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The evolution of fiber textured structures is simulated in 2 dimensions using a general-

ized phase field model assuming two forms for the misorientation dependence of the grain

boundary energy. In each case, a steady-state regime is reached after a finite amount of grain

growth, where the number and length weighted misorientation distribution functions (MDF)

are constant in time, and the mean grain area A as a function of time t follows a power growth

law A − A0 = ktn with n close to 1 and A0 the initial mean grain area. The final shape of

the MDF and value of the prefactor k in the power growth law clearly correlate with the

misorientation dependence of the grain boundary energy. From a quantitative point of view,

the fraction of special boundaries obtained in simulations is quite sensitive to the number of

possible discrete orientations. Furthermore, a mean field approach is worked out to predict

the growth exponent for systems with nonuniform grain boundary energy. The conclusions

from the mean field approach are consistent with the simulation results.
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1. Introduction

Many thin films have a columnar grain structure in which all crystals have nearly

identical orientation in the axial direction (the direction perpendicular to the film),

but random radial orientation (in the plane of the film) [1]. The symmetry is for

example introduced by a preferential nucleation or growth of certain grain orien-

tations due to anisotropy in the surface energy or film-subrate interfacial energy.

Many technically important characteristics of the films, such as their strength, con-

ductivity, corrosion resistance or resistance against void formation, are correlated

with characteristics of the grain structure and grain boundary network [2–5]. More-

over, the structure and properties of the grain boundaries can vary considerably,

depending on the misorientation between the adjacent grains and the inclination

of the boundary with respect to the crystal lattices of the grains [6–12].

Grain growth in systems with non-uniform grain boundary properties has been

studied frequently, experimentally [13–16] and by mesoscale simulations [17–24].

Due to the large number of parameters, there is however no systematic insight yet in

the correlations between grain boundary properties and grain structure evolution.

that would allow us to predict how a given grain structure evolves in time and

optimize the film properties for a particular application.

The experiments of Saylor et al. [13] and 3D simulations of Gruber et al. [17]

show that the inclination dependence of the grain boundary energy affects the

grain boundary plane distribution for bulk structures with a random texture. After

a limited amount of grain growth, a stead-state is established with a constant

grain boundary plane distribution with maxima at inclinations with low energy.

Inclination dependence of the grain boundary mobility seems to have no effect on
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the grain boundary plane distribution. Ivasishin et al. [25] found that misorientation

dependence of the mobility can induce texture formation in a 3D structure with

random orientations. It however occurred at the end of simulations and is thus

probably due to the restricted number of grain orientations left in the system. Holm

et al. [18] performed 2D simulations of grain growth in anisotropic systems using

3D crystallography (the orientations are represented with 3 Euler angles). They

consider a Read-Shockley misorientation dependence for the energy of boundaries

with low misorientation [6],

σgb(θ) = σm
|θ|
θm

(

1 − ln(
|θ|
θm

)

)

(1)

where θ represents the smallest rotation angle between the orientations of two

adjacent grains and with θm = 15, 30 and 45◦ and σm the energy of the boundary

with misorientation θm. The energy of high-angle boundaries and the mobility of

all boundaries are constant. They find that structures with a random texture show

grain growth behavior that is very similar to normal grain growth in isotropic

materials. After a short transition period, the average grain size increases in time

according to a power growth law

A − A0 = ktn or A = ktn for t → ∞, (2)

with A the mean grain area, k a kinetic constant and n = 1. Furthermore, the nor-

malized grain size distribution has the same shape as for normal grain growth in

isotropic structures. The MDF (misorientation distribution function) is constant

in time, but low-energy boundaries have a higher probability than given by the

Mackenzie distribution which is obtained for isotropic materials. They explain that
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the higher probability for low-energy boundaries is mainly geometrical. Thermo-

dynamic equilibrium at triple junctions namely forces the low-energy boundaries

to lengthen, while the number fraction of low-energy boundaries hardly increases

in their simulations. Mobility anisotropy seems not to influence the evolution of

a structure with random texture. Ono et al. [27] and Hassold et al. [19] consider

the effect of extra low-energy cusps in the grain boundary energy at large mis-

orientations, as is the case for some CSL (Coincidence Site Lattice)-boundaries.

Ono et al. report an increase of the length fraction for all misorientations with low

energy. Hassold et al. assumes narrower cusps around the special high-angle mis-

orientations and observes only an increase of the fraction of low-angle boundaries,

probably because the possibility to form a high-angle boundary with low energy in

a structure with random grain orientations (and using 3D crystallography) is very

low in their systems.

Different from structures with a random texture, structures with all grain ori-

entations near a single orientation have the tendency to strengthen this texture.

The simulations of Holm et al. [18], assuming the same misorientation depen-

dence for the grain boundary properties as described in the previous paragraph

with θm = 15◦, but starting from a grain structure with all orientations around

{111} < 100 >, demonstrate that the length and number fraction of the smallest

misorientations increase continuously. The growth exponent n in the power law

equals 0.62 and the grain size distribution is weighted towards smaller grains com-

pared to that obtained for normal grain growth in isotropic systems. Furthermore,

the grain structures contain many few sided grains and stable quadruple-junctions.

The average number of sides is smaller than 6. Kazaryan et al. [20] study highly

textured systems with misorientation and weak inclination dependence of the grain

boundary energy and mobility, but using only 1 scalar orientation variable. If grain
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boundary energy anisotropy alone is considered, the fraction of low angle bound-

aries increases seriously in time and the growth exponent n is around 0.74 at an

intermediate stage of the simulation, but increases continuously. The edge distribu-

tion also shifts towards grains with less than 6 sides. Mobility anisotropy alone does

not change the power growth law, the MDF or the edge distribution. Different from

what is observed for randomly textured systems [17], inclination dependence of the

mobility leads to a continuous evolution of the grain shape and grain boundary

inclination distribution, even if the grain boundary energy is uniform. When both

grain boundary energy and mobility anisotropy are considered, the misorientation

dependence of the mobility affects the grain growth exponent and evolution of the

MDF.

Strongly textured systems that contain a few grains with random orientation

are likely to undergo abnormal grain growth [21, 28, 29] caused by anisotropy in

grain boundary energy or mobility. If the fraction of randomly oriented grains is

higher (12.5%-27%), there is no abnormal grain growth; however the fraction of

randomly oriented grains increases or decreases continuously in time, depending

on the relative degrees of anisotropy for grain boundary energy and mobility [22].

Structures with initially 2 or 3 strong texture components, show often a step-wise

growth in which periods of fast growth and strengthening of 1 of the components

are interrupted by periods of slow growth and negligible change in the fractions of

the texture components [25, 30–33]. In all these cases, the evolution is extremely

sensitive to the initial fraction and spacial distribution of the different texture

components and randomly oriented grains. Furthermore, both energy and mobility

anisotropy can change the MDF and growth exponent n. The analytical mean

field study of Kazaryan et al. [34] for 2D systems indeed demonstrates that, in

general, anisotropy of the grain boundary mobility alone can lower the exponent n
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in the power growth law. The effect is negligible for structures with a single texture

component and for randomly textured structures, which is also seen in simulations.

In the case of a perfect fiber texture, the axi-symmetry allows us to describe

the grain boundary properties as a function of a single variable θ representing

the misorientation measured around the common tilt axis. Different from a fully

random 3D crystallography, the possibility to form a boundary with a certain

misorientation is equal for all possible misorientations. The possibility to form a

low-angle boundary is accordingly larger than in randomly textured 3D structures,

but smaller than in structures with a strong texture component. Grest et al. [23]

and Yu and Essche [35] examined the evolution of systems with a Read-Shockley

dependence (equation (1)) for the energy of low-angle boundaries (θ < θm) and

constant energy for high-angle boundaries (θ > θm). To study the effect of the width

of the Read-Shockley well, simulations were performed for θm between 0 and π,

assuming 2-fold orientation symmetry. Grest et al. find that the growth exponent n

is approximately 0.84 for θm < π/2 and changes gradually from 0.84 for θm = π/2

to 0.5 for θ = π. The length fraction of the boundaries with the lowest energy at

the end of the simulations is around 10%, but varies with θm. The number of stable

quadruple junctions is higher and the grain size distribution becomes broader for

larger values of θm. Yu and Essche, however, find that regardless the width of

the Read-shockley well, the growth exponent equals 1. At the beginning of the

simulations, there is an increase of the number of quadruple-junctions for large

values of θm, but in all cases this value decreases again during the simulations.

The average number of sides remains close to 6. Yu and Essche devote the different

findings for both studies to differences in the Monte Carlo algorithm used for

the simulations, as the system properties and size are almost the same in both

studies. A growth exponent n = 0.84, as obtained by Grest et al., is obviously
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too low for θm → 0. Moreover, a Read-Shockley dependence with θm > 15◦ is

rather artificial. Saito and Enomoto [36] performed grain growth simulations for

fiber textures using a grain boundary energy misorientation dependence based on

experimental measurements for Cu with several low-energy cusps. At the end of the

simulations, the fraction of low-energy boundaries is approximately 20% and the

growth exponent equals 1. The grain size distribution broadens during anisotropic

grain growth. Upmanyu et al. [24] compare simulation results obtained with a

Potts model and a phase field model. The misorientation dependence of grain

boundary energy and mobility are derived from molecular dynamics simulations

(θ > 10◦) and theoretical models (θ < 10◦). For low misorientations a Read -

Shockley dependence (1) with θm = 10◦ is assumed. The misorientation dependence

shows six-fold symmetry. If grain boundary energy anisotropy alone is considered

the growth exponent n equals 0.93 if only a Read-Shockley well is considered (Potts

simulations), and 0.86 (Potts simulations) or 0.65 (phase field simulations) if extra

cusps at large misorientations are also considered. If both energy and mobility are

anisotropic, the growth exponent is 0.69 (Potts simulations) or 0.77 (phase field

simulation). The fraction of boundaries with lower energy increases in time, also

for those with large misorientation. There are stable higher order junctions in the

structures and the average number of edges is lower than 6. Mobility anisotropy

alone does not affect the growth exponent n. Frost et al. [37] report the evolution

towards a steady-state regime with n = 1 and a constant grain boundary character

distribution for thin films with columnar grains and random grain orientations in

the plane of the film.

Previous simulations for fiber textured systems thus indicate that although the

grain orientations in the plane of the film are random, the MDF does not remain

random when grain boundary energy is anisotropic. It is not clear whether the
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characteristics of the grain structure change continuously, as for strongly textured

structures, or whether a steady-state is established after a finite amount of grain

growth, as for randomly textured structures. Furthermore, there is a large scatter

on the values obtained for the growth exponent n and there is no systematic insight

in how the number, depth, width and position of low-energy or low-mobility cusps

influence the results.

In this paper, the evolution of fiber textured systems with misorientation depen-

dent energy is studied by means of phase field simulations assuming two different

spectra for the grain boundary energy. It is discussed how the mean grain size and

MDF evolve in time. Moreover, a more general mean field analysis is performed to

predict the growth exponent for systems with non-uniform grain boundary prop-

erties. Since the purpose is to study the effect of the misorientation dependence of

the grain boundary energy on the evolution of a fiber texture, effects from grain

boundary grooving at the film surface and mismatches between the film and the

substrate are not considered.

2. Phase-Field Simulation Method

Several simulation techniques have been proposed for the simulation of grain

growth, such as Monte Carlo, vertex, front tracking, phase-field and cellular au-

tomata [11]. The phase-field method has proven to be a versatile technique for

simulating microstructure evolution; it has been applied for solidification, solid

state phase transitions and coarsening [39–42]. One advantage of the phase-field

technique for the current application is that the simulation results are less influ-

enced by the anisotropic nature of the discretization grid because grain boundaries

are represented as diffuse regions with a finite width.
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2.1. Phase Field Model

In this section the phase field model used for the simulations is briefly discussed.

A more extensive explanation is given in [43, 44]. Different grain orientations

are represented by a large set of independent and nonconcerved field variables

η1(r, t), η2(r, t), . . . , ηi(r, t), . . . ηp(r, t), with p the number of possible grain orien-

tations. The total free energy of the system F is give by the functional

F =

∫

V

[

mf0(η1, . . . , ηp) +
κθ

2

p
∑

i=1

(∇ηi)
2

]

dV, (3)

with

f0(η1, . . . , ηp) =

p
∑

i=1

(

η4
i

4
− η2

i

2

)

+ γθ

p
∑

i=1

p
∑

j>i

η2
i η

2
j +

1

4
. (4)

The homogeneous free energy f0 has localized minima at (η1, . . . , ηp) =

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), where f0 = 0, representing the differ-

ent grain orientations. To introduce the misorientation dependence of the grain

boundary energy, the parameters κθ and γθ are formulated as a function of the

local values of the field variables:

κθ =

∑p
i=1

∑p
j>i κi,jη

2
i η

2
j

∑p
i=1

∑p
j>i η

2
i η

2
j

, (5a)

γθ =

∑p
i=1

∑p
j>i γi,jη

2
i η

2
j

∑p
i=1

∑p
j>i η

2
i η

2
j

. (5b)
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The parameter m is uniform. Since at a boundary between the grains with orien-

tations i and j, only ηi and ηj are different from 0, it can easily be verified that

κθ = κi,j, γθ = γi,j at the boundary between grains i and j. The grain bound-

ary energy can accordingly be specified individually for all p − 1 possible discrete

misorientations.

The spatial and temporal evolution of the field variables is calculated from the

equations

∂ηi(r, t)

∂t
= −L



η3
i − ηi + 2ηi

∑

j 6=i

γi,jη
2
j − κθ∇2ηi



 , (6)

for ηi = η1 . . . ηp, with L a kinetic model parameter related to the grain boundary

mobility. These equations are obtained from the free energy functional (3) using a

variational approach, but requiring that the local values of the model parameters

κθ and γθ are fixed for a given grain configuration (the η-dependence in expressions

5.) Since relaxations in grain boundary structure are typically on the atomic scale

for metals, we can assume that they are much faster than the mesoscale grain

boundary movement and thus consider grain boundary properties as fixed for a

given misorientation.

The following expressions have been derived for the grain boundary energy σi,j

and mobility µi,j of a grain boundary between grains i and j

σi,j = g(γi,j)
√

κi,jm (7)

µi,j =
L

g(γi,j)

√

κi,j

m
, (8)
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where g(γi,j) is given by the integral expression

g(γi,j) =

∫ 1

0

√

f0(ηi, ηj(ηi))

√

1 +

(

dηj(ηi)

dηi

)2

dηi. (9)

The width `i,j of the profiles of the field variables across the interface between two

grains (the distance over which the field variables change their values) is defined

based on the maximum gradients of the order parameter fields,

`i,j =
1

|(dηi/dx)max|
=

1

|(dηj/dx)max|

=

√

κi,j

mf0,interf(γi,j)
, (10)

with f0,interf the value of f0 at the middle of the interface where the 2 fields intersect.

In this way the width of the diffuse grain boundaries can be used as a parameter

in criteria for the numerical stability and accuracy of the simulations. Usually it is

most efficient to give all boundaries equal width. The functions g(γ) and f0,interf(γ)

were evaluated numerically for a wide range of γ-values [44]. It was also verified by

means of numerical simulations that relations (7)-(10) are valid for `i,j/R < 1/5,

with R the radius of curvature of the boundary.

2.2. System properties and parameter choice

Two forms of misorientation dependence of the grain boundary energy are consid-

ered. Both have a Read-Shockley dependence of the form (1) with θm = 15◦ and

σm = 0.25J/m2 for misorientations smaller than 15◦. For the first type (Type I),

all large misorientations (θ > 15◦) have the same energy σm = 0.25 J/m2. For the
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second type, there is an extra low-energy cusp at θ = 37, 5◦ of the form

σgb(θ) = (σm − σl)
|θ − 37.5|

θ′m

(

1 − ln(
|θ − 37.5|

θ′m
)

)

+ σl (11)

for 27.5◦ ≤ θ ≤ 45◦ and with σl = 0.1 the energy of the special high-angle bound-

ary at 37, 5◦ and θ′m = 10◦ a measure for the width of the cusp. The remaining

misorientation angles have an energy σgb = 0.25 J/m2. A fourfold symmetry is

assumed in each case. The orientations within one quadrant are discretized with

an interspacing ∆θ equal to 1.5◦ or 3◦ and the discrete orientations are assigned

to respectively 60 or 30 field variables. The misorientation between grains with

orientations i and j is calculated as

θ = ∆θ(|j − i|) if |j − i| ≤ p/2

or

θ = −90◦ + ∆θ◦(|j − i|) if |j − i| ≥ p/2

with p the number of discrete orientations. Two neighboring grains with a misori-

entation smaller than ∆θ are treated as one grain. The 2 energy spectra are plotted

as a function of misorientation in figure 1 and the possible discrete misorientations

are indicated for p = 60. The ratio between the maximum and minimum grain

boundary energy are σmax/σmin = 3.03 for ∆θ =1.5◦ and σmax/σmin = 1.92 for

∆θ =3◦. The grain boundary mobility µgb is assumed to be constant and equal

to 1 ∗ 10−6 m2s/kg. The grain boundary width `i,j is taken 0.66 ∗ 10−6 m for all

misorientations.
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Figure 1. a) Type I and b) Type II of the misorientation dependent grain boundary energy
used in this study.

The model parameters κi,j, γi,j, m and L that reproduce the desired grain bound-

ary properties were calculated using the iterative algorithm described in [44], giving

m = 2.25 ∗ 106 J/m3, L = 2 m·s/kg and values for κi,j and γi,j as shown in figure 2

for the energy of Type II and 60 possible orientations. For the energy of type I, κi,j

and γi,j have the same values for the low misorientations, but equal κmax and γmax

for all high-angle misorientations. If only 30 possible orientations are considered,

only the values for θ = 3, 6, 9◦, . . . are used.

A standard explicit finite difference discretization with grid spacing ∆x = 0.1 ∗

10−6 m and time step ∆t = 0.008 s was used for the numerical solution of the

phase field equation. Since grains are columnar and the grain orientations show

axi-symmetry, simulations are performed in 2D. The system size was 1024 × 1024

grid points (102.4 µm2) and 500 × 500 grid points (50.0 µm2) grid points.

The initial grain structures were generated as described by Fan and Chen [46].

First, small random values between -0.001 and 0.001 are assigned to all field vari-
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ables at all (discrete) positions in the system. Then, the field variables are let to

evolve according to equations (6) and assuming isotropic grain boundary proper-

ties until a polycrystalline microstructure is obtained. In this way, the initial grain

orientations and grain boundary misorientations are random.

2.3. Expected accuracy for grain boundary movement and triple junction

angles

For these model and simulation parameters, the movement of individual boundaries

is reproduced with an accuracy of approximately 1.5 % [44]. The cosines of most

triple junction angles are reproduced with the same accuracy (We prefer to express

the accuracy of triple junction angles as a function of the cosine of the angles, since

the curvature of the boundaries and the accuracy depend linearly on this measure.)

Triple junctions with angles far from 120◦, namely those with an angle outside the

range [102◦ 138◦], deviate more. In our simulations, this is the case if 2 boundaries

with θ = 1.5◦ meet a boundary with θ = 3◦ or 2 boundaries with θ = 3◦ meet

one with θ = 1.5◦. Another case is where a boundary with θ = 1.5◦, 3◦ or 37.5◦

(Type II) meets 2 boundaries with maximum energy or 1 boundary with maximum

energy meets two boundaries with θ = 3◦. Triple junctions where 2 boundaries with

θ = 1.5◦ or θ = 37.5◦ (Type II) meet one with maximum energy are unstable (this

is correctly reproduced in the simulations). Deviations can be of the order of 10%

for the largest ratio of σmax/σmin in the simulations with 60 possible orientations

(i.e. σmax/σmin = 0.25/0.0826). Accurate reproduction of these angles requires a

smaller grid spacing ∆x or larger grain size. Moreover, the converence is slow for

angles far from 120◦.

As a consequence, it is not beneficial to increase further the number of possible

orientations in our simulations without decreasing the grid spacing accordingly. If
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the number of possible orientations is for example doubled, the minimum misorien-

tation that can be represented is θ = 0.75◦ with, for the considered Read-Shockley

dependence (1) with θm = 15◦, a grain boundary energy σgb = 0.05 J/m2 and hence

σmax/σmin = 0.25/0.05 = 5. It requires an even smaller grid spacing to reproduce

these triple junctions well. Doubling the number of possible orientations would not

increase the computational cost much; decreasing the grid spacing (and accordingly

the time step) or increasing the system size, however, does considerably increase

computer requirements. Since the purpose is to derive statistical information from

the simulations, we have to consider a large number of grains and cannot take the

grid spacing very small.

The difficulties with triple junction angles outside the range [102◦ 138◦] is due

to the discrete nature and anisotropy of the discretization grid used in numeri-

cal simulations. Similar problems are experienced with other mesoscale simulation

techniques [45]. In previous simulation studies, θm in the Read-Shockley relation,

was sometimes taken larger than 15◦ [18, 23, 35]. Then, the misorientation depen-

dence of the grain boundary energy for low misorientations is less steep and it might

be possible to apply a finer resolution for the misorientation than in the present

study for the same spatial resolution, but there is a limit as well. An advantage of

phase-field models is that the range of easy-to-resolve triple junction angles can be

modified to a certain extent (for a fixed resolution and grain size) by changing the

width of the diffuse grain boundary profiles [44].

3. Phase-field simulation results

3.1. Microstructures

In figure 3 simulation images at different time steps are shown for a system with

energy anisotropy of Type I. In figure 4 images are shown for a system with en-
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Figure 2. Phase field model parameters a) κi,j and b) γi,j as a function of misorientation
for an energy of type II.κi,j ranges between 0.0413 and 0.125 and γi,j between 0.685 and 1.5.

ergy anisotropy of Type II. Boundaries with high energy are plotted with darker

and thicker lines than boundaries with low energy. The high-energy boundaries

clearly dominate the evolution of the structure. Except for a few dangling bound-

aries, they form an individual grain boundary network with almost uniform grain

boundary properties and triple junction angles of 120◦. The low-energy boundaries

are located within the grains formed by the high-energy grain boundary network.

Most often they cross the grains from one side to the opposite. At later stages in

the simulations, the low-energy boundaries can also form sub-networks within the

grains of the high-energy boundaries. Due to their lower energy, these networks

coarsen much slower than the high-energy boundary network. In fact, the low-

energy boundaries mainly follow the movement of the high angle boundaries. They

lengthen when located in a growing grain and shorten when located in a shrinking

grain. Because of the large difference in grain boundary energy, the low-energy

boundaries intersect the high-energy boundaries almost perpendicularly so that

they hardly affect the configuration of the high-energy boundary network. Both

systems show similar grain growth behavior. We do not observe a large amount

of higher-order junctions and they are not stable. The average number of faces is
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Figure 3. Simulation images obtained for a system with anisotropic grain boundary energy
of Type I, 60 possible orientations and a system size of 1024×1024 grid points. Structures at
time t = 0.8, 79, 199 and 343s are shown. Low-angle boundaries of a misorientation θ = 1.5, 3
and 4.5◦ are plotted using gray levels ranging from light to dark for increasing grain boundary
energy. All other boundaries are plotted in black and using a thicker line.

almost constant in time and very close to 6.

Some of the triple junction angles formed by 2 high-energy boundaries (σgb = 0.25

J/m2) and one of the boundaries with lowest misorientation and energy (θ = 1.5◦,

σgb = 0.0826 J/m2) appear to be out of equilibrium in the simulation images.

This is due to the low accuracy with which these angles can be reproduced for

the considered spatial resolution and grain size, as discussed in section 2.3. The

angle between the 2 high-energy boundaries should equal 161◦. In the simulation

images, it is however either considerably too large (resulting in a triple junction

that appears to be out of equilibrium) or too small, depending on whether the

high-energy boundary is curved towards or away from the low-energy boundary.

As illustrated in figure 5, a high curvature is required near the triple junction

when the high-energy boundary is curved towards the low-energy boundary, which
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Figure 4. Simulation images obtained for a system with anisotropic grain boundary energy
of Type II, 60 possible orientations and a system size of 1024×1024 grid points. Structures at
time t = 0, 110, 250 and 490s are shown. Low-angle boundaries of a misorientation θ = 1.5, 3
and 4.5 ◦ are plotted using gray levels ranging from light to dark for increasing grain boundary
energy, the special high-angle boundaries with misorientation θ = 37.5◦ are plotted in clear
red and boundaries with a misorientation θ = 36 or 39◦ are in plotted in darker red. All
other boundaries are plotted in black and using a thicker line.

cannot be resolved for the grid spacing used in the simulations, except for very

large grain sizes. Figure 6 shows for an isolated triple junction how the angle in the

simulations converges to its expected value when the grid spacing is decreased. Such

high resolution however does not allow to consider a statistically relevant number

of grains, which is required to derive conclusions on the evolution of the mean

grain size and grain boundary misorientation distribution. Since the evolution of

the grain boundary network is driven by the motion of the high-energy boundaries,

we do not expect that this inaccuracy affects the general grain growth behavior

much. Nevertheless, it shows that, quantitatively, the simulation results will not

converge to the correct values if only the number of possible grain orientations is

increased without increasing the spatial resolution. For the given grid spacing, triple
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a) b)

bc bc

Figure 5. Schematic representation of triple junctions formed by 2 high-energy boundaries
(σgb = 0.25 J/m2) and 1 boundary with energy σgb = 0.0826 J/m2 (θ = 1.5◦) for the cases
where the high-energy boundaries are curved a) away or b) towards the low-energy boundary.
The red line gives the direction of the boundary obtained with low spatial resolution.

Figure 6. Simulation images obtained for increasing numerical accuracy for an isolated mov-
ing triple junction with σgb = 0.25 J/m2 for the horizontal boundaries and σgb = 0.0826 J/m2

for the vertical boundary. a) ∆x = 0.1, `i,j = 0.66, b) ∆x = 0.1, `i,j = 1.32, c) ∆x = 0.1,
`i,j = 2.64, d) ∆x = 0.05, `i,j = 2.64 and e) ∆x = 0.025, `i,j = 2.64.

junctions formed by a boundary with an energy equal or lower than σgb = 0.0826

J/m2 and 2 high-energy boundaries all give triple junction angles within the same

range of values. The exact value rather depends on the local geometry than on the

energy of the boundaries.

3.2. Grain growth kinetics

In figure 7, the evolution of the mean grain size as a function of time is plotted for a

system with energy anisotropy of type II and using 60 possible discrete orientations.

The effective mean grain area follows a power growth law with neff close to 1, after

a short transition time. Since the simulation images in figures 3 and 4 show that

the high-energy boundaries form an almost independent grain boundary network,

the mean grain size of the grain structures formed by all boundaries with an energy
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Figure 7. Evolution of the mean grain area as a function of time obtained from a simulation
with an energy misorientation dependence of type II, 60 possible orientations and a system
size of 1024× 1024 grid points. The evolution of the mean grain area of different superstruc-
tures formed by all grain boundaries with an energy higher than a certain threshold value is
also plotted. It is indicated in the legend which boundaries are included in the network for
the different curves. For two curves, the data are fitted to the power growth law (2), giving
neff = 1.00 for the complete boundary network and nh = 1.02 for a network consisting of
only the high-energy boundaries.

higher than a certain threshold value, was determined as well. The curves for these

superstructures (most of the grains formed by these networks contain multiple

grains of the actual grain boundary network) are also plotted in figure 7. As the

grain boundary energy of these networks is more homogeneous, it is not surprising

that fitting of the data points to the power growth law (2) gives a value for nθ−cutoff

close to 1. A growth exponent close to 1 was obtained for all systems of 1024× 1024

grid points. The systems of 500× 500 grid points do not contain enough grains to

reach the regime where neff = 1, although some of the superstructures can.

3.3. Grain boundary misorientation distribution (MDF)

In figures 8 a and b, the number and length weighted MDF are plotted as a func-

tion of absolute misorientation at different times, for a system with grain boundary

energy of type II and 60 possible orientations. They are uniform for the initial mi-

crostructure. During grain growth, the number and length fraction of boundaries
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with low energy increase. The increase is larger for the length weighted MDF

than for the number weighted, probably because of geometric lengthening of the

low-energy boundaries [18]. After a finite amount of time, the misorientation dis-

tributions no longer change, except for statistical variations. The shape of the final

MDF’s correlates with the misorientation dependence of the grain boundary en-

ergy. The final number and length fraction (i.e. number or length density × ∆θ) for

the misorientation with lowest energy (θ = 1.5◦) are approximately 0.11 and 0.26,

and for that with second lowest energy (θ = 37.5◦) are approximately 0.06 and 0.1.

All other misorientations, namely 3◦ ≤ θ ≤ 36◦ or 39◦ ≤ θ ≤ 45◦, have almost the

same number and length fraction, within the statistical variations. To illustrate

this behavior more clearly, the number and length fraction of special boundaries

is plotted as a function of time in the figures 8 c and d. They evolve towards a

constant value, which is higher for boundaries with a lower energy.

In figure 9, the same quantities are plotted for a system with the same grain

boundary energy (Type II), but using 30 possible orientations. Also in this case the

number and length weighted MDF’s become non-uniform with higher possibilities

for boundaries with lower energy and are constant in time after a finite amount

of grain growth. The final number and length fraction for the misorientation with

lowest energy (θ = 3◦) are approximately 0.16 and 0.27. The number and length

fraction of boundaries with misorientation θ = 36◦ or θ = 39◦ increased slightly to a

value 0.09 and 0.1, respectively. All other misorientations have almost equal number

and length fractions. From a quantitative point of view, these final fractions of low-

angle and special high-angle boundaries obtained for ∆θ = 3◦ (30 orientations) are

very different from those obtained for ∆θ = 1.5◦ (60 orientations).

Figure 10 compares the final length weighted MDF’s obtained using 30 and 60

discrete orientations. Qualitatively, they have a similar shape: both have the highest
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peak at the smallest misorientation and another peak around the special high-

angle misorientation. The peaks are however higher for the case with 60 discrete

orientations. This set namely contains the misorientations θ = 1.5 and θ = 37.5

with considerably lower energies, which are not present in the set of 30 discrete

misorientations. If, for example, 120 orientations would have been considered (∆θ =

0.75), this set would contain the misorientation θ = 0.75 (not present in the set with

30 or 60 orientations) with an energy σgb = 0.05 which is considerably lower than

the energy for the other misorientations. This will affect the heights and shapes of

the two peaks in the MDF’s. Because of the logarithmic term in the Read-Shockley

equation for grain boundary energy, the height of the peaks is thus quite sensitive

to the number of possible discrete misorientations. The grain boundary energy

namely decreases fast for θ → 0 or θ → θcusp. A very small discretization with

respect to orientation (which requires a very fine spatial and temporal resolution

as described in section 2.3) is probably required to minimize this dependence on

∆θ.

For an energy of type I, the MDF’s have a single peak at the smallest misorienta-

tion. The final number and length fraction of the boundary with lowest energy are

0.12 and 0.27 when 60 orientations are considered (θ = 1.5◦), and approximately

0.17 and 0.3 when 30 orientations (θ = 3◦). The fraction of low-angle boundaries

is thus slightly higher in the absence of energy cusps at high misorientations.

Figure 11 shows that, although the misorientation distribution changes shape,

the distribution of grain orientations remains uniform during grain growth. Only

after a considerable amount of grain growth, some of the grain orientations vanish

as the number of grains decreases in time.
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Figure 8. (a) Number and (b) length weighted MDF at different times and temporal evo-
lution of the (c) number and (d) length fraction of special boundaries for a system with
anisotropic grain boundary energy of Type II, 60 possible orientations and a system size of
1024 × 1024 grid points.

4. Mean field analysis

In this section a mean field approach, starting from the parabolic growth law ob-

tained for steady-state grain growth in isotropic materials [15, 47–49], is performed

to calculate the growth exponent for structures with non-uniform grain boundary

energy.

The images in figures 3 and 4 reveal that the high-energy boundaries form an

independent grain boundary network with almost uniform grain boundary energy.

This network can be assumed to form a grain structure of N grains with isotropic

grain growth behavior. The average grain area of the high-energy boundary network
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Figure 9. (a) Number and (b) length weighted MDF at different times and temporal evo-
lution of the (c) number and (d) length fraction of special boundaries for a system with
anisotropic grain boundary energy of Type II, 30 possible orientations and a system size of
1024 × 1024 grid points.
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Figure 10. Comparison of the final length weighted MDF’s obtained from simulations for
systems with anisotropic grain boundary energy of Type II using 30 and 60 discrete orienta-
tions.

Ah can accordingly be written as [15, 47–49]

Ah =
Atot

N
, (12)
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Figure 11. Orientation distribution at different times for a system with energy of type II,
60 possible orientations and a system size of 1024 × 1024 grid points.

with Atot the total area of the system. The evolution of the mean grain area Ah

follows a parabolic growth law

Ah = Ah(0) + kt, (13)

with t time, k a kinetic constant related to the grain boundary energy and mobility

and Ah(0) the average grain area at time t = 0.

Next, based on the simulation images, we assume that each low-energy boundary

in the anisotropic system increases the effective number of grains in the system by

1. With N ′ the number of boundaries with low energy, the effective mean grain

area of the grains formed by the anisotropic grain boundary network can then be

written as

Aeff =
Atot

N + N ′
, (14)

or using (12) and (13)

Aeff =
Atot

Atot

Ah(0)+kt
+ N ′

=
1

1
Ah(0)+kt

+ N ′

Atot

=
Ah(0) + kt

1 + N ′

N

. (15)
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Taking the logarithm of relation (15) gives

log(Aeff ) = − log(
1

Ah(0) + kt
+

N ′

Atot
) (16)

= log(Ah(0) + kt) − log(1 +
N ′

N
). (17)

The effective growth exponent neff for the anisotropic grain structure is accord-

ingly calculated as

neff =
d log(Aeff )

d log(t)
=

d log(Aeff )

dt
t

= − t
1

Ah(0)+kt
+ N ′

Atot

[ −k

(Ah(0) + kt)2
+

1

Atot

dN ′

dt

]

(18)

=
kt

Ah(0) + kt
− t

1 + N ′

N

d(N ′/N)

dt
, (19)

where it is applied that for t → ∞, Aeff − A0,eff = keff tneff goes asymptotically

to Aeff = keff tneff .

Below, equations (18)-(19) are interpreted assuming different limiting situations

(1) If there are no low-energy boundaries in the system (N ′ = 0), equation (18)

reduces to

neff = kt/(Ah(0) + kt), (20)

which goes to 1 for t large. Furthermore,

dAeff

dt
= k = keff , (21)

as expected for normal grain growth in an isotropic system.
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(2) If there are only a few low-energy boundaries in the system and σmax/σmin �

1, the number of high-energy boundaries decreases much faster than the number

of low-energy boundaries. In this case, the number of low-energy boundaries N ′

can be considered to be constant within limited time intervals. Such a condition

is approximately obeyed at the beginning of the simulations. Equation (18) then

gives

neff =
kt

Ah(0) + kt

1

1 + N ′

N

(22)

and for t large

neff =
1

1 + N ′

N

(23)

The growth exponent is thus smaller than 1 and changes in time.

(3) In our simulations, the system evolves towards a regime where the MDF’s

are nearly constant in time. Since the average number of sides of a grain in the

isotropic high-energy boundary network is 6, a constant number fraction of low

energy boundaries involves a constant ratio N ′/N . For such conditions, the second

term on the right hand side in relation (19) equals 0. The effective growth exponent

neff thus equals

neff =
kt

Ah(0) + kt
, (24)

which goes to 1 for large t. This is consistent with the simulation data presented in

figure 7. Moreover, taking the derivative with respect to time from equation (15)
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gives

dAeff

dt
=

k

1 + N ′

N

= keff . (25)

It follows from equation (25) that the prefactor keff in the growth law is thus

lowered by the presence of low-energy boundaries, which is also in agreement with

the curves plotted for different superstructures in 7. This situation is thus most

relevant for the present study.

One might wonder whether and under which conditions it is reasonable to assume

that N ′/N remains constant during grain growth. There are many events by which

the number of grain boundaries and grains in the system changes [15, 26]. One

event is the disappearance of a grain from the high-energy grain boundary network.

This is always associated with the annihilation of all low-energy boundaries inside

this grain. Such a process does therefore not change the ratio N ′/N . Furthermore,

neighbor switching events in the high-energy grain boundary network do not remove

a grain, but may create a low-energy boundary. They can accordingly increase the

ratio N ′/N . Since the grain orientations in the plane of the film are random for fiber

textures, the possibility to create a new low-energy boundary is proportional to the

fraction of misorientations with a low energy. Besides the coarsening of the high-

energy network, the low-energy substructures coarsen as well, although on a longer

time scale. This results in a decrease of the number of low-energy boundaries, but

does not affect the number of grains in the high-energy grain boundary network.

Coarsening of the low-energy substructures therefore lowers the ratio N ′/N . The

frequency with which low-energy boundaries are annihilated with respect to the

frequency of the 2 other events, depends on the number fraction of low-energy

boundaries and the difference in velocity between low- and high-energy boundaries.
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In order to maintain a steady-state regime with N ′/N constant and n = 1, the two

latter processes must balance each other on average. This seems to be the case

for the systems considered in the present study and for 3D structures with fully

random texture [18]. It is, for example, not the case for structures with one or a few

strong texture components, which rather undergo texture strengthening [18, 20], a

change in texture [22, 25, 30–32] or abnormal grain growth [21].

We believe that such a regime with N ′/N constant and n = 1 can always be

established after a finite transition period, in fiber textured systems with realistic

grain boundary energy and mobility. The main reason is the random distribution

of grain orientations in the plane of the film. The possibility to form low-energy

or special boundaries is accordingly relatively small compared to that to form a

high-energy boundary, even if more low-energy cusps are considered. The fractions

of boundaries with low energy are higher than those with high energy because

low-energy boundaries remain in the system for a longer time. They can however

not remain for infinite time: as the low-energy boundaries form networks within

the grains of the high-energy boundary network, low-energy boundaries are disap-

pearing continuously together with shrinking grains of the high-energy boundary

network. The final MDF for which there is a balance between all processes described

in the above section depends (in a complex way) on the relative velocities of the

different boundaries, the possibility to form low-energy boundaries of a certain

type (i.e. the number and width of the cusps) and on the triple junction geome-

tries, which are all related to the misorientation dependence of the grain boundary

energy. The exact correlation between the misorientation dependence of the grain

boundary energy and the final MDF is currently not known.

Furthermore, we do not expect that mobility anisotropy will prevent a fiber

textured system from finding a regime with constant MDF. The mean field study
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of Kazaryan et al. [34] indicates that mobility anisotropy does not affect the growth

and grain size distribution of fiber textured systems with uniform grain boundary

energy. Therefore, in the presence of mobility anisotropy, it can still be assumed

that the growth exponent of the high-energy boundary network equals 1 so that

equation (13) and our mean field analysis remain valid. The rate at which low-

energy boundaries are created and annihilated can however be affected by the

mobility anisotropy, and the ratio N ′/N , or final MDF, can accordingly be different.

For example, if the low-energy boundaries have a lower mobility, N ′/N must be

higher; since the coarsening of the low-energy networks is slower, it must be denser

so that the number of vanishing grain boundaries per unit of time equals the rate

at which low-energy boundaries are created by neighbor switching events in the

high-energy boundary network. If the low energy boundaries have higher mobility,

N ′/N must be lower.

If the initial grain orientations are not random, on the other hand, certain types

of boundaries have a higher possibility to form when a grain disappears or from a

neighbor switching event. As a consequence, the evolution of the MDF is governed

by both, the misorientation dependence of the grain boundary energy (and mobil-

ity) and the initial grain orientation distribution. Then, it might require extensive

grain growth or even be impossible to establish a steady-state regime where there

is an equilibrium between the annihilation and formation of boundaries for each

misorientation, for example in the extreme cases where all orientations are around

one or a few texture components or with just a few randomly oriented grains for

which a continuous change in texture is observed [18, 20–22, 25, 30–32]. It is not

clear how large the deviations from a random orientation distribution must be to

induce phenomena such as texture strengthening and abnormal grain growth.

From the previous analysis we conclude that if a growth exponent n < 1 was
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obtained from previous grain growth simulations for fiber textured systems, this is

highly probably because the system size is too small, the simulation times are too

short or because the initial grain orientations were not fully random.

5. Conclusions

Despite quite a number of studies on anisotropic grain growth, there is no system-

atic understanding yet of how the characteristics of the grain structure and grain

boundary network evolve in time for anisotropic materials with a fiber texture.

We performed grain growth simulations using a generalized phase field model for

columnar grain structures with a fiber texture and misorientation dependent grain

boundary energy. The phase-field model allows accurate quantification of the grain

boundary energy for each grain boundary individually as a function of its misorien-

tation. Two types of misorientation dependence of the grain boundary energy were

assumed; one with a Read-Shockley dependence for low misorientations (θ < 15◦)

and constant energy at high misorientations and another with an extra low-energy

cusp around a misorientation of 37.5◦. The energy anisotropy is assumed to have

4-fold symmetry. The initial grain structures have random planar orientations.

In all cases, grain boundaries with high energy form an independent network

that drives the grain growth behavior. Boundaries with low energy are located

within the grains formed by this high-energy boundary network and follow the

movement of the high-energy boundaries. If the system size is large enough, a

steady-state regime is reached after a finite amount of grain growth where the

MDF’s are constant in time and the mean grain area evolves according to a power

growth law with neff close to 1. Qualitatively, we can conclude that both the

number and length weighted MDF are correlated with the grain boundary energy.

Grain boundaries with lower energy have a higher number and length fraction. The
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effect is largest for the length weighted MDF, as low-energy boundaries lengthen

when in contact with boundaries with a higher energy to fulfill the equilibrium

requirements at the triple junctions. Quantitatively, the grain boundary fractions

obtained for different misorientations are quite sensitive to the number of discrete

orientations considered in the simulation. The reason is that, due to the logarithmic

Read-Shockley dependence of the grain boundary energy at low misorientations

and near cusps, the minimum energy values considered in simulations with discrete

orientations largely decrease when smaller misorientations are considered.

A mean field approach, starting from the parabolic growth law for normal grain

growth in isotropic materials, shows that it is very probable to obtain a steady-

state regime with n = 1 in fiber textured systems with non-uniform grain boundary

properties.

Important challenges for future work are an accurate representation of triple

junction angles in mesoscale grain growth simulations and the derivation of an

exact relation between grain boundary energy, grain boundary mobility and the

final MDF, as it is actually the fraction and spatial distribution of the low-angle

and special boundaries that plays an important role in many practical applications.
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