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Abstract At room temperature at stall, the flagellar motor of the bacterium 

Escherichia coli exerts a torque of ~1300 pN nm.  At zero external load, it spins ~330 

Hz.  Techniques for studying the motor near zero load are novel and are summarized 

here. 
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Introduction 

Many bacteria are propelled by the rotation of helical filaments that extend out into the 

external medium (in common bacteria) or run under the outer cell membrane (in 

spirochetes).  Each filament is driven at its base by a reversible rotary motor embedded in 

the cell wall, constructed from about 20 different kinds of parts, about 50 nm in diameter, 

and powered by an ion flux (either protons or sodium ions); for a quick guide, see Berg 

[1].  The torque-speed relationship is distinctive:  torque is maximum at stall (~1300 pN 

nm in Escherichia coli at room temperature), it falls ~10% between 0 and ~160 Hz, and 

then it drops rapidly, reaching 0 at ~330 Hz [2].  At speeds between 0 and 160 Hz, rates 

of ion translocation or movement of internal parts do not matter (torque is independent of 

temperature); at speeds above 160 Hz, these rates do matter (torque increases with 

temperature).  So it is of interest to study the motor at small loads, where it runs far from 

thermal equilibrium, with an output that is sensitive to the kinetics of motion of internal 

parts. 

 

At high loads and low speeds, one can study the motor by tethering a cell to glass by a 

single flagellar filament and watching the cell body pinwheel; see [3].  The body is 

cylindrical in shape with hemispherical end caps, about 1 µm in diameter by 2 to 3 µm 

long.  Alternatively, one can break off most of the filaments by viscous shear and attach a 

latex bead to one of the flagellar stubs; see [4].  The smallest latex beads that have proved 

practical are  ~0.36 µm in diameter, enabling a motor speed of ~230 Hz.  To work at 

lower loads, the most promising method appeared to be the gold nano-rod technique used 

by Wayne Frasch to study rotation of the F1 ATPase [5].  Such rods scatter light strongly 
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in the red when the plane of polarization of the light is parallel to the long axis of the rod 

and less strongly in the green when the plane of polarization is normal to the axis of the 

rod.  After synthesizing such rods and learning how to link them to flagella, we realized 

that it was much easier just to buy commercially-made gold spheres and watch them 

wobble by laser light scattering.  This has allowed us to study the motor at loads orders of 

magnitude smaller than before.  We used genetics to remove the flagellar filaments and 

antibodies to link the spheres to the flexible coupling at the filament’s base (the proximal 

hook, a cylindrical structure ~20 nm in diameter by ~55 nm long) [6].   Methods for 

doing this and for monitoring both speed and direction of rotation are reviewed here. 

 

Methods and Results 

 

Labeling Hooks with Gold Spheres.  Spheres were conjugated with anti-rabbit IgG, 

which allowed them to label anything coated with rabbit IgG antibody.  We followed a 

method adapted from Liao et al. [7]: anti-rabbit IgG (R5506, Sigma) was activated with 

succinimidyl 6-[3-(2-pyridyldithio)-propionamido]hexanoate (LC-SPDP; 21651, Pierce) 

following the instructions from the manufacturer; 2.5 µl of the final solution was added to 

500 µl of a suspension of colloidal gold (diameter 60 to 200 nm; British Biocell 

International), and the mixture was incubated at 23°C for 2 h; then 10 µl of 1 mM O-[2-

(3-mercaptopropionylamino)ethyl]-O'-methylpolyethylene glycol 5000 (mPEG-SH 5000; 

11124, Fluka) was added, and the mixture was incubated at 23°C overnight.  Spheres 

activated in this way were linked to hooks treated with rabbit anti-FlgE antibody, as 

described in [6]. 
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Laser Scattering Microscopy.  Our original idea was to excite gold spheres with laser 

light by total internal reflection, using an apparatus developed for visualization of type IV 

pili [8].  In this device, a laser beam is directed from below to a quartz microscope slide 

via a 60° prism (the slide mated to the prism with glycerol), and the light is totally 

reflected at the quartz-water interface.  For work with gold, we used a 655-nm diode laser 

(Sanyo DL5147-042, run at ~8 mW with a DLC500 controller, Thorlabs), with its plane 

of polarization horizontal. The scattered light was viewed from above in an upright 

microscope with a Nikon Plan 40/0.65 BM objective.  But it proved more convenient to 

use a flow cell [9] with a quartz bottom window instead of a quartz slide, and more 

convenient still to attach the bacteria to a glass coverslip that served as the top window of 

the flow cell.  So we simply increased the angle of the laser beam so that the light passed 

through the quartz-water interface but was totally internally reflected at the glass-air 

interface, thus converting the microscope from total internal reflection to dark field.  In 

the embodiment of this apparatus used to measure motor speed [6] the scattered light was 

focused onto a 0.2-mm-diameter pinhole in front of a photomultiplier tube (R7400U-20, 

Hamamatsu), yielding signals of the sort shown in Fig. 1.  In a newer embodiment used 

to measure motor direction as well as speed [10], the light was focused, via a 50/50 beam 

splitter, onto two 3×1 mm precision slits (NT39-908, Edmund Optics) mounted at right 

angles to one another in front of two photomultiplier tubes (as above).  When the center 

of rotation of the image of a gold sphere is aligned at one of the corners of the 

intersection of the slits, the phases of the signals from the two photomultiplier tubes 
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differ by +90 or -90 degrees, depending upon the direction of rotation of the motor, 

yielding signals of the sort shown in Fig. 2.   

 

Discussion and Conclusions 

 

Gold spheres on hooks of cells attached to glass – we use polylysine as glue – are not 

disturbed by bulk flow, so the preparations can be perfused with oxygenated motility 

medium, required to maintain protonmotive force (energized cell membranes).  One can 

look at a single cell for hours; the sphere remains rigidly attached to the hook and there is 

no bleaching.  So the method is ideally suited for experiments that require acquisition of 

switching data over long periods of time.  The load can be increased somewhat by the use 

of larger spheres and/or the addition of the viscous agent Ficoll [10].   
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Figure Legends 

 

Fig. 1.  Measuring speed. The output signal from the photomultiplier tube oscillates as 

the image of a 60-nm gold sphere moves further on or off the pinhole.  This trace shows 

the sudden onset of rotation of a motor with defective force-generating elements, 

resurrected by insertion of wild-type components; see [6].  
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Fig. 2.  Measuring direction as well as speed.  (A) the signal from the x photomultiplier 

tube shown as a function of time.  The signal from the y photomultiplier tube (not shown) 

is similar, except for a 90° shift in phase.  (B) the x, y signals shown in quadrature.  When 

the motor changes direction, the circular trace changes direction, but this is not apparent 

in the figure. 
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