod-
els haven't consider any collaborative effects (not even
additive effects), thus they bias in favor of the single-vari-
able approach a priori. We expect that in more compli-
cated situations when combinatorial effects play major
roles, SVM-based methods will perform even better.

Conclusion
High-throughput genomics and proteomics data open a
new route to the classification of complex diseases.
Machine learning methods for feature selection and clas-
sification have been playing active roles in analyzing such
data. We compared two similar methods, SVM-RFE and R-
SVM, both adopting recursive procedures to select features
according to their importance in SVM classifiers. The
major difference between the two methods is the criteria
used for evaluating the contribution of genes. Although
the two methods did not differ significantly in their cross-
validation performances, it appeared that R-SVM is more
robust to severe noise and outliers and can recover more
informative genes. The successful application of R-SVM
on the rat liver cirrhosis SELDI data and human breast

cancer SELDI data show that the proposed strategy can
help to identify biologically important markers.

We compared R-SVM with a representative univariate
method, the weighted-voting method on simulated data.
Although the comparison is limited in scope (especially,
no combinatorial effects have been simulated in the mod-
els), some interesting insights regarding their respective
strengths and weaknesses are observed. The SVM-based
method performs better in terms of the classification accu-
racy, but univariate methods can reveal more of the differ-
entially expressed individual features. A more systematic
comparative study of the univariate and multivariate
methods can be helpful for better understanding the
nature of the methods and problems.

Availability and requirements
AR code package of the R-SVM method and a Linux-based
executable package are freely available.

Project name: R-SVM (R and Linux versions)

Project home page: http://www.hsph.harvard.edu/bioin
focore/R-SVM.html

Operating systems: R version: Windows XP, Linux; Linux
version: Linux.

Programming languages: R, C/C++

Other requirements: R for the R version; SVMTorch (pro-
vided) for the Linux version

License: free

Methods
Assessing the performance of feature selection
Since an independent test set is not available in many
investigations, cross-validation (e.g., leave-one-out cross-
validation or LOOCV) is often used to assess the accuracy
of classifiers. It should be noted that feature selection
results may vary with even a single-case difference in the
training set when the sample size is small. In some litera-
ture, feature selection steps were external to the cross val-
idation procedures, i.e., the feature selection was done
with all the samples and the cross-validation was only
done for the classification procedure. We call this kind of
cross validation CV1, with examples including [7,9,18-
21]. As pointed out by [22-24], CV1 may severely bias the
evaluation in favor of the studied method due to "infor-
mation leak" in the feature selection step. For example, in
a pilot study, we generated 100 samples with 1000 fea-
tures for each sample, all coming invariably from the
Gaussian distribution N(0,1). We randomly assigned the
samples into two classes ("fake-classes"). Since the data
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set is totally non-informative, the faithful CV error should
be around 50% no matter what method is used. But by
CV1 scheme we could achieve a CV error as low as 0.025
after recursive feature selection, which shows that the bias
caused by the improper cross-validation scheme can be
surprisingly large. A more proper approach is to include
the feature selection procedure in the cross validation, i.e.,
to leave the test sample(s) out from the training set before
undergoing any feature selection. In this way, not only the
classification algorithm, but also the feature selection
method is validated. We call this scheme CV2 and use it in
all of our investigations throughout. For the above "fake-
class" data, the error rate evaluated by CV2 was always
around 50% regardless of the specific method used for
feature selection and classification.

The relative importance of features in SVM classifiers
As a powerful and popular multivariate machine-learning
method, SVMs have been widely used in biological classi-
fication problems. The key idea of the SVM [25-27] is to
maximize the margin separating the two classes while
minimizing the total classification errors. The theory and
algorithm of SVM has been described in many papers and
books (e.g., [26-29]), and several sets of SVM codes are
publicly available such as the SVMTorch [30] we use. The
SVM can be extended to its nonlinear forms by using
proper kernels to replace the inner-products. However,
information is usually far from sufficient for reliably esti-
mating nonlinear relations for microarray or MS data. We
therefore use the linear SVM here and take it as a reasona-
ble first-order approximation to the "truth" with our lim-
ited data. The decision function of a linear SVM is:

where x is the gene/protein expression vector of a sample,
xi is that of sample i in the training set (i = 1,2,...,n), yi

∈{+1,-1} is its corresponding class label,  is

the vector of weights of the features, and b is a scalar offset.
The ai 's and b are estimated from the training set. Only

those samples closest to the separating boundary (called
support vectors or SVs) have non-zero ai 's, and therefore

the function f(x) is a linear combination of only the SVs.
For a new sample x, the sign of the decision function f(x)
predicts the class it belongs to, and the absolute value of
f(x) represents how far the sample is from the boundary.
Theoretical investigations show that the proportion of SVs
in the training set reflects an upper bound of the expected
generalization error (error rate of predictions on future
samples) [28].

Our goal is to select a subset of features with the maxi-
mum discriminatory power between the two classes. Since
the feature dimension is large and the sample size is small,
there are usually many combinations of features that can
give zero error on the training data. Therefore, the "mini-
mal error" criterion cannot work. Intuitively, it is desirable
to find a set of features that give the maximal separation
between the two classes of samples. Taking the possible
unbalanced sample size into consideration, we define the
following measure:

where n1 and n2 are the numbers of samples in class 1 and

2. The larger S is, the better separated the two classes are.
Considering (1) and denoting the means of feature j in the

two classes as  and , we get:

where d is the total number of features, and wj is the jth
component of the weight vector w . S is equivalent to the
cosine of the angle between the normal vector of the sep-
aration plane (hyperplane) f(x) = 0 and the vector m+-m-

connecting the two class-means. It is the sum of terms
defined on the single features, so we can define the contri-
bution of feature j in S as

We call sj the contribution factor of feature j. It is not only
decided by the weight wj in the classifier function, but also
decided by the data (the class-means).

An alternative way for measuring the importance of the

features is using the square of weight  as derived in

SVM-RFE by sensitivity analysis [7]. This can be viewed as
using the weighted sums of support vectors in each class
as the representatives, i.e.,

The separation between the two representatives can be
written as
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which can be decomposed into the sum the contributions
of every features:

We note that, in the case where distributions of the two
classes are both high-dimensional Gaussian with identical
covariance matrix ∑, the optimal w is Fisher's linear discri-
minant function of the form w = (m+ - m-)T∑-1. Thus, (4)

corresponds to the individual component of (m+ - m-)T∑-

1(m+ -m-), whereas (7) corresponds to the individual com-
ponent of (m+ - m-)T∑-2(m+ - m-). It thus appears that (7)
may have put too much emphasis on the covariance
matrix implicitly estimated from the observed high
dimensional data. In contrast, our scheme of using class-
means as representatives ties in well with the classical lin-
ear discriminant analysis. Using class-means as represent-
atives of the two classes makes the method less sensitive
to noise and possible outliers, comparing to using only
the few support vectors [31]. A more robust representative
for a class of samples is the class-medians (or medoids in
higher dimensions), as studied in [32]. However, in data-
sets we have tested, we did not observe significant differ-
ences between using medians and means. This is probably
because the distributions of genes are reasonably symmet-
ric so that the medians are close to the means.

Recursive classification and feature selection
To select a subset of features that contribute the most in
the classification, we rank all the features according to sj
defined in (4) and choose the top ones from the list. We
use this strategy recursively in the following procedures:

Step 0. Define a decreasing series of feature numbers d0>
d1> d2 > ... > dk to be selected in the series of selection steps.
Set i = 0 and d0 = d(i.e., start with all features).

Step 1. At step i, build the SVM decision function with cur-
rent di features.

Step 2. Rank the features according to their contribution
factors sj in the trained SVM and select the top di+1 features
(eliminate the bottom di – di+1 features).

Step 3. Set i = i+1. Repeat from Step 1 until i = k.

This is an implementation of the backward feature elimi-
nation scheme described in pattern recognition textbooks
(e.g., [33]) with criteria defined on SVM models at each
feature-selection level. It should be noted that this scheme
is suboptimal as it does not exhaustively search in the
space of all possible combinations. Our choices of the
number of iterations and the number of features to be
selected in each iteration are very ad hoc. Although differ-
ent settings of these parameters may affect the results, we
have observed that, for most cases when the two classes
can be reasonably separated with the expression data, the
classification performances achieved with different set-
tings were very close to each other, and the majority of fea-
tures ranked at the top positions were also very stable.

We follow the CV2 scheme to estimate the error rate at
each level. In cross-validation experiments, different train-
ing subsets generate different lists of features (although
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Workflow of the R-SVM algorithm.
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many or most of them overlap in usual experiments). A
frequency-based selection method is adopted to decide
the lists of features to be reported [34]. That is, after the
recursive feature selection steps on each subset, we count
at each of the di levels the frequency of the features being
selected among all rounds of cross-validation experi-
ments. The top di most frequently selected features are
reported as the final di features (called the top features).

In most situations, CV2 errors usually follow a U-shaped
curve along the selection steps (feature numbers). Finding
the minimal number of features that can give the minimal
CV2 error rate is often desirable for real applications.
Another realistic consideration is the limited ability of fol-
low-up biological investigations on the selected features.
As a compromise, we decide the final number of features
to be reported in an experiment by considering both the
error rates and the limitation of follow-up biological
investigations. For example, in our proteomics applica-
tions, we chose to report the number of features that is less
than 10 and gives the minimum CV2 error rate for less
than 10 features. The entire workflow is depicted in Figure
1; we call this whole scheme R-SVM (recursive SVM).

The SVM-RFE method

We noted that the original SVM-RFE [7] ranked the genes
only once using all samples, and used the top ranked
genes in the succeeding cross-validation for the classifier.
This is a typical CV 1 scheme which will generate a biased
estimation of errors. In order to compare SVM-RFE with
the proposed R-SVM algorithm fairly, we wrote our own
version of SVM-RFE following the same workflow of R-
SVM with the correct cross-validation scheme and the fre-
quency-based selection method, and using the criterion

 instead of sj to sort genes.

The weighted-voting method
The basic idea of the weighted voting method by Golub et
al [9] is closely related to the two-sample t-statistics. First,
one defines the "correlation" between the expression val-
ues of a gene g to the classes

cg = [µ1(g) - µ2(g)]/[σ1(g) + σ2(g)], (8)

where [µ1(g), σ1(g)] and [µ2(g), σ2(g)] denote the means

and standard deviations of the expression levels of the
gene for the samples in class 1 and class 2, respectively.
The larger the absolute value |cg| is, the more important

the gene is for predicting the class memberships. The
genes are ranked by their |cg|'s and the top ones are

selected. The class predictor is trained on the set of train-
ing samples with the selected genes. For predicting the

membership of a new sample x with expression xg of gene

g, the vote of gene g is vg = cg (xg - bg) where bg = [µ1(g) +

µ2(g)]/2. A positive vote means a vote for class 1 and a

negative vote is for class 2. The sign of the total vote

 is used as the final predictor.
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