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 – The nano-Thermal Transport Array is a silicon-based micromachined device 

for measuring the thermal properties of nanoscale materials in a high-throughput 

methodology. The device contains an array of thermal sensors, each one of which 

consists of a silicon nitride membrane and a tungsten heating element that also serves as a 

temperature gauge. The thermal behavior of the sensors is described with an analytical 

model. The assumptions underlying this model and its accuracy are checked using the 

finite element method. The analytical model is used in a data reduction scheme that 

relates experimental quantities to materials properties. Measured properties include 

thermal effusivity, thermal conductivity, and heat capacity. While the array is specifically 

designed for combinatorial analysis, here we demonstrate the capabilities of the device 

with a high-throughput study of copper multi-layer films as a function of film thickness, 

ranging from 15 to 470 nm. Thermal conductivity results show good agreement with 

earlier models predicting the conductivity based on electron scattering at interfaces. 

The thermal transport properties of nanoscale materials can differ significantly 

from their bulk counterparts [1,2]. When the microstructural length scale of a material is 

comparable to the mean free path of the phonons and electrons responsible for thermal 

transport in that material, surfaces and interfaces start to influence overall thermal 

transport. This effect has become increasingly important, as nanotechnology has pushed 

device design below the applicable scales of bulk materials properties. In devices such as 

integrated circuits or micro-electro-mechanical systems, thermal transport can play a 

significant role in function and failure. Beyond technological considerations, the study of 

thermal properties at the nano-scale presents interesting fundamental questions into the 
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interaction of heat transfer and microstructure at these small length scales, including 

thermal conductivity across and parallel to interfaces [3]. 

 

Along with length scale, thermal properties of materials also vary with 

composition and processing conditions [4]. Extensive studies of these considerations 

have been performed for bulk materials in the past, but few studies have been performed 

on nanoscale materials systems. A high-throughput measurement technique specifically 

applicable to nanoscale materials would be helpful in remedying this situation. Such a 

technique could be used to quickly map the thermal transport properties of very small 

quantities of materials as a function composition or processing conditions, thus 

facilitating design and optimization of nanoscale devices. 

 

Thin-film heat transport metrology has improved significantly in recent years. 

Through-plane techniques such as 3-omega, time-domain thermoreflectance, and 

scanning optical thermometry can be used in a high-throughput methodology, but have 

limited in-plane applicability [5,6]. The most promising in-plane methods rely on 

membrane structures that constrain heat flow in the plane [7-9]. Until now, this class of 

instruments has seen no high-throughput thermal conductivity measurement application. 

Many of the membrane-based techniques are not compatible with high-throughput 

methods because they involve multiple thermal cells and/or numerous thermometers. The 

3-omega method has been used to measure in-plane thermal conductivity, but the 

technique requires two heating elements of differing widths for each measurement, 

reducing the high-throughput applicability of this approach [10]. More recently the 3-

omega method has been used to measure the thermal conductivity and heat capacity of 

silicon nitride and nickel titanium membranes. The approach used for these 

measurements requires multiple thermometers and up to 16 electrical connections, 

making it inconvenient for high-throughput application [11]. 

 

In the following article, we present an instrument designed to measure the in-

plane thermal conductivity of nanoscale films and coatings with a high-throughput 
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methodology. The nano-thermal transport array (nTTA) is a micromachined array of 

thermal sensors, so called because it uses a high-throughput approach to measuring heat 

transport in thin film material systems. An analytical, one-dimensional, transient heat 

transfer model is used to optimize the dimensions of each sensor, define the measurement 

range, and reduce measured data to the desired material properties. A finite element 

model (FEM) is used to verify the analytical model. Direct effusivity measurements of 

Si3N4 membranes and Si3N4/Cu multilayer-membranes as a function of film thickness, 

and calculated thermal conductivity measurements, demonstrate the capabilities of the 

nTTA. 

 

The nTTA device consists of a substrate with a number of micromachined thermal 

sensors. The thermal sensors are arranged in a 5x5 array to facilitate combinatorial 

sample preparation (Fig. 1). When a thin-film sample with an in-plane composition or 

thickness gradient is deposited on this substrate, it is essentially discretized at each 

thermal sensor allowing the simultaneous measurement of 25 samples with unique 

composition or thickness. 

 

The design and operation of the thermal sensors is similar to the nano-calorimetric 

cells developed by Allen and colleagues [12-15], but optimized for sensitivity to heat 

loss. Each thermal sensor consists of a thermistor on an electrically insulating ceramic 

membrane supported by the substrate (Fig. 2(a), (b)). The thermistor is fabricated from an 

electrically conductive film and serves both for measuring temperature and for heating 

the sample. Samples to be measured form a continuous film across the membrane of each 

sensor. Electrically insulating samples are deposited on the front-side of the membrane 

while conductive samples are deposited on the backside of the membrane. 

 

Referring to the schematic in Fig. 2(a), the long straight line down the center of 

the membrane is the heating element, the metal lines connected to the heater are the 
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voltage probes, and the portion of the heating element between the voltage probes is the 

thermistor. A current passed through the heating element heats the membrane along its 

centerline. The local temperature change is determined from the resistance of the 

thermistor, which is evaluated in a four-point measurement. As the thermistor heats, a 

temperature gradient develops in the membrane resulting in heat loss. The thermal 

properties of the membrane are determined from the power input and temperature history 

of the thermistor before a steady state is reached, i.e., they are evaluated from the 

transient behavior of the sensor. As will be discussed later, this approach has some 

benefit over techniques relying on the steady state in terms of improved temperature 

uniformity within the sensor. 

 

Conservation of energy relates the electrical power dissipated in the thermistor to 

the thermal energy stored locally and the heat lost to the environment. The power 

dissipated is determined experimentally from the current supplied to the thermistor and 

the potential drop between the voltage probes. The current and the potential drop also 

provide the resistance of the thermistor, which is calibrated to temperature. The 

temperature history of the thermistor, thermal properties of the materials, and the 

geometry of the thermal sensor determine the energy stored and lost. The sensor array 

contains both sensors with narrow and wide thermistors. At moderate temperatures the 

heat loss from narrow thermistors is dominated by heat transfer from the thermistor to the 

membrane, and as a result the temperature response of the thermistor is a strong function 

of the thermal transport properties of the membrane. Thermal modeling is used to relate 

power and temperature to the specific heat and effusivity of the membrane. Wide 

thermistors (rightmost column of thermistors in Fig. 1) are paired with the neighboring 

narrow thermistors in a measurement scheme to decouple radiation and conduction losses 

and to facilitate emissivity measurements. Vacuum conditions eliminate convection 

losses and provide a chemically inert testing environment. 

 

Two measurements are required to extract the thermal properties of the sample 

film: One reference measurement on the bare thermal cell and one on the cell with the 

sample film. The reference measurement characterizes the heat loss through the bare 
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membrane, while the cell with sample film provides effective thermal properties for the 

ceramic/sample bilayer membrane. Combining the results of both measurements allows 

determination of the sample thermal properties. A wide range of samples can be 

deposited and measured as long as they do not fracture the membranes due to high 

stresses. 

 

Materials chosen for the nTTA device are based on the functional requirements 

placed on each structure, cost and fabrication knowledge base. The substrate is made of 

silicon, chosen because of the availability of relatively low-cost and high-quality wafers. 

Silicon also has established anisotropic etching procedures for forming cavities. The 

ceramic membrane is made of Si3N4, selected because of its electrically insulating 

properties and a demonstrated ability to form thin membranes. The thermistor is made of 

tungsten, because of its relatively large temperature coefficient of resistance and its small 

resistivity, which are beneficial to measurement sensitivity [13]. Also, tungsten has a 

very high melting point, so that the material has excellent thermal stability compared to 

conductors with lower melting temperatures. The electrical leads and contact pads on the 

substrate are made of copper to reduce the resistance of the lead lines and to facilitate 

contact to the device. The high-temperature stability of nTTA materials means that the 

device is compatible with high-temperature sample fabrication methods. Specific 

dimensions of the nTTA device can be found in Table 1. 

 

This section is focused on the derivation of the thermal model that describes the 

sensor. Much of the detail of the modeling consists of formulating the heat flow in the 

membrane. To accomplish this task we consider a control volume CV. The CV is defined 

by the volume of the thermistor and the volume of the membrane (including any sample) 

directly below the thermistor (Fig. 3). The CV is bounded by the two xz-planes located at 

the edges of the heating element, the two yz-planes at the voltage probes, and the two xy-

planes at the top and bottom free surfaces of the thermal cell. 
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The electrical power dissipated in the thermistor, P, is partly stored as internal 

energy in the CV U, and partly lost to the environment by conduction and radiation, Q: 

 P = U + Q. (1) 

The energy storage rate is 

 U = cP
T

t
dV

CV

, (2) 

where  is the density, cP is the specific heat, T is the temperature, t is time and V is the 

volume. The total energy loss to the environment Q, is decomposed as, 

 Q =Qx +Qy +Qz , (3a) 

 Qx = 2 kx
T

x
dAx , (3b) 

 Qy = 2 ky
T

y
dAy , (3c) 

 Qz = 2 CV (T 4 T0
4 ) dAz , (3d) 

where x, y, and z represent the respective directions of the heat flow. Physically, Qx 

represents the conduction losses at the ends of the thermistor, Qy refers to the conduction 

losses into the membrane, and Qz represents the radiation losses from the top and bottom 

free surface of the CV. Within the definition of these terms, k is the thermal conductivity, 

 is the emissivity,  is the Stefan-Boltzmann constant, T0 is the temperature of the 

environment, and A is the respective cross-sectional area. The factor of two in each term 

arises from the symmetry of the CV. Convection losses are neglected because the 

measurements are performed in vacuum. 

 

The relations expressed in Eqs. (2) and (3) can be simplified significantly. Since 

the physical length scale in the z-direction is much smaller than a typical diffusive length 

scale, the temperature is uniform in this direction. Conversely, in the x-direction the 

thermal diffusion length in a typical experiment is much smaller than the distance from 

the voltage probes to the substrate. Therefore, significant temperature gradients are 

constrained to the inactive portions of the heater; the temperature of the active portion of 
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the heater (i.e. the thermistor) can be considered uniform in the x-direction. This transient 

temperature profile is in contrast to steady-state hot strip techniques, where temperature 

variation along the heater can be significant. Finally, we assume that temperature 

variation in the y-direction is small within the CV, and confirm this with finite element 

modeling later in the paper. From these assumptions, the Qx term vanishes while the 

energy storage rate and the radiation loss reduce to U = CP df [t]/dt  and 

Qz = 2Az CV (( f [t]+ T0)
4 T0

4 ) , respectively. Here CP is the total heat capacity of the 

CV (including sample when applicable) and f [t] represents the average temperature 

change of the heater, f [t] = TAve T0, as a function of time. Finally, since Qy must be 

continuous across the CV-membrane boundary, this term can be rewritten as 

Qy = 2AM kM TM y , where the subscript M denotes membrane parameters and the 

membrane temperature gradient is evaluated at the edge of the heating element. 

Substituting the expressions for U, Qy, and Qz into Eq. (1) results in 

 P = CP r[t] 2AM kM
TM
y

+ 2Az CV (( f [t]+ T0 )
4 T0

4 ). (4) 

Here r[t] is the heating rate of the CV, AM is the cross-sectional area of the membrane, kM 

is the thermal conductivity of the membrane, Az is the emitting surface area of the CV, 

and CV is the effective emissivity of the CV. The emissivity CV is an effective value 

because the top and bottom surfaces of the CV are made of different materials with 

different emissivity values. Equation (4) is not yet explicit in terms of the relevant 

thermal parameters because the temperature gradient in the membrane cannot be 

measured directly and it depends on both kM and the volumetric heat capacity of the 

membrane (  cP)M. 

 

To determine the temperature gradient in the membrane, we solve the one-

dimensional thermal diffusion equation for the temperature profile in the membrane, 

 ( cP )M
TM
t

= kM
2TM
y 2

2 M

hM
(TM

4 T0
4 ) . (5) 

Here M and hM are the emissivity and the thickness of the membrane, respectively. The 

factor of two in the radiation term arises because the membrane radiates from the top and 

bottom surfaces. If we let  = TM – T0, and approximate the radiation term with a linear 
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Taylor expansion about  = 0, then the radiation term becomes (8 M T0
3 /hM ) . By 

letting = kM /( cP )M , and = 8 M T0
3 /hM ( cP )M , Eq. (5) reduces to, 

 
t

=
2

y 2
, (6a) 

with initial and boundary conditions, 

 [y, 0] = 0, [0, t] = f [t], [ , t] = 0. (6b) 

Here the temperature in the membrane is assumed to be initially uniform. The 

temperature at the left boundary (y = 0) evolves as a function of time, while the right 

boundary (y = ) remains fixed at the initial value. Comparing these conditions to the 

physical thermal cell, the initial condition is satisfied by letting the sensor equilibrate 

with its surroundings for an appropriate length of time (on the order of seconds for these 

sensors). The left boundary condition is given by the experimentally measured 

temperature history of the thermistor. The right boundary condition remains valid as long 

as the thermal diffusion length is smaller than the distance to the edge of the membrane. 

The linearization of the radiation term in the membrane is valid as long as the 

temperature difference between the membrane and its surroundings remains appropriately 

low. 

 

To solve Eq. (6), we follow Sneddon’s example for the solution to Eq. (6) without 

the radiation term [16]. Starting with an auxiliary problem, we first solve the case where 

the left boundary condition satisfies [0, t] = f [t’], where t’ is a fixed parameter, i.e., f [t’] 

is a constant. Let *[y,t] be the solution to the auxiliary problem. Applying the Fourier 

sine transform,  

 ,t[ ] =
2

* y, t[ ]sin y[ ]dy
0

, (7) 

to Eq. (6) and taking into account the boundary conditions yields 

 
t

+ ( +
2) [ , t] =

2
f [t']. (8) 

With [ , 0] = 0  from Eq. (6b), Eq. (8) can be solved with a result 
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 [ , t] =
2 f [t']

+
2 (1 e ( +

2 ) t ) . (9) 

Applying the inverse Fourier sine-transform yields the solution of the auxiliary problem 

 *[y, t] =
2 f [t ']

+
2 (1 e ( +

2 ) t ) sin[ y] d
0

. (10) 

Equation (10) represents the solution to Eq. (6a) for the case that *[0, t] is constant. This 

result can be used with Duhamel’s theorem to solve Eq. (6a) when the boundary 

condition is a function of time. According to Duhamel’s theorem [16], the solution for the 

problem with the variable boundary condition, [0, t] = f [t], is related to the solution 

*[y, t] for the fixed boundary condition [0, t] = f [t’] by 

 [y, t] =
t

*[y, t t']
0

t
dt ' . (11) 

Substituting Eq. (10) into Eq. (11) results in, 

 [y, t] =
t

2 f [t']

+
2 (1 e ( +

2 )( t t ' )) sin[ y] d
0

dt '
0

t

. (12) 

Taking the derivative and simplifying gives, 

 [y, t] =
2

f [t ']
0

t
sin[ y] e ( +

2 )( t t ' ) d dt '
0

. (13) 

Using the result from reference [17], 

 sin[ y] e
2 ( t t ' ) d =

4

y e
y 2

4 ( t t ' )

( (t t'))3 / 20
, (14) 

and substituting into Eq. (13), yields, 

 [y, t] = f [t']

y Exp
y 2

4 (t t ')
(t t')

 

 
 

 

 
 

2 (t t')3 / 2
dt'

0

t

. (15) 

Equation (15) represents the temperature profile in the membrane for a given temperature 

history of the heating element. The first factor inside the integral is the forcing function, 

while the second factor is the Green’s function of the problem. If the temperature history 

of the thermistor f [t’] is represented by an n
th

 order polynomial with coefficients {a0, a1, 
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a2,…, an}, then Eq. (15) can be expressed analytically, although the result becomes 

complicated quickly with increasing order of the polynomial. Taking the derivative of the 

resulting analytic function with respect to y and evaluating at y = 0, gives the temperature 

gradient in the membrane at the edge of the CV in terms of the polynomial coefficients 

ai: 

 
y

y=0

=
1

ai bi t,[ ]
i=1

n

, (16) 

where the bi[t, ] are functions of t and  alone. They follow from the operations 

described above and can be found in Appendix A for polynomials up to order five for  > 

0 and order seven for  = 0. Since / y = TM / y , we substitute Eq. (16) into Eq. (4) 

and let g[t] =  ai bi[t, ] to get, 

 P = CP r[t]+ 2AM M g[t]+ 2Az CV (( f [t]+ T0 )
4 T0

4 ) . (17) 

Here the effusivity is defined as = k cP . Equation (17) establishes the power 

balance of the CV in terms of the unknown thermal parameters CP, M and CV. Data 

analysis will focus on using Eq. (17) to evaluate these thermal parameters. 

 

A two-dimensional transient finite element model (FEM) has been created to 

simulate the heat flow in the thermal cell and to evaluate the accuracy of the analytical 

model. The model represents a cross-section of the sensor in the yz-plane (Fig. 2(b)), 

reduced by the mirror symmetry at the center of the heating element. The dimensions of 

the model are based on the actual thermal cell used in our experiments (Table 1). The 

left-end boundary condition, at the mirror plane, imposes zero heat flux, while the right-

end boundary condition maintains the edge of the membrane at T0. The top and bottom 

surfaces allow radiative heat loss to a blackbody at T0. The initial condition is T[0, y] = T0 

everywhere. 

 

In order to simulate a measurement, two finite element models are required: a 

model of a bare cell consisting of a silicon nitride membrane and a tungsten heater, and a 
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model of a cell with a representative sample, in this case a 50 nm copper film. Based on 

experimental results presented in a subsequent section, the initial resistance of the heating 

element is set to R0 = 45 , while the temperature coefficient of resistance is  = 

1.65  10
-3

K
-1

. The remaining materials properties are based on literature values, shown 

in Table 2. 

The finite element simulations have been performed with the commercial code 

ABAQUS. The heat transfer is modeled using the diffusive heat transfer element DC2D8, 

an 8-node biquadratic element. The y-spacing of the elements inside the CV is 

approximately 4 nm, while the spacing in the membrane is approximately 21 nm. The 

heater is represented by 4 elements through the film thickness; the membrane (membrane 

plus sample when present) is represented by 2 elements. Heat generation is accomplished 

via a user subroutine associated with the elements of the thermistor. A constant current I 

(5 mA for the reference case and 10 mA for the sample case) and a resistance R = R0 (1 + 

 (T - T0)) determine the electrical power dissipated in the heating element. A time step 

of 0.05 ms is used in the simulations. 

 

The output of the simulations is in the form of the nodal temperature history. The 

nodal temperatures show that the temperature variations through the thickness of the 

membrane and heating element are small ( T < 0.1°C). The FEM neglects interface 

resistances between the layers in the CV as does the analytical model. This assumption 

can be justified by considering the worst case conditions of a heat flux through the 

interface equal to the entire power dissipated in the heater (4.5 mW) and a very low 

thermal conductance (20 MW/m
2
 K) [1], which produces a temperature difference across 

the interface of just 0.001°C.  This temperature error is insignificant and can be 

neglected. Averaging the temperature of the nodes through the thickness of the model 

produces a temperature distribution along the y-direction. Figure 4 shows temperature 

distributions in a reference cell and in a sample cell with 50 nm of copper for a 

representative set of experimental conditions. These temperature distributions confirm the 

earlier assumption that the lateral temperature variation within the CV is small 

( T < 0.1°C). From these observations, we conclude that the temperature boundary 

condition f [t] in the analytical model can be represented by the average temperature of 
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the thermistor. This is equivalent to the actual experiments where the average 

temperature is measured. The temperature-time data generated by the finite element 

models (Fig. 5) are then analyzed using the method described in the next section to 

determine the heat capacity of the control volume CP and the effusivity of the membrane 

M. 

A data reduction method based on the analytical model has been developed to 

analyze the FEM results and the experimental data. Analysis of the FEM data allows for 

verification of the data reduction method by accurate reproduction of input values; 

analysis of the measured data produces the desired materials properties that are the goal 

of this investigation. The following discussion is based on the FEM data, but the analysis 

of experimental data proceeds along the same line. 

 

The data reduction begins with the temperature history of the thermistor obtained 

from the FEM calculations. To simulate experimental noise in the FEM results, a 

normally distributed temperature error T[p] was added to the FEM temperature results at 

each time step in the temperature report. The width of the T[p] distribution was 

representative of the measurement noise observed experimentally. Equation (17) can be 

used with this data set to estimate the thermal parameters CP and M. For each time step 

t[N], the function f [t’] and the ai in Eq. (16) are found from a polynomial fit to the 

temperature history up to that particular point N. The fit is obtained by minimizing the 

merit function, 

 

  

a
2

=
T[p] (a0[N]+ a1[N] t[p]+K+ an[N] t

n[p])

T [p]

 

 
 

 

 
 

2

p=1

N

. (18) 

The order of the polynomial is determined by the linearity of the temperature history. For 

the bare cell, n = 5 is sufficient to represent the simulation results; for the cell with 

sample, n = 7 is required. The merit function a
2
 is minimized by applying the normal 

equations in a matrix formulation. Following this approach, we define the matrices, 
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[N] =

1

T
2[p]p=1

N t[p]

T
2[p]p=1

N

K
t n[p]

T
2[p]p=1

N

t[p]

T
2[p]p=1

N t 2[p]

T
2[p]p=1

N

M O

t n[p]

T
2[p]p=1

N t 2n[p]

T
2[p]2p=1

N

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

, (19) 

and 

 

  

[N] =
T[p]

T
2[p]p=1

N T[p] t[p]

T
2[p]i=1

N

K
T[p] t n[p]

T
2[p]i=1

N 

 
 
 

 

 
 
 
. (20) 

Then the ai are given by, 

 ai[N] = (i+1) j
1 [N] j[N]

j=1

n+1

. (21) 

Equation (21) is used to evaluate the function g[t] in Eq. (17). The error g on g[t] is then 

given by 

 g
2

=
g

ai

g

a ji=1

n

j=1

n

( i+1)( j+1)
1 . (22) 

The covariances of the ai parameters are significant and must be included for an accurate 

estimation of g. 

 

The average heating rate of the control volume, r[t], is the derivative of the 

temperature history. In the data analysis, this derivative is calculated by performing a 

linear least square fit of the temperature data around the time step of interest. The fit is 

found by minimizing the merit function 

 c
2[N] =

T[p] (c0[N]+ c1[N] t[p])

T [p]

 

 
 

 

 
 

2

p=N M

N +M

, (23) 

using the normal equations in a matrix formulation. The corresponding right hand side 

(RHS) of Eq. (19) is now a 2x2 matrix, and the RHS of Eq. (20) is a 2-component vector. 
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In both equations, the upper and lower limits for the summations are the same as in Eq. 

(23), i.e., N - M and N + M, respectively. The heating rate is then, 

 r[N] = c1[N] = 21
1[N] 1[N]+ 22

1[N] 2[N], (24) 

with associated error, 

 r
2[N] = 22

1[N]. (25) 

 

Before CP and M can be determined from Eq. (17), it is necessary to know  and 

CV. We will show later in this section how these parameters can be estimated from 

experiments. In many cases, however, the effects of  and CV are small enough that they 

can be neglected without significant loss of accuracy. Alternately literature values can be 

used. Figure 6 shows the radiation loss from the CV and the membrane of a bare thermal 

cell relative to the total power input for a heating rate of 7.5 K/ms. In the analysis of the 

FEM data, the FEM input values were used for CV and . Because radiation from the 

membrane in the sample cell was insignificant,  was taken as zero for the sample cell. 

  

All parameters in Eq. (17) are now known except for CP and M, which are 

determined by a least squares fit of Eq. (17) to the P data. The error on the electrical 

power, P, is typically much smaller than the errors on g[t] and r[t]. To account for the 

uncertainty in these two terms, an effective error is defined for the electrical power, eff, 

as [18], 

 eff
2

= P
2

+
P

r r

 

 
 

 

 
 

2

+
P

g g

 

 
 

 

 
 

2

, (26) 

and used in the merit function for the fit. The partial derivatives in Eq. (26) require some 

knowledge about the unknown parameters CP and M. For the FEM data, the input values 

are used; for the experimental analysis, CP and M are first estimated with a least squares 

fit using P only and then eff is evaluated using the estimated values. The merit function 

for the least squares fit of the thermal parameters is defined as, 
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t
2 =

P[p] 2Az CV f [p]+ T0( )
4

T0
4( ) CP[N] r[p]+ 2AM M [N] g[p]( )

eff [p]

 

 

 
 
 

 

 

 
 
 

2

p=1

N

. (27) 

Equation (27) is minimized as described above to produce the best-fit values of CP and 

M. These terms can be written explicitly as, 

CP[N] =
1

[N]

Peff [p] r[p]

eff
2 [p]p=1

N g2[p]

eff
2 [p]p=1

N g[p] r[p]

eff
2 [p]p=1

N Peff [p] g[p]

eff
2 [p]p=1

N 

 
  

 

 
  , (28) 

and 

[N] =
1

2AM [N]

r2[p]

eff
2 [p]p=1

N Peff [p] g[p]

eff
2 [p]p=1

N Peff [p] r[p]

eff
2 [p]p=1

N r[p] g[p]

eff
2 [p]p=1

N 

 
  

 

 
  , (29) 

with associated errors, 

 CP

2 [N] =
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In these equations, 
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, (32) 

and Peff = P - Qz. Analysis results of CP and M are plotted along with input values for the 

bare cell in Figs. 7(a) and 7(b), while the values for the cell with the sample are plotted in 

Figs. 7(c) and 7(d), respectively. It is evident that the analysis results converge rapidly to 

the input values. The average analysis result is calculated with an error-weighted mean 

and shown in Table 3 along with input values and reproducibility error. A reproducibility 

error of approximately 3% or less provides confidence in the analytical model and the 

data reduction scheme. The error analysis presented here is extended to a sensitivity 

analysis in Appendix B that provides relative errors for the effusivity, heat capacity, and 
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thermal conductivity. These relative errors can be used to judge the capability of the 

device and to guide experimental work on other materials systems. 

 

The FEM results have also been used to simulate measurement of the emissivity 

CV of the CV. This is achieved by heating narrow (400 μm) and wide (1000 m) heating 

elements at approximately the same rate of 20 K/ms to a temperature of 400°C. Under 

these conditions the difference in conductive loss between the two sensors is small, while 

the difference in radiation loss is significant. By taking the difference in the power 

balance for each heater (Eq. 17) and assuming that conductive losses cancel exactly, the 

effective emissivity of the CV can be written as, 

 CV =
P CP (dT /dt)( )
l w T 4 T0

4( )
. (33) 

Using this method, the effective emissivity of a bare cell is determined to be CV = 0.104, 

which differs from the input value by 1% (Fig. 8). This method of evaluation can be used 

when the CV term is significant and measured values are preferred over literature values. 

The emissivity of the tungsten film, which is used for the heating element, can be 

obtained from this method by depositing tungsten as a sample film. In this case the CV is 

the emissivity of tungsten. Once the emissivity of tungsten is known, then the emissivity 

of the membrane can be estimated from the effective emissivity of the bare cell CV. 

 

Determination of CP by fitting Eq. (17) to the power data requires a value for CV. 

Determination of CV from Eq. (33), on the other hand, requires a value for CP. For the 

finite element model the input values can be used, but for experiments these values are 

not known a priori. They are, however, easily determined iteratively. More specifically, 

Eq. (17) is fitted to the experimental data using literature values for CV; then the CP result 

from this fit is used to calculate an experimental value for CV. This value of CV is then 

used in Eq. (17) to produce the final result. Because the effect of radiation is very small 

in the temperature and heating rate range considered, one iteration is sufficient. 
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The accurate reproduction of FEM input values with the analytical model and data 

reduction scheme validates the assumptions made in the analytical model and lends 

credibility to the measurement approach. The same analysis method can now be applied 

to experimental results obtained for real devices. The following sections describe how the 

device is made and the measurements are performed, as well as the results of the 

measurements. 

 

The fabrication process starts with (100) oriented Si wafers, 200 mm in diameter 

and polished on one side. These wafers are delivered with a coating of approximately 

80 nm of Si3N4 grown on both sides using low-pressure chemical vapor deposition (Fig. 

9(a)). Special care is taken throughout the fabrication process to protect the Si3N4 on the 

polished side of the wafer. This film will eventually form the membranes of the nTTA 

and even shallow scratches result in ruptured membranes. 

 

Each Si wafer is cleaved into seven 55 mm  55 mm square substrates. The 

substrates are rinsed in deionized water and blown with nitrogen to remove any particles. 

Then 125 nm of tungsten and 1.2 m of copper are deposited on the polished side of a 

square substrate using direct current (DC) magnetron sputtering (Fig. 9(b)). Immediately 

prior to film deposition, the substrates are sputter-cleaned using an Ar plasma to remove 

any contamination and to improve adhesion of the sputtered coatings. 

 

With the materials necessary for forming the sensors in place, material is now 

selectively removed to form the appropriate structures using standard photolithography 

and etch processes. After the wafer is baked at 150°C for 5 min, Shipley 1805 photoresist 

(S1805) is spin-coated and patterned on both sides of the wafer. The front side of the 

substrate is exposed to UV light through a mask with the metallization artwork, and the 

backside is exposed through a mask with the cavity window artwork. Both sides of the 

substrate are developed simultaneously in Microposit CD-30 for 1 minute (Fig. 9(c)). The 
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Si3N4 on the backside of the wafer is reactively etched in CF4 to create rectangular 

openings in the silicon nitride layer. Copper is etched in a solution of phosphoric, nitric, 

and acetic acid at 50°C. The Cu etch exposes the underlying W, which is then etched in 

30% H2O2 at 50°C (Fig. 9(d)). Both etch steps take approximately three minutes. After 

the wet-etch processes, the remaining resist is exposed and removed. Next S1805 is re-

applied to the metallization side and patterned with the rectangular cavity artwork (Fig. 

9(e)). Copper is then etched from the membrane area, leaving only W within the area that 

will form the membrane. After patterning of the metallization, the freestanding 

membranes are created by anisotropically etching the Si in a solution of 15 g KOH in 50 

ml H2O at 85°C for approximately 9 hours. The patterned Si3N4 coating on the backside 

of the substrate serves as a hard mask for this step. During this procedure, the 

metallization is protected by a sample holder that exposes the backside of the device to 

the KOH solution, while isolating the front side from the KOH solution. For added 

protection, a layer of Cyclotene resist (Dow Chemical) is spin-coated on top of the 

metallization and cured at 130°C for 70 min. After the Si etch, the Cyclotene is removed 

in a bath of Primary Stripper A at 75°C for 1 hour (Fig. 9(f)). The device fabrication 

process is completed with an anneal at 450 °C for 8 hours in a vacuum furnace with a 

base pressure of 10
-5

 Pa. 

 

nTTA measurements are controlled and recorded with a personal computer and a 

National Instruments PCI-6221 data acquisition card (DAQ) (Fig. 10). The DAQ is used 

to send a control voltage to a voltage-to-current converter, with a linear mapping of 1 V 

to 10 mA. The current source consists of a precision operational amplifier (OPA227), a 

power operational amplifier (OPA549), and a differential amplifier (INA133) arranged in 

a modified Howland configuration. It is powered by a Protek 3030D dual DC power 

supply running in series mode, providing a constant 30 V controlled power. Excluding 

internal losses, the current supply is limited by approximately 20 V of compliance and 

can supply 100 mA of current. 
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The output of the current source is monitored by the DAQ via the voltage drop VI 

across a 100  precision resistor RI. The DAQ also reads the voltage drop V across the 

thermistor. This is shown in schematic form in Fig. 10 and a typical result is shown in 

Fig. 11. All signals are recorded at a sampling rate of 100 kHz and with a 16-bit 

resolution. Voltage signals are used to determine the resistance of the thermistor by R = 

RIV/VI and the electrical power dissipated in the thermistor by P = VIV/RI. The 

temperature of the thermistor is then calculated from, 

 T = T0 +
R

R0
, (34) 

where  is the temperature coefficient of resistance of the heating element, R0 is the room 

temperature resistance, R is the change in resistance, and T0 is the ambient temperature. 

 

Prior to depositing sample material onto the nTTA substrate, the thermal sensors 

need to be calibrated. To measure the temperature coefficient of resistance, the nTTA 

substrate is placed in an oven and stepped through a temperature range, while the 

temperature of the substrate is measured with a thermocouple. The resistance of the 

thermistor is recorded at each temperature step by applying a 1 mA monitoring current 

for 20 ms. This current pulse causes a small amount of Joule heating (~ 0.3
 °C). To 

eliminate this effect, R is measured as a function of time and back extrapolated with a 

linear fit. R0 and the ratio R/ T are determined from a linear least squares fit of the 

resistance data as a function of temperature. The value of  is then calculated using Eq. 

(34), yielding a value of (1.65±0.02)  10
-3

K
-1

 for the W thermistors in the cells. The 

value of  is typically determined for one cell on each substrate, while the value of R0, is 

measured for each cell on a substrate. 

 

All thermal transport measurements are conducted in a vacuum chamber with a 

vacuum level of 10
-3

 Pa to eliminate convection losses. Bare cells with narrow heating 

elements are subjected to a current of 5 mA, while the wide heating elements receive an 

80 mA pulse. The voltage response of the thermistor is recorded and transformed into a 

temperature history. This temperature history is then analyzed as described previously. 
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Emissivity measurements are performed in a similar fashion. In this case, however, the 

current of the narrow thermistor is varied (11-12 mA) to match the temperature history of 

the neighboring wide thermistor. After bare cell measurements are completed, samples 

are deposited on the thermal cells and the measurements are repeated. 

 

We have demonstrated the capability of the nTTA device by measuring the 

thermal transport properties of thin Cu films as a function of film thickness. After the 

sensors in an nTTA device were characterized as described in the previous section, Cu 

films were deposited using DC magnetron sputtering and a 50.8 mm diameter Cu target. 

The depositions were performed at a power of 100 W and a pressure of 0.67 Pa using Ar 

as a working gas. The deposition rate was calibrated at each sensor location by depositing 

for a known length of time and measuring the resulting thickness with a Veeco Dektak 

profilometer. The thickness of each sample was then determined from the sample 

deposition time. The substrate was not rotated during the deposition so that the natural 

sputtering flux distribution would create a Cu thickness gradient along the columns of the 

nTTA (Fig. 1). A larger thickness gradient was created between the columns of the nTTA 

by stepping a shadow mask from left to right (Fig. 1). This process required a vacuum 

break and proceeded in such a way that the leftmost column (cells 1-5) had four discrete 

layers of copper, the next (cells 6-10) had three, the middle (cells 11-15) had two, and the 

two rightmost columns (cells 16-25) had just one layer. Cells 16-20 have narrow 

thermistors and cells 21-25 have wide thermistors. Neighboring thermistors in these 

columns form emissivity measurement pairs. Emissivity measurement pairs had the same 

Cu film thickness to ensure that the conductive heat losses would cancel as required for 

forming Eq. (33). The copper film thicknesses that resulted from this process are shown 

in Figure 12. 

 

As with the bare thermal cells, the thermal transport measurements on the Cu-

coated sensors were performed in vacuum. The currents that were used for the 

measurements were chosen to approximately match the heating rates of the bare thermal 
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cell measurements and can be found in Table 4. The emissivity measurements were 

performed by varying the current applied to the narrow thermistor of the pair to match the 

heating rate of the wide thermistor. 

 

Initial resistance measurements taken at various instances throughout the 

experimentation demonstrate that the tungsten thermistors are stable during storage and 

low-temperature measurements, up to 450°C, the temperature at which the device was 

annealed. The error on each R0 measurement is approximately 8 10
-3

 , while the 

standard deviation of the R0 results for cells 1-20 is 2  (i.e. 4%). Since the measurement 

error is much smaller than the standard deviation of the group, we conclude that the cell-

to-cell variation in resistance is real and most likely caused by slight variations in the 

thermistor dimensions as a result of the fabrication process. 

 

With R0 known for each cell, the temperature history of the CVs can be calculated 

from the voltage measurements using Eq. (34). Representative temperature curves for a 

bare cell and a cell with sample are shown in Fig. 13(a). Typical heating rates are shown 

in Fig. 13(b). The effective emissivity of the CV was determined from the heating curves 

of the narrow-wide thermistor pairs 16-21, 17-22, and 20-25. Pairs 18-23 and 19-24 were 

not included because cell 23 was broken and the data obtained from cell 24 was 

corrupted. The measured emissivity values are CV = 0.14 ± 0.01 for the bare cells and CV 

= 0.17 ± 0.01 for the cells with Cu samples. These results compare well with literature 

values of 0.10-0.17 and 0.03-0.15 respectively [19-22]. The literature results vary 

considerably, typically explained by surface conditions. Our Cu films emit around the 

upper end of reported emissivity values, which is most likely due to slight oxidation of 

the film surface. The temperature curves of the other sensors were analyzed to determine 

CP and M using the appropriate emissivity values listed above. Figure 14 shows 

representative fits of Eq. (17) to the power dissipated in the thermistors by minimizing 

the merit parameter t (Eq. 27). Typical CP results for bare cell and cell with 61 nm Cu 

sample are shown in Figs. 15(a) and (b) respectively. Typical M results for the same cell 
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conditions are shown in Fig. 15(c). It is evident that after some initial variability the 

parameters quickly converge to specific values. It should be noted that the CP result for 

the cell with the Cu sample was obtained by doubling the current over the M 

measurements (Table 4) and reducing the considered time scale (1 ms) because of the 

large amount of heat conducted away by the Cu films. 

 

The results for all bare cells and cells with samples are compiled in Figure 16. 

The CP results of the bare cells (Fig. 16(a)) show a similar distribution as the R0 results 

with a standard deviation of approximately 3.7 %. This observation suggests that the 

distribution is again caused by variability in the fabrication process and not measurement 

error. The average value of the heat capacity, 126 ± 6 nJ/K, compares well to the value of 

123 nJ/K obtained from the literature values of the constituents (See Table 2). The 

average measured effusivity value of the bare membrane is 2580 ± 90 J/m
2
s

1/2
K, which 

compares closely with reported silicon nitride values on the order of 2600 J/m
2
s

1/2
K [23]. 

The results for the cell with the Cu samples (Fig. 16) show the expected trend considering 

the Cu film thickness. The total heat capacity CP is an extrinsic materials property and the 

variation shown is caused by a change in sample mass; M is an intrinsic materials 

property and the variation is caused by a change of the membrane effusivity as the film 

thickness varies. 

 

The experimental values of CP and M can be used to determine the volumetric 

heat capacity and the thermal conductivity of the Cu films: The volumetric heat capacity 

(  cP) of the films is readily found by taking the difference between the total heat 

capacities of the cells with and without samples and by normalizing that value with the 

Cu sample volume. The average experimental value thus obtained is (3.7 ± 0.2)  10
6
 

J/m
3
 K, which is larger than the reported bulk value of 2.6  10

6
 J/m

3
 K [19]. Similar 

increases in specific heat for nanocrystalline copper have been reported previously [24, 

25]. The error in the volumetric heat capacity of each Cu sample is relatively large for the 

thinnest samples, approximately 25 %, and reduces with film thickness to approximately 

10 % for the thickest samples. Errors result from the small volume of material measured 

and the significant amount of heat conducted away through the Cu film – in a sense Cu is 
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probably one of the most challenging materials for these experiments (e.g., Appendix B). 

Further increasing the heating rates and decreasing the measurement times reduces this 

error. Samples with smaller thermal conductivity evidently result in smaller (  cP) errors. 

If necessary, very accurate and precise measurements of the heat capacity can also be 

made with a parallel nano-scanning calorimeter [26], a device similar to the nTTA but 

with slightly different thermistor and sample geometry. 

 

The thermal conductivity of the copper films is calculated as, 

 kCu =
hS S( )

2
hSiN kSiN h cP( )Cu hSiN SiN( )

2

hCu h cP( )Cu + h cP( )SiN( )
, (35) 

where the subscript S refers to a value for a Si3N4/Cu multilayer membrane (Fig. 17). 

Also shown in Fig. 17 are additional measurements for thicker multilayer Cu films 

(approximately 180 to 480 nm) obtained from a second nTTA device. Evidently the error 

introduced by any uncertainty in the copper heat capacity is quite small for the thinnest 

films and it increases slightly with increasing film thickness (Eq. 35). The thermal 

conductivity of the copper films increases non-monotonically from approximately 15 to 

300 nm, where the values apparently plateau around 300 W/m K, well below the bulk 

value of 410 W/m K [19]. This behavior can be explained by the multilayer structure of 

the Cu films and by scattering of electrons from the surfaces and interfaces of the copper 

films (Fig. 18). 

 

To gain further insight into these results we consider the model by Qiu and Tien 

[27], 
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. (36) 

Equation (36) relates the thermal conductivity of a metal film to its bulk thermal 

conductivity based on the bulk electron mean free path B, the film thickness , the grain 

boundary reflection coefficient G, and the grain boundary diameter D. This formulation 

of the model assumes diffuse reflections at the interfaces. We use literature values for B 



 24

and G – B = 42 nm [28], G = 0.25 [27] – and take D =  based on our TEM observations. 

Finally we define the normalized conductivity as  = kfilm/kbulk, and the effective 

normalized thermal conductivity of a multilayer film as, 

 eff = 1 1 + 2 2 + ...+ n n

1 + 2 + ...+ n

, (37) 

for an n-layer stack of films, where i and i represent the thermal conductivity and 

thickness of the i
th

 layer. Our measured results and the model predictions are compared in 

Fig. 19. The good agreement indicates that the internal copper interfaces and grain 

boundaries indeed act as scattering surfaces for electrons. They clearly replicate the non-

monotonic behavior and the relatively low plateau value of the films, indicating that both 

are caused by the multilayered structure of the Cu coatings. 

 

Many capable in-plane thermal conductivity measurement devices exist. Some of 

these devices have better accuracy than the nTTA because they use multiple 

measurement points. Other devices that rely on a steady state have no dependence on 

volumetric heat capacity, simplifying data reduction. The nTTA technique, however, has 

the unique feature that it can be used as a combinatorial device. To accomplish this, it is 

necessary to trade multiple measurement locations for a single line measurement. 

Extraction of material parameters can be accomplished using an analytical model for the 

thermal behavior of the sensors. This analytical model was verified with finite element 

simulations and input parameters were reproduced with high accuracy. The capabilities of 

the nTTA were demonstrated by measuring thermal transport properties of Cu films with 

thicknesses less than the mean free path of the dominant heat carriers. 
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Expressions for the coefficients in Eq. (16) for  > 0 and n = 5. 

 

Expressions for the coefficients in Eq. (16) for  = 0 and n = 7. 
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Equations (28-32) from the main body of the paper can be used to define the 

relative errors for the heat capacity and effusivity, i.e. CP
= CP

CP  and = , 

which are metrics for the sensitivity of the technique. Figure B1 shows contour plots of 

the relative errors as a function of the thermal parameters assuming a constant heating 

rate of 3000 K/s for 5 ms and a temperature error T = 0.1°C. It is evident from the figure 

that the relative error on the effusivity increases with increasing CP and decreasing 

AM  M. Conversely, the relative error on the heat capacity decreases with increasing CP 

and decreasing AM  M. Similar plots are readily created for other experimental 

conditions to evaluate the effects on measurement sensitivity of experimental parameters 

such as the heating rate or sensor dimensions.  

 

The relative errors on CP and M can be used to estimate the errors on the thermal 

properties of the materials. Equation (B1) defines the error on the heat capacity of a Cu 

sample deposited on the nTTA, 

 CP ,Cu
=

CP , S
CP , S( )

2
+ CP ,B

CP ,B( )
2

CP , S CP ,B

. (B1) 

Here the subscripts B and S indicate a bare thermal cell and a cell with sample, 

respectively. Applying Eq. (B1) to the example of a 61 nm thick Cu sample gives, CP, B = 

126 nJ/K and CP, S = 173 nJ/K, with respective errors from Fig. (B1) CP ,B
=1.6  % and 

CP , S
= 2.7 %, so that CP ,Cu

=11 %.  The determination of (  cP) requires a volume 

measurement of the sample, which has a relative error of 10 %. Combining these errors 

gives a relative error of 15 % on (  cP) for the 61 nm Cu film. The relative errors on (  

cP) for 23 nm and 120 nm Cu films are estimated at 22 % and 12 % respectively. 

 Similarly, the relative error of the thermal conductivity of thin-films deposited on 

the nTTA can be defined in terms of the errors on the measured thermal properties. The 

relative error on the thermal conductivity of the sample film follows from the effective 

thermal conductivity of a multilayer film (Eq. 35). Using the example of the 61 nm Cu 

film, from Fig. (B1) , S = 0.75%, ( cP ),Cu
=15%, , SiN = 2.9  %, and ( cP ), SiN

=1.6  %, 
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produces an error on the thermal conductivity of the Cu film of k,Cu = 8.6%, in good 

agreement with the experimental results. The error analysis can be used to estimate errors 

in thermal parameters and thermal materials properties; it serves as a guide when 

planning measurements on other materials systems and for optimizing the measurement 

technique.
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Table 1:  Approximate dimensions of nTTA components 

Table 2:  FEM input materials properties [19-23] 

Table 3:  FEM measurement simulation results  
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Figure 1: nano-thermal transport array schematic. 

Figure 2: Thermal cell schematic: (a) Plan view, and (b) Cross-section view. 

Figure 3: Schematic of control volume in relation to the entire thermal cell. 

Figure 4:  FEM average node temperature distribution along y-direction for a bare 

thermal cell and cell with 50 nm Cu sample, simulated for 5 ms with respective currents 

of 5 and 10 mA. 

Figure 5:  FEM average temperature history of control volume nodes. Data is shown as 

dashes and the 5
th

 order and 7
th

 order polynomial fits are shown for the bare cell and the 

cell with 50 nm Cu, respectively. 

Figure 6:  Radiation from CV and membrane relative to the power dissipated in the 

thermistor for the bare cell. 

Figure 7: Results of the analysis of the FEM results (data points with error bars) 

compared to input values (solid line): heat capacity of the CV of a bare cell (a), effusivity 
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of a bare-cell membrane (b), heat capacity of the CV of a cell with a 50 nm Cu coating 

(c), effusivity of a membrane with a 50 nm Cu coating (d). 

Figure 8:  Emissivity calculated from the FEM simulations along with FEM input value. 

The error on the calculated emissivity is large at low temperatures, but the emissivity 

quickly converges to the input value at elevated temperatures where radiation is a more 

important heat loss mechanism. 

Figure 9:  nTTA fabrication flow. One thermal cell is shown for clarity. Detailed step-by-

step procedures can be found in the text of the paper. 

Figure 10: Schematic of the experimental setup. 

Figure 11: Raw voltage data recorded from a 5 mA, 20 ms current pulse across the 100  

precision resistor and a narrow thermistor. 

Figure 12:  Thickness of the copper sample multilayers.  

Figure 13:  Typical temperature history for a bare cell and cell with 61 nm sample (a).  

Typical heating rate for bare cell and cell with 61 nm sample (b). 

Figure 14:  Typical fit to the power data for a bare cell and a cell with a 61 nm copper 

film. 

Figure 15:  Typical thermal parameter fit results for bare cell (a) and cell with 61 nm Cu 

(b) heat capacity; effusivity results for the same cases (c). 

Figure 16:  Heat capacity (a) and effusivity (b) results for cells with and without copper 

samples. 

Figure 17: Calculated thermal conductivity of thin copper films from measured thermal 

parameters, with kSiN = 3.2 W/m K and (  cP)SiN = 2.1 MJ/m
3
 K [23]. 

Figure 18:  TEM cross-section of a 3-layer Cu film showing scattering interfaces. 

Figure 19:  Normalized thermal conductivity measurements of thin copper multilayer 

films, compared to Qiu’s thermal conductivity model [27] for multilayer copper films. 

Figure B1: Relative errors of measured thermal parameters as a function of the value of 

these thermal parameters, (a) relative error of effusivity and (b) relative error of heat 
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capacity. Data reduction used a moving 0.3 ms time-span for the heating rate fit and a 4 

ms time-span to fit a 5
th

 order polynomial to the temperature history. 

 

Table 1:  Approximate dimensions of nTTA components. 

 Length (x) Width (y) Thickness (z) 

Substrate (Si) 55 mm 55 mm 0.7 mm 

Membrane (Si3N4) 5 mm 3 mm 80 nm 

Narrow thermistor (W) 3 mm 84 μm 125 nm 

Wide thermistor (W) 3 mm 800 μm 125 nm 

 

Table 2:  FEM input materials properties [18-23]. 

 k (W/m K)  (kg/m
3
) cP (J/kg K)  

Thermistor (W) 174 19300 132 0.02 

Membrane (Si3N4) 2.3* 3000 700 0.18 

Sample (Cu) 401 8960 384 0.01 

* Value is from a SiNX/SiO2/SiNX film stack. 

 

Table 3:  FEM measurement simulation results. 

 Parameter Input Result Error (%) 

CP (nJ/K) 134.8 133.4 1.1 Bare cell 

 (J/m
2
s

1/2
K) 2198 2257 2.7 

CP (nJ/K) 198 192 3.1 Cell with 50 nm 

Cu coating 
 (J/m

2
s

1/2
K) 21820 21480 1.5 
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Table 4:  Applied current in milli-Amperes for a given cell and measured quantity. 

 Cells 1-5 Cells 6-10 Cells 11-15 Cells 16-20 Cells 21-25 

R0 1 1 1 1 8 

M,CP (cell) 5 5 5 5 80 

M (sample) 12 10 8 6 - 

CP (sample) 24 20 16 12 80-90 

z (cell) - - - 11-12 80 

z (sample) - - - 14.5-18 80-90 

 



 
 

Figure 1: nano-thermal transport array schematic 



 

 
(a) 

 

 
(b) 

 

Figure 2: Thermal cell schematic: (a) Plan view, and (b) Cross-section view. 

 



 
 

Figure 3: Schematic of control volume CV in relation to the entire thermal cell 

 



 
 

Figure 4:  FEM average node temperature distribution along y-direction for a bare 

thermal cell and cell with 50 nm Cu sample, simulated for 5 ms with respective currents 

of 5 and 10 mA. 



 
Figure 5:  FEM average temperature history of control volume nodes. Data is shown as 

dashes and the 5
th

 order and 7
th

 order polynomial fits are shown for the bare cell and the 

cell with 50 nm Cu, respectively. 



 
 

Figure 6:  Radiation from control volume and membrane relative to the power dissipated 

in the thermistor for the bare cell.



 

 
Figure 7: Results of the analysis of the FEM results (data points with error bars) 

compared to input values (solid line): heat capacity of the CV of a bare cell (a), effusivity 

of a bare-cell membrane (b), heat capacity of the CV of a cell with a 50 nm Cu coating 

(c), effusivity of a membrane with a 50 nm Cu coating (d). 



 
 

Figure 8:  Emissivity calculated from the FEM simulations along with FEM input value. 

The error on the calculated emissivity is large at low temperatures, but the emissivity 

quickly converges to the input value at elevated temperatures where radiation is a more 

important heat loss mechanism. 



 
Figure 9:  nTTA fabrication flow. One thermal cell is shown for clarity. Detailed step-by-

step procedures can be found in the text of the paper.



 
 

Figure 10: Schematic of the experimental setup 

 



 
 

Figure 11: Raw voltage data recorded from a 5 mA, 20 ms current pulse across the 100  

precision resistor and a narrow thermistor. 



 
 

Figure 12:  Thickness of the copper sample multilayers. 
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Figure 13:  Typical temperature history for a bare cell and cell with 61 nm sample (a).  

Typical heating rate for bare cell and cell with 61 nm sample (b).



 
 

Figure 14:  Typical fit to the power data for a bare cell and a cell with a 61 nm copper 

film.
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(c) 

 

Figure 15:  Typical thermal parameter fit results for bare cell (a) and cell with 61 nm Cu 

(b) heat capacity; effusivity results for the same cases (c). 



 
 

(a) 
 



 
 

(b) 

 

Figure 16:  Heat capacity (a) and effusivity (b) results for cells with and without copper 

samples. 



 
 

Figure 17: Calculated thermal conductivity of thin copper films from measured thermal 

parameters, with kSiN = 3.2 W/m K and (  cP)SiN = 2.1 MJ/m
3
 K [23]. 



 
 

Figure 18:  TEM cross-section of a 3-layer Cu film showing scattering interface. 



 
 

Figure 19:  Normalized thermal conductivity measurements of thin copper multilayer 

films, compared to Qiu’s thermal conductivity model results for multilayer copper films. 



 
(a) 



 
(b) 

Figure B1: Relative errors of measured thermal parameters as a function of the value of 

these thermal parameters, (a) relative error of effusivity and (b) relative error of heat 

capacity. Data reduction used a moving 0.3 ms time-span for the heating rate fit and a 4 

ms time-span to fit a 5
th

 order polynomial to the temperature history. 
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