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Although published works rarely include causal estimates from more than a few model

specifications, authors usually choose the presented estimates from numerous trial runs

readers never see. Given the often large variation in estimates across choices of control

variables, functional forms, and other modeling assumptions, how can researchers ensure

that the few estimates presented are accurate or representative? How do readers know that

publications are not merely demonstrations that it is possible to find a specification that fits

the author’s favorite hypothesis? And how do we evaluate or even define statistical prop-

erties like unbiasedness or mean squared error when no unique model or estimator even

exists? Matching methods, which offer the promise of causal inference with fewer assump-

tions, constitute one possible way forward, but crucial results in this fast-growing method-

ological literature are often grossly misinterpreted. We explain how to avoid these
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misinterpretations and propose a unified approach that makes it possible for researchers to

preprocess data with matching (such as with the easy-to-use software we offer) and then to

apply the best parametric techniques they would have used anyway. This procedure makes

parametric models produce more accurate and considerably less model-dependent causal

inferences.

1 Introduction

Political science research typically begins by first spending considerable time collecting,
correcting, recollecting, merging, and recoding data. When all the data are finally available
in the right format and loaded into one’s favorite statistical package, researchers obtain
a causal estimate by running some parametric statistical procedure—linear regression,
logit, probit, duration models, structural equation models, count models, etc. This run
typically takes only a few seconds and, according to some textbooks, it would be time to
write up the results. Of course, this never happens. Instead, we do a second run with
different control variables, a third with a different functional form, a fourth with a different
measure of our key causal variable, one with different sample periods or observation
subsets, and then each of these and others are repeated with slight variations over and
over again. Although this usual procedure produces hundreds or thousands of alternative
estimates of our single causal effect, we typically only choose one, and rarely more than
5–10, to present in a paper. Yet, we know that our estimates depend on their corresponding
modeling assumptions and that different specifications can yield very different causal
inferences.

Most causal effect estimates given in the literature are thus model dependent, at least
to some degree, but at the same time the statistical properties of most estimators used
by political scientists depend on the assumption that we know the single correct
model. Model dependence combined with likelihood, Bayesian, or other methods that
condition on a single model, framework, or specification mean that we cannot logically
even ask whether an estimator has desirable properties, such as unbiasedness, consistency,
efficiency, mean squared error, etc., since a unique estimator must exist before it can be
evaluated. The related practical problem for researchers is how to convince readers that we
picked the right specification rather than the one that most supported our favorite hypoth-
esis. What does it even mean to choose ‘‘the right’’ parametric model estimates when any
chosen model depends on assumptions we cannot verify? When we read a published
article, how do we know whether the causal effect presented is accurate or whether the
article merely constitutes a demonstration that it is possible to find a specification consis-
tent with the author’s prior expectations? King and Zeng (2006) offer methods to detect the
problem of model dependence; we show how to ameliorate it, when possible.

We begin where virtually all causal inference methods based on observational data
begin, by making the ignorability (or no omitted variable bias) assumption and condition-
ing on the definition of a key causal (or ‘‘treatment’’) variable and a set of variables we
choose to control for. From this common starting point, we offer an easy method of
adjusting for as much of the information in these control variables as possible without
parametric assumptions. We do this by preprocessing a data set with matching methods so
that the treated group is as similar as possible to the control group. In the preprocessed data
set, the treatment variable is closer to being independent of the background covariates,
which renders any subsequent parametric adjustment either irrelevant or less important.

This inferential strategy has three key advantages. First, the approach is easy to use
since researchers need not give up their familiar parametric analysis methods. Instead, they
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merely add a simple preprocessing step before the parametric analysis procedures they
would have used anyway (or should have used anyway if they are not already following
best practices). All of the intuition, diagnostics, uncertainty estimates, and knowledge
about parametric procedures can then be used as before. Second, by breaking or reducing
the link between the treatment variable and control variables, preprocessing makes esti-
mates based on the subsequent parametric analyses far less dependent on modeling
choices and specifications. When the data are of sufficiently high quality so that proper
matches are available (in a manner we define below), causal effect estimates do not vary
much even when changing parametric modeling assumptions. Finally, since most of the
adjustment for potentially confounding control variables is done nonparametrically, the
potential for bias is greatly reduced compared to parametric analyses based on raw data.
Furthermore, in many situations, the same preprocessing also leads to a reduction in the
variance of the estimated causal effects, and so the mean squared error will normally be
lower too.

In a sense, our recommendations already constitute current best practice since matching
alone is not a method of estimation and always requires some technique after matching to
compute estimates. The problem is that the method most commonly chosen after matching
has been a simple difference in means without any controls for potential confounding
variables. We simply point out that, except in the extraordinary case where matching is
exact, common parametric procedures have the potential to greatly improve causal infer-
ences even after matching.

The fast-growing matching literature is theoretically sophisticated, but, from the point
of view of the practical researcher, it looks like a cacophony of conflicting techniques,
practices, conventions, and rules of thumb. Confusion reigns over computing standard
errors and confidence intervals due to apparently contradictory differences stemming from
alternative nonparametric and parametric perspectives. Many theoretical results do not
apply to practical applications unless unknown theoretical quantities or specifications
are somehow divined. Perhaps as a consequence, some of the most important theoretical
results are routinely misinterpreted in applied research and even in some theoretical
statistical work. Coherent guidelines for practice are often conflicting, absent, or mis-
understood. We try to clarify the key misunderstandings in this literature and to present
a coherent unified perspective for applied research.1

Our approach is similar in spirit to, or a generalization of the ideas in, Cochran and
Rubin (1973), Rubin (1973, 1979), Rosenbaum and Rubin (1984), Rubin and Thomas
(2000), and Imai and van Dyk (2004) who each recommend matching followed by a dif-
ferent form of parametric adjustment, as well as strategies used in applied research prob-
lems by Rosenbaum (1986) and others, as discussed in Glazerman, Levy, and Myers
(2003).2 To our knowledge, the present paper is the first to propose and work out the

1Although matching methods now comprise a substantial fraction of the empirical work in observational studies
in some disciplines, such as epidemiology and medicine, the diversity of substantive applications and the
conflicting methodological languages used to describe the same underlying concepts have limited the spread
of these powerful techniques to much of the social sciences. However, the misunderstandings we discuss here are
no less prevalent in these other areas.
2It is also similar to Heckman, Ichimura, and Todd (1998) who developed forms of matching combined with
semiparametric (kernel weighting) analyses, as well as to the parametric bias adjustment for one form of
matching by Abadie and Imbens (2006b), except that, to avoid inducing new biases, we recommend below that
matching be evaluated prior to examining the dependent variable, which is not the case with these latter
approaches as generally implemented. Our idea is also similar in spirit to methods in other areas that preprocess
data so that subsequent analyses can be improved without modifying existing techniques, such as multiple
imputation (Rubin 1987; King et al. 2001) and outlier and feature detection (Bishop 1995, chap. 8).
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conditions for matching as a general method of nonparametric preprocessing, suitable for
improving any parametric method.

Our general preprocessing strategy also made it possible for us to write easy-to-use
software that implements all the ideas discussed in this paper and incorporates most
existing approaches described in the literature. The program, called MatchIt, is available
as an open source and free R package at http://gking.harvard.edu/matchit (see Appendix);
MatchIt also works seamlessly with the general purpose R statistics package called Zelig
(Imai, King, and Lau 2006).

Other approaches to reducing model dependence include weighting (Hirano, Imbens,
and Ridder 2003; Robins and Rotnitzky forthcoming), nonparametric techniques, robust
estimation, and fitting checks for parametric models. Although when used properly each of
these approaches can reduce model dependence, matching may be simpler to use and
understand and would work as we suggest here to improve all the parametric models
now used for making causal inferences in the social sciences. More importantly, since
these alternative approaches also involve specification or modeling decisions, preprocess-
ing via matching works well in combination with these approaches too, and so they should
not be considered competitors. Other seemingly possible alternatives, such as Bayesian
model averaging (Hoeting et al. 1999; Imai and King 2004) and cross-validation (Black
and Smith 2004), are useful for predictive inference but not directly applicable in the
context of causal inference.

2 Definition of Causal Effects

The notation, ideas, and running example in this section parallel that in King, Keohane,
and Verba (1994, sec. 3.1.1), but key aspects of the ideas originate with many others,
especially Neyman (1923), Fisher (1935), Cox (1958), Rubin (1974), and Holland (1986)
in statistics; Roy (1951) and Quandt (1972) in econometrics; and Lewis (1973) in philos-
ophy. The most important idea in this section is that a causal effect is a theoretical quantity,
defined independently of any empirical method that might be used to estimate it from
real data.

Our running example in this section is estimating the electoral advantage of incum-
bency for Democrats in the U.S. House of Representatives. In most of the methodological
literature on causal inference, researchers simplify the exposition by considering only
a single dichotomous causal (or treatment) variable. We do the same and label it Ti, which
takes a value of 1 if congressional district i ði5 1; . . . ; nÞ receives the treatment and 0 if i is
untreated (the ‘‘control condition’’). In our example, the treatment is whether the Demo-
cratic incumbent receives the party’s nomination in district i.

The observed outcome (or ‘‘dependent’’) variable is yi, which in our case is the Dem-
ocratic proportion of the two-party vote in district i. Finally, each district i has a variety of
characteristics determined prior to the incumbent’s decision to run for election and the
party’s decision to renominate the incumbent, some of which we measure and collect in
a vector denoted Xi. Whether preprocessing or not, variables that are even in part a con-
sequence of the treatment variable should never be controlled for when estimating a causal
effect (see Cox 1958, sec. 4.2; Rosenbaum 1984; Rosenbaum 2002, 73–4). This is of
course a critical point since controlling for the consequences of a causal variable can
severely bias a causal inference. For example, controlling for aggregate voting intentions
the day before the election would obviously control away, and thus bias, the estimated
incumbency effect. This ‘‘posttreatment bias’’ problem is far too common in many areas of
political science (King and Zeng 2007).
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To clarify our inferential goals, we begin by defining the ‘‘fixed causal effect,’’ which is
the simplest in-sample definition available, in that it is the closest to the data. We then
generalize the definition to include features of random causal effects that are useful for
understanding connections between nonparametric preprocessing and parametric models,
define causal effects of interest at the population level, and discuss multiple and nonbinary
treatments.

2.1 Fixed Causal Effects

Because of pretreatment differences among the districts (both measured, Xi, and unmea-
sured), the causal effect may also differ across the districts. We therefore define the casual
effect at the district (i.e., observation) level.

A causal effect is a function of potential outcomes: let yi(1) [ yi(Ti 5 1) be the vote we
would observe in district i in say the 2008 election if in fact the Democratic incumbent
receives his or her party’s nomination (i.e., Ti 5 1), and let yi(0) [ yi(Ti 5 0) be the vote
we would observe if the Democratic Party nominates a nonincumbent (i.e., Ti 5 0). (Each
of the potential vote outcomes in district i is thus a function of the incumbency status in the
same district, Ti, and not a function of candidates in other districts.) The use of parentheses
in this notation denotes that the outcome is potential, and so not necessarily observed, and
that it depends on the value of the variable in parentheses. Since these are potential out-
comes, their values remain the same regardless of whether the treatment is in fact applied
in district i or not.

The difference between the two potential outcomes defines the fixed (or unit specific)
causal effect

Fixed causal effect for unit i[ yið1Þ � yið0Þ: ð1Þ

(This quantity is an unobserved realization of a random variable to be defined below.)
Since the Democratic Party will either nominate (Ti 5 1) or not nominate (Ti 5 0) an
incumbent to run in district i, one of these potential outcomes is always a counterfactual
and thus never observed. This is known as the ‘‘fundamental problem of causal inference’’
(Holland 1986).

2.2 Random Causal Effects

Now, imagine that the potential outcomes in equation (1) are realizations of corresponding
random variables (for which we use the corresponding capital letters). This produces the
random causal effect

Random causal effect for unit i[Yið1Þ � Yið0Þ; ð2Þ

features of which constitute alternative quantities of interest. For example, our second
causal effect is the mean causal effect, which is the average over repeated hypothetical
draws of the random causal effect

Mean causal effect[Eðrandom causal effectÞ ð3Þ

5E½Yið1Þ � Yið0Þ�
5l1 � l0;

ð4Þ

where l1 [ E[Yi(1)] and l0 [ E[Yi(0)].
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2.3 Average Quantities of Interest

In most applications, estimating the treatment effect for each observation is unnecessary;
instead, the goal is to estimate the average effect over all observations, for some subset of
observations or for a particular population. This leads to several choices for quantities of
interest, each of which is defined for either fixed (in-sample) or population causal effects.
We focus on in-sample effects—that is, based on quantities of interest for all or a subset of
units in our data—since they are closer to the data than effects for averages of specified
populations or population subgroups. However, even for survey researchers and others
interested in population quantities, the practical difference between population and in-
sample estimators is not normally important since a good estimator for one is ‘‘automat-
ically a good estimator for the other’’ (Imbens 2004, 6).

Among in-sample effects, we consider two choices. The first is the average treatment
effect or ATE

ATE[
1

n

Xn

i51

E½Yið1Þ � Yið0Þ j Xi�

5
1

n

Xn

i51

l1ðXiÞ � l0ðXiÞ;
ð5Þ

where l0ðXiÞ[E½Yið0ÞjXi� and l1ðXiÞ[E½Yið1ÞjXi�. This quantity is the mean causal
effect for a unit whose characteristics are represented by Xi, averaged over all units (so
that the expectation operator in the first-line averages over the random causal effects for
each unit with the values of the pretreatment variable equal to Xi, and the summation over i
in both lines refers to the observed sample).

Often, of more interest substantively is the average treatment effect on the treated or
ATT

ATT[
1Pn

i51 Ti

Xn

i51

TiE½Yið1Þ � Yið0Þ j Xi�

5
1Pn

i51 Ti

Xn

i51

Ti½l1ðXiÞ � l0ðXiÞ�:
ð6Þ

In our example, this is the average causal effect in districts in which the Democratic Party
nominated the incumbent member of the House. From one perspective, we might want to
know this treatment effect on the treated (the ATT) since obviously this is the group of
districts where the treatment was applied. In other words, the ATT is the effect of the
treatment actually applied. Medical studies typically use the ATT as the designated quan-
tity of interest because they often only care about the causal effect of drugs for patients that
receive or would receive the drugs. For another example, in job training programs, we are
not normally interested in assigning employed people to have this training (Heckman,
Ichimura, and Todd 1998). In the social sciences, the ATE is often a reasonable choice, as
is the ATT. In our example, we might be interested not only in the effect of incumbency
when the incumbent is nominated, but we can also imagine what might have happened if
an incumbent were nominated in a district in which he or she did not actually receive the
nomination. In this paper, we usually focus on ATT as the quantity of interest when it is
conceptually or algebraically simpler, but we also show how to compute the ATE. If causal
effects are constant over i, then the ATT and the ATE are identical.
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The ATE and ATT defined above are each in-sample, unconditional estimates. Alter-
native quantities of interest are defined by making the choice of unconditional versus
conditional and in-sample versus population quantities. In contrast to the unconditional
quantities above, conditional ATE and ATT quantities get even closer to the data by
conditioning each on yi. The result is that Yi(1) and Yi(0) in the expressions above are
replaced by yi(1) and yi(0), for each i. Then for each i, only one of the counterfactual
outcomes, yi(1) or yi(0), is estimated and the other is set to the observed yi. These condi-
tional, in-sample ATE and ATT quantities are reasonable alternatives that we often use.

Similarly, to change from in-sample quantities in the expressions above to the popula-
tion ATE, we average it over (i.e., weight by) the population distribution of X; for the ATT,
we average over the conditional distribution of X given T 5 1. Point estimates for the
population and sample are normally identical, although the variances for the population
estimates are usually larger.

2.4 Nonbinary and Multiple Treatments

Projects with a causal variable that has more than two categories or is continuous or mixed
can dichotomize (perhaps in several alternative ways) or use more complicated methods
designed especially for these variables (Imai and van Dyk 2004). Those with more than
one causal variable of interest can follow all the advice herein for one variable at a time,
which would involve matching separately for each and working hard to avoid posttreat-
ment bias in the process. We stick to a single binary treatment here since it greatly
simplifies the exposition and improves intuition even for those who will ultimately use
more sophisticated treatments.

3 Assumptions and Data Collection Mechanisms

We now describe the assumptions necessary for making causal inferences in experimental
and observational research. Some version of these assumptions, or some way to deal with
the information in them, is necessary no matter what statistical methods are used for
estimation. Any specific statistical method chosen will make additional assumptions,
but the ones discussed here affect essentially all methods.

3.1 Experimental Research

Although classical randomized experiments are only rarely conducted in political science,
they remain a useful ideal type for understanding other research designs. Indeed, the
preprocessing procedures we recommend alter the data to make them more like what
we would have seen if an experiment had been conducted.

Valid and relatively straightforward causal inferences can be achieved via classical
randomized experiments. Such experiments have three critical features: (1) random se-
lection of units to be observed from a given population, (2) random assignment of values
of the treatment to each observed unit,3 and (3) large n (sample size).

Feature (1) avoids selection bias by identifying a given population and guaranteeing
that the probability of selection from this population is related to the potential outcomes
only by random chance. Combining Feature (1) with the large n from Feature (3) guar-
antees that the chance that something will go wrong is vanishingly small.

3Below, we assume a classical randomized experiment with simple random assignment rather than random
assignment based on some pretreatment covariates. If treatment assignment depends on observed values of
the covariates, those covariates should be taken into account in subsequent analyses.
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Random assignment in Feature (2) guarantees the absence of omitted variable bias even
without any control variables included. To see this, recall that under the usual econometric
conditions for omitted variable bias, a variable Xi must be controlled for if it is causally
prior to Ti, empirically related to Ti, and affects Yi conditional on Ti. If instead one or more
of the three conditions do not hold, then Xi may be omitted without any resulting bias
(although the variance may increase). Random assignment guarantees that Ti is indepen-
dent of any Xi, whether measured or not, except by random chance. Moreover, the large
n in Feature (3) guarantees that this chance is vanishingly small.

Classical randomized experiments are a true ideal type, particularly in relation to most
social science research, which almost always fails to meet at least one of the three features.
Even most social science laboratory experiments have random assignment but no random
selection and often a small n. Traditional survey research has what is intended to be
random selection (although with dramatically increasing nonresponse rates and cell phone
usage, this is a less plausible claim) and certainly has a large n, but random assignment,
except when the treatment involves the wording of survey questions, is usually impossible.

3.2 Observational Research

We define observational data collection mechanisms as any process generating data that
does not meet all three features of a classical randomized experiment. Scholars trying to
use the experimental paradigm attempt to design research to meet all three features dis-
cussed in the previous section. Researchers analyzing observational data are instead forced
to make assumptions that, if correct, help them avoid various threats to the validity of their
causal inferences.4

In this paper, we assume data are selected in a manner that does not generate selection
bias. Observations need not be selected at random, as in an experiment, but the probability
of selection must not depend on potential outcomes. This can be satisfied by carefully
considering and controlling for the sample selection process (as in case-control designs) or
by changing the quantity of interest to be that reflected by the sample. However it is done,
avoiding selection bias is the subject of a great deal of concern and study in a large variety
of methodological and substantive literatures. We mention it here to emphasize that all the
well-known concerns about selecting on the dependent variable should remain a concern
to researchers even when adopting our approach of preprocessing data via nonparametric
matching procedures.

We also assume that researchers analyzing observational data have sufficient in-
formation in their measured pretreatment control variables Xi so that it is possible via
some method to make valid causal inferences. This is known in political methodology
and econometrics as the absence of ‘‘omitted variable bias,’’ so that Xi must include all
variables that are causally prior to Ti, associated with Ti, and affect Yi conditional on
Ti (Goldberger 1991; King, Keohane, and Verba 1994), or ‘‘selection on observables’’
(Heckman and Robb 1985). In statistics, this same condition is known as ‘‘ignorability,’’
which means that Ti and the unobserved potential outcomes are independent after condi-
tioning on Xi and the observed potential outcomes, and so we can literally ignore all
unobserved variables (Rubin 1978). In biostatistics, it is known as the absence of ‘‘un-
measured confounding,’’ and in several fields it is known as ‘‘conditional independence.’’
Whatever the name, it is a strong condition, but it is one about which social scientists are

4Our definition of ‘‘observational data’’ is more expansive than some. In some fields, only deviations from random
assignment would be called observational. Our definition emphasizes the necessity of assumptions in general
rather than any ones in particular.
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deeply knowledgeable and it is the central methodological concern of many substantive
scholarly articles. We emphasize this assumption to make clear that our procedures contain
no magic: They do not help us control for variables that are not measured.

In the context of the no selection or omitted variable bias assumptions, we have
implicitly made three others that are worth additional emphasis here. First, the pretreat-
ment covariates Xi are truly pretreatment and are thus not consequences of Ti. Second, we
assume the independence of units, which is the equivalent of assuming the absence of time
series or spatial autocorrelation across units (or in other words that the two potential
outcomes for observation i and the treatment for observation j are independent, for all
i 6¼ j). We have also assumed that the treatment administered to each unit is the same. This
assumption would be violated in our example if incumbency status meant something
different across districts.5

Satisfying the assumptions discussed in this section still leaves many other assumptions
to be made when choosing a specific statistical inference method. We now focus on this
point in the context of commonly used parametric methods.

4 Parametric Analysis Methods

Researchers willing to assume that a particular parametric model (up to some unknown
parameters) generated their data should specify and directly estimate this model. Prepro-
cessing data with matching procedures will not help in this situation. Of course, few
researchers with observational data sets have this kind of knowledge, and as a result some
choices need to be made among the range of possible parametric models. The dilemma is
that although researchers using parametric methods do not know the true parametric
model, they must proceed as if they do.

We begin by specifying a single but general parametric model that characterizes the
range of models that researchers might choose from. The special cases of this model
include almost all parametric models that have been used in the social sciences. First,
define the chosen stochastic component for the model as YijTi;Xi ; pðlTiðXiÞ; hÞ for prob-
ability density pð�Þ, mean lTiðXiÞ; and vector of ancillary parameters h. Then, denote the
systematic component as lTiðXiÞ[E½YijTi;Xi�5 gðaþ Tibþ XicÞ for some specified
functional form gð�Þ and with intercept a and coefficients b and c. The ancillary param-
eters may also be specified to vary over observations as a function of Xi or other covariates.
This framework includes all generalized linear models (McCullagh and Nelder 1989), as
well as many others. For example, if pð�Þ is normal and g(c)5 c, we have linear regression;
if pð�Þ is Bernoulli and g(c) 5 1/(1 þ e�c), the model reduces to a logistic regression.

We define the ATT in equation (6) under this model by substituting in the definitions
of the potential outcomes from the systematic component, with Ti taking on values 1 and 0,
respectively

l1ðXiÞ[E½Yið1Þ j Ti 5 1; Xi�5 gðaþ bþ XicÞ;
l0ðXiÞ[E½Yið0Þ j Ti 5 0; Xi�5 gðaþ XicÞ:

ð7Þ

We can produce estimates of these quantities by assuming independence over observations
and forming a likelihood function

5These last two assumptions are sometimes known as the ‘‘stable unit treatment value assumption’’ or SUTVA
(Rubin 1974).
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Lða; b; c; h jY ;T ;XÞ5
Yn

i51

pðYi j gðaþ Tibþ XicÞ; hÞ; ð8Þ

the maximum of which gives parameter estimates, or via Bayesian or other inferential
methods.

We now turn to the difficulties in making causal inferences from experimental versus
observational data under this general model and conclude this section with an illustration
and formal definition of model dependence.

4.1 Experimental Data

In experimental data, random assignment guarantees (among other things) that Ti and
(any observed or unobserved) Xi are independent. In this situation, Xi cannot be a con-
founding factor when estimating the effect of Ti, and we drop Xi and replace equation (7)
with

E½Yið1Þ j Ti 5 1�[ l1 5 gðaþ bÞ;
E½Yið0Þ j Ti 5 0�[ l0 5 gðaÞ

ð9Þ

and the ATT in equation (6) with

ATT5 gðaþ bÞ � gðaÞ; ð10Þ

which importantly no longer has a summation sign over i.
The systematic components in equation (9) are now scalar constants for all i. This is

a key result since the functional form gð�Þ no longer models a high-dimensional space
representing how the mean varies over i as a function of all the variables in Xi but instead
now merely amounts to a simple scalar reparameterization. The fact that gð�Þ is now
a scalar is central: Since maximum likelihood is invariant to reparameterization—mean-
ing, for example, that the maximum likelihood estimate (MLE) of a is the same as the
positive square root of the MLE of a2 (King 1989, 75–6)—we get the same estimate of the
expected potential outcomes no matter how gð�Þ is defined.6 When l0 and l1 are a function
of Xi, the choice of gð�Þ is a difficult substantive decision typically requiring more knowl-
edge than is available. In contrast, in experimental data, because we can now drop Xi, the
choice of gð�Þ reduces to an easy computational issue with no substantive import. More-
over, given any chosen stochastic component, this result holds for a wide range of para-
metric models, including all the special cases of the general model given above.

Since the specific maximum likelihood estimator of the population mean for many
common probability densities is merely the sample mean, the analysis of classical ran-
domized experiments typically comes down to taking the difference in the sample means
of Yi for the treatment and control groups. But even if one chooses to run a parametric
model (for reasons of efficiency, conducting conditional inferences, or because of knowl-
edge of the functional form), the absence of model dependence means that the choice for
a functional form will not matter: The results will be almost the same no matter what
choice one makes for the functional form.

6To rule out degenerate cases such as g(a) 5 8, we require that the image of gð�Þ and the range of the potential
outcomes be the same.
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4.2 Observational Data

In experiments, random assignment breaks the link between Ti and Xi, eliminating
the problem of model dependence. When analyzing observational data with parametric
methods, we are not so fortunate. We cannot reduce equation (7) to equation (9) and so
are left having to model the full functional relationship that connects the mean as it
varies as a function of Ti and Xi over observations. Since Xi is typically multidimen-
sional, this is a surprisingly difficult task with rather severe consequences for research
practice.

The problem is the curse of dimensionality and the consequence in practice is model
dependence. We begin with the former and for simplicity suppose that we have a contin-
uous dependent variable and one 10-category explanatory variable, and our goal is to use
linear regression to estimate the functional relationship without actually making functional
form assumptions. To do this, we represent the 10 categories with 10 parameters (a
constant and nine dummy variables or equivalently 10 mean indicator variables). In
contrast, the usual approach to estimation is to assume linearity by directly including
the 10-category variable. This enables us to enter not 10 indicator variables, but rather
only a constant term and one slope coefficient. How do we get from 10 parameters to only
two? Pure assumption. If we have some sense that the relationship is indeed linear or close
to linear, this is a good use of external information to reduce the number of parameters that
must be estimated. If not, then we still have the best linear approximation to the condi-
tional expectation function, but the relationship we estimate can be far off. If we are
running this regression for the purpose of estimating a causal effect, then the treatment
variable is also in the regression, and its coefficient can be biased to any degree if the
functional relationship with the control variables is misspecified.

This problem quickly becomes more serious as the number of explanatory variables
increases. For example, estimation without functional form assumptions with two 10-
category explanatory variables would require not 20 parameters but 100. In this case,
the usual approach would include a constant term and two slope coefficients, reducing
100 parameters to three by pure assumption. And with multiple explanatory variables,
claims about external knowledge constraining the functional form much become dubious.
In this example, by what theory would we know that 97 parameters, representing every
form of nonlinearity and interaction, should be set to exactly zero? Including a linear
interaction would not help much since it would merely add one more parameter to esti-
mate, and so we would still need to make assumptions about the remaining 96 parameters.

Estimating rather than making assumptions about all these extra parameters is obvi-
ously not possible under the standard regression approach since social science data sets do
not come with anywhere near enough observations. We cannot avoid the problem with
nonlinear or nonnormal statistical models since these pose the same curse of dimension-
ality as linear regression. The assumption of ignorability, which enables us to make the
positivist assumption that we have measured and observed all necessary variables, is
insufficient.

Instead, we are led to the inescapable conclusion that, in parametric causal inference of
observational data, many assumptions about many parameters are frequently necessary,
and only rarely do we have sufficient external information to make these assumptions
based on genuine knowledge. The frequent, unavoidable consequence is high levels of
model dependence, with no good reason to choose one set of assumptions over another.
Residual and other diagnostics will uncover some forms of misspecification, but the curse
of dimensionality prevents any simple parametric solution to the problem.
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4.3 Model Dependence in Observational Data

We first illustrate the problem of sensitivity to model specification and then give a more
formal definition of model dependence. The left graph of Figure 1 plots artificial data for
outcome Yi on the vertical axis and a pretreatment covariate Xi on the horizontal axis (we
discuss the right graph in Section 5.2). This data set was designed to illustrate the problem;
in real examples, aspects of the problem we portray here often appear, but they may be
more difficult to see given the simultaneous presence of other methodological problems.
In addition, although a good data analyst could easily identify outliers in this one-
dimensional case, doing so is harder in the usual situation with many covariates. In this
figure, each data point is plotted as a ‘‘T’’ for treated units (Ti 5 1) and ‘‘C’’ for control
units (Ti 5 0). We then fit two regressions to these data. The first is a linear regression of
Yi on a constant, Ti, and Xi: E[Yi | Ti, Xi] 5 a þ Tib þ Xic. The fitted values for this
regression are portrayed in two parallel solid lines, the dark solid line for the treated group,
E[Yi | Ti 5 1, Xi]5 aþ bþ Xic, and the gray solid line for the controls, E[Yi | Ti 5 0, Xi]5
a þ Xic. The positive vertical distance between the two straight lines is this parametric
model’s causal effect estimate.

Model dependence is easy to see by also fitting a quadratic model to the same data,
which merely involves adding an X2

i term to the original linear regression. Fitted values for
the quadratic regression appear as dashed curves in the same left graph, again gray for the
controls and solid black for the treated. Clearly, these fit the same data markedly differ-
ently from the original regression. Not only is the overall shape completely different, but

Fig. 1 Model sensitivity of ATE estimates for imbalanced raw and balanced matched data. This
figure presents an artificial data set of treated units represented by ‘‘T’’ and control units represented
by ‘‘C.’’ The vertical axis plots Yi and the horizontal axis plots Xi. The panels depict estimates of the
ATE for a linear and quadratic specification, represented by the difference between parallel lines and
parabolas, respectively. Dark lines are fitted to the treated points and gray to the controls. In the raw
data, plotted in the left panel, some of the control units are far outside the range of the treated units,
and these outlying control units are influential in the parametric models. In the matched data, plotted
in the right panel, treated units are matched with control units that are close in Xi (gray units are
discarded), and as a result treatment effect estimates are similar regardless of model specification.
The two linear and two quadratic lines also appear on the right graph (on top of one another),
truncated to the location of the matched data.
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the causal effect has now switched signs, which can be seen because the gray solid line is
below the dark solid line, whereas the gray dashed curve is above the dark dashed curve.

Ultimately, these two models estimate the causal effect by the average vertical distance
between the C’s and T’s. They differ only in how they compute this average. In this case,
the linear model estimates a causal effect of 0.05, whereas the quadratic model estimates
a causal effect of �0.04, and of course other models would yield other estimates. A key
problem that generates this model dependence is the presence of control units far outside
the range of the treated units. The model estimation thus extrapolates over a range of data
that do not include treated and control units and so is particularly sensitive to the set of
control units that do not look similar to the treated units. These extrapolations make causal
effect estimates exquisitely sensitive to minor modifications in the statistical model (King
and Zeng 2007).

Some researchers surely respond to this diversity of possible models by inadvertently
choosing specifications that support their favored hypotheses. Current best practice is to
portray forthrightly at least some aspects of specification uncertainty in published work by
giving results for multiple specifications and evaluating how model dependent the sub-
stantive results are. But researchers of course do not often go very far in portraying the
sensitivity of their causal inferences to model specification, and conveying all the sensi-
tivity is essentially impossible.

In attempting to develop methods that indicate the degree of model dependence that
could possibly occur given only a set of explanatory variables, King and Zeng (2006)
‘‘define model dependence at point x as the difference, or distance, between the predicted
outcome values from any two plausible alternative models . . . . By ‘plausible’ alternative
models, we mean models that fit the data reasonably well and, in particular, they fit about
equally well around either the ‘center’ of the data (such as a multivariate mean or median)
or the center of a sufficiently large cluster of data nearest the counterfactual x of interest.’’
In our case, the predicted outcome values are predicted potential outcomes, Yi(0) and Yi(1),
which in our framework can be modeled separately at the parametric stage and each of
which may have issues with model dependence. In practice, of course, additional model
dependence will occur when models are chosen that do not fit the data. The left graph in
Figure 1 obviously combines both sources of model dependence.

5 Nonparametric Preprocessing

The goal of matching in general and our specific nonparametric preprocessing approach in
particular is to adjust the data prior to the parametric analysis so that (1) the relationship
between Ti and Xi is eliminated or reduced and (2) little bias and inefficiency is induced. If
we are able to adjust the data so that Ti and Xi are completely unrelated (which makes the
control and treatment groups identical with respect to Xi), we will have moved a good deal
of the way from Section 4.2 to Section 4.1. An assumption of ignorability is still necessary,
but we would no longer need to model the full parametric relationship between the de-
pendent variable and the multidimensional Xi. This also eliminates an important source of
model dependence in the resulting parametric analysis stemming from the functional form
specification and the curse of dimensionality. For data sets where preprocessing reduces
the extent of the relationship between Ti and Xi, but is unable to make them completely
unrelated, model dependence is not eliminated but will normally be greatly reduced. If
nonparametric preprocessing results in no reduction of model dependence, then it is likely
that the data have little information to support causal inferences by any method, which of
course would also be useful information.
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5.1 The Immediate Goal of Preprocessing

How can we adjust the data without inducing bias in our causal estimates? The key to this
problem is that the fundamental rule for avoiding selection bias—not selecting on the
dependent variable—does not prevent us from selecting observations on the explanatory
variables (Ti or Xi). (Random or other physical assignments that depend on observed
covariates, such as matched pair or randomized block designs, in experiments and strat-
ified sampling in surveys are other examples of valid data collection mechanisms that
select observations given chosen values of the explanatory variables.) We can also select,
duplicate, or selectively drop observations from an existing sample without bias, as long as
we do so using a rule that is a function only of Ti and Xi. Our preprocessed data set will
therefore include a selected subset of the observed sample for which Ti and Xi are un-
related, meaning that the treatment and control groups have the same background char-
acteristics, or in other words that this relationship holds

p̃ðX j T 5 1Þ5 p̃ðX j T 5 0Þ; ð11Þ

where p̃(�) refers to the observed empirical density of the data, rather than a population
density.7 The simplest way to understand how we can satisfy equation (11) by preprocess-
ing is via one-to-one exact matching. The idea is to match each treated unit with one
control unit for which all the values of Xi are identical. Our preprocessed data set thus is the
same as the original data set with any unmatched control units discarded and thus with Ti

and Xi now independent. If all treated units are matched, this procedure eliminates all
dependence on the functional form in the parametric analysis. (If some treated units cannot
be matched, then they either need to be adjusted during parametric modeling, which of
course risks extrapolation bias, or dropped, which can change the quantity of interest.) It is
also highly intuitive since it directly parallels an experiment where we find pairs of units
that are identical in all observable ways and assign one from each pair to be treated and the
other to be a control. Then no matter what effect Xi has on Yi, we can ignore it entirely since
Xi is literally held constant within each pair of units.

Although one-to-one exact matching can eliminate model dependence and any bias
from incorrect assumptions made during the parametric stage of analysis, it is not the only
way to break the link between Ti and Xi, since satisfying equation (11) only requires the
distributions to be equivalent. Thus, to be clear, matching does not require pairing ob-
servations (indeed, there might have been less confusion if the technique had been called
‘‘pruning’’); only the distributions need be matched as closely as possible. Moreover, exact
matching has the disadvantage in many applications of using relatively little of the data.
Finding matches is often most severe if Xi is high dimensional (another effect of the curse
of dimensionality) or contains continuous variables. The result may then be a preprocessed
data set with very few observations that leads to a parametric analysis with large standard
errors. If this occurs, common practice is to use some form of inexact matching that
balances as well as possible, which thus effectively sacrifices some bias reduction for
the increased efficiency that comes from having more observations in the preprocessed
data set. In our approach, if we lose some opportunity for bias reduction, we do so
only in the preprocessing stage; the researcher’s second-stage parametric analysis still
has a chance to eliminate the remaining bias. Details about how to match when exact

7To be more specific, the empirical density is defined as p̃ðxÞ5 #fi 2 f1; 2; . . . ; ng : Xi 5 xg=n; for all x, where
#A is the number of elements in the set A. The corresponding denominator n is

Pn
i51 Ti on the left side andPn

i5 1ð1� TiÞ on the right of equation (11).
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one-to-one matching is infeasible appear in our software documentation; common mis-
understandings of the theoretical literature on approximate matching appear in Section 6.

A key point about matching as nonparametric preprocessing is that matching is not
a method of estimation: obtaining causal effect estimates from matching requires that it
be paired with some analysis method. In the vast majority of applications, the analysis
method has been a simple difference in means between the treatment and control groups.
This method certainly makes sense in the case of exact one-to-one matching since most
parametric procedures applied to exactly matched data would give the same estimates.
However, with matching that is not exact, using the difference in means estimator is equiv-
alent to assuming that any remaining imbalance in the matched sample is strictly unrelated
to the treatment, which we know is false, or has no effect on the outcome, which we have no
evidence about before consulting the outcome variable, and we will often have good evi-
dence to the contrary in real analyses. Thus, we recommend that scholars make use of their
decades of experience with parametric models to adjust (i.e., to interpolate or slightly
extrapolate) the matched sample. The adjustment necessary is far less onerous, model de-
pendent, and thus much more empirical than what would be necessary without matching.

5.2 Illustration

We now offer an example, in the right graph in Figure 1, of the reduction in model
dependence produced by matching that is not exact. The data in this panel are the same
as that for which the parametric analysis in the left graph gives highly model-dependent
results. This is merely an illustration, easy to see in this one-dimensional case, of patterns
that would be difficult to detect without matching in data sets with many variables and
other methodological issues.

The difference is that the matching procedure deleted the observations that would
require substantial extrapolation (marked as gray C’s) and produce the imbalance. With
these deletions, the data set is now highly balanced, and as such the linear model and the
quadratic model give essentially identical causal effects. In the matched data, both para-
metric models yield estimates of approximately 0.001 (which is close to the true effect
of 0 we used to generate the data). Preprocessing has therefore made the functional form
assumption about whether to include X2

i in the regression largely irrelevant. Indeed, for
a large range of models, this preprocessed data set will be mostly insensitive to the choice
of functional form assumptions and so will return highly similar causal effect estimates.
(We truncated the lines in the right graph to emphasize that we avoid extrapolation to draw
causal inferences here and also limit our inferences to data in this region.)

5.3 The Ultimate Goal of Preprocessing

The ultimate goal of preprocessing is to help obtain accurate causal effect estimates, such
as with small bias and variance. The standard approach to estimation in the social sciences
presently involves parametric modeling of raw data, where a single correct model must be
chosen but multiple candidate models are usually available, and so a unique estimator is
not even specified ex ante and thus not well defined. Compounding the problem of defining
formal properties for estimators like these in practice is that the specific choice of a model,
and thus estimator, is picked by the analyst as a function of almost anything the analyst
wishes, including the dependent variable or the causal effect estimates themselves. More-
over, this function is not stated.

Thus, except in unusual situations where the correct model is known, the standard
parametric-only approach to causal effect estimation cannot be described as having any
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formal statistical properties other than some degree of model dependence (although in
some situations, it may be possible to characterize quantities such as the maximum degree
of bias). To get to the point where we can consider known properties of estimators, and
ultimately produce estimates with low bias and variance, we first need to reduce model
dependence.

We know from the results in Section 5.1 that matching which achieves good balance
will reduce or eliminate model dependence. We also know from theoretical and simulation
results that, in a wide range of scenarios, using matched samples can result in substantial
bias and variance reduction, compared with using random samples of the same size (Rubin
and Thomas 1992, 1996). Similarly, Imai and van Dyk (2004) found reductions in both
bias and variance when using subclassification on estimated propensity scores, compared
with analyses based on the full data.

To be more specific, the basic setting for which the theoretical results hold is that of
affinely invariant matching methods (such as matching using the propensity score) with
ellipsoidally symmetric covariate distributions (such as the normal or t distribution).8 The
key result is that matching in this setting is ‘‘equal percent bias reducing,’’ meaning that it
will reduce bias in all dimensions of X by the same amount. Matching in this setting thus
reduces bias in any function of the X’s, including the outcome of interest (Rubin and
Thomas 1992). The findings also lead to approximations for the reduction in the bias
and variance that is possible when using matching with normally distributed covariates
and a linear relationship between the covariates and the outcome, including results show-
ing that matching on estimated propensity scores can result in additional variance reduc-
tions, relative to using the true propensity score (Rubin and Thomas 1996). The amount of
bias and variance reduction possible depends on the covariate distributions in the treatment
and control groups, the size of the initial bias in X, the original sample sizes, the number of
matches selected, and the correlation between X and the outcome.

We now offer an intuitive explanation of the paradoxical advantages of discarding data
for reducing variance, in addition to bias. Consider first a simple linear regression with
one treatment variable, Ti, and one covariate, Xi. The variance of the coefficient on the
treatment variable (i.e., of the causal effect) is equal to r2=½nð1� cÞs2T � where r2 is the
conditional variance of the dependent variable, n is the number of observations, s2T is
the sample variance of the treatment variable, and c is the coefficient from regressing Xi

on Ti. If matching improves balance, then the dependence between Ti and Xi will drop,
c will be smaller than in the original sample, and hence the variance will be smaller. An
analogous situation applies to nonlinear data generation processes.

The only issue is that this advantage in reducing variance by reducing c can be over-
come by dropping n too much in the process. In most situations, a little judgment and
careful analysis can easily avoid the problem. We explain in four ways. First, in applica-
tions with many more control than treated units, the variance of the causal effect is mostly
a function of the number of treated units, and so losing control units until their number
approximates the number of treated units will not reduce the variance much, while still
reducing bias. Second, for applications with roughly the same number of treatment and
control units, reductions in c by much more than 50% due to matching are not uncommon,
whereas proper matching in this situation would not normally lose anywhere near as large

8Simulation results indicate that the results hold much more generally (Rubin and Thomas 1996), and the
theoretical results also hold in more general settings, including conditionally ellipsoidally symmetric distribu-
tions (such as general location models for continuous covariates with distributions like the normal or t within
classes defined by categorical covariates; Rubin and Thomas 1996), as well as ‘‘discriminant mixtures of pro-
portional ellipsoidally symmetric distributions’’ (Rubin and Stuart 2006).
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a fraction of observations, and so variance usually does drop following properly applied
matching.

Third, the ultimate goal of any causal estimation procedure is to reduce something like
mean squared error, which is squared bias plus variance (although in observational studies
bias is normally more of a concern than variance because, unlike in an experimental
setting, unbiasedness is not guaranteed). Thus, even if n is reduced so much that the
variance increases (even as c decreases), matching will still be advantageous in mean
squared error unless we drop n to an even lower level so that it outweighs not only the
reduction in variance that would otherwise occur but also the squared bias reduction. In
simulations, the reduction in n required to overcome the advantages in mean squared error
is usually quite substantial (Rubin and Thomas 1996; Imai and van Dyk 2004). The result
is that when applied carefully so that n is not much smaller in the matched sample than the
original sample, matching will generally reduce both bias and variance of estimates from
subsequent parametric analyses.

Finally we note that, although matching discards data, it can actually increase the
efficiency of estimates (Smith 1997). This may seem counterintuitive, as it would seem
to violate a first principle of statistics, informally described as ‘‘more data are better.’’
However, more data are in fact better only when using an estimator that is ‘‘self-efficient’’
(Meng and Romero 2003), which roughly speaking is an estimator which is based on
a model that is correct (or sufficiently correct to make use of more data to improve
inferences). Estimators that are not self-efficient can have variance reductions when dis-
carding data. For a simple example, consider data generated from a univariate heteroske-
dastic linear-normal regression model, Yi ;Nðb0 þ gTi þ b1Xi;r2

i Þ; for i5 1; . . . ; 1000,
and variance r2

i equaling h for Xi � 5 and 500h for Xi . 5, where h . 0 and say 50
observations reside at Xi . 5. With data generated from this model, weighted least squares
is a self-efficient estimator, and thus dropping data would increase standard errors. In
contrast, the least squares estimator would not be self-efficient, which can be seen because
dropping the 50 observations with 500 times the variance would greatly reduce heteroge-
neity and thus reduce estimated standard errors. If we know the correct model, this is not
an issue, but if as is usually the case we do not know the correct model and have a range of
potential parametric models we might consider, self-efficiency cannot be assumed, and so
dropping data can be beneficial.9

An advantage of our two-step procedure is that it is doubly robust in the sense that under
weak conditions (such as ruling out extreme cases where matching leads to nonidentification
even though the correct parametric model is specified), if either the matching or the para-
metric model is correct, but not necessarily both, causal estimates will still be consistent (see
Robins and Rotnitzky 2001). That is, if the parametric model is misspecified, but the
matching is correct, or if the matching is inadequate but the parametric model is correctly
specified, then estimates will still be consistent. The common procedure of matching fol-
lowed by an unadjusted difference inmeans does not possess this double robustness property.

5.4 Summary

The immediate goal of matching is to improve balance, the degree to which the treatment
and control covariate distributions resemble each other as in equation (11), without losing

9Although we introduce this simple example to illustrate circumstances where discarding data can be beneficial,
we can also use this example to illustrate another benefit of matching. In general, good balance makes X
irrelevant, and in this example least squares and weighted least squares would both give very similar estimates
of the coefficient on T, which in this model is the estimated causal effect.
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too many observations in the process. The result of this process, when done appropriately,
is considerably less model dependence, reduced potential for bias, less variance, and as
a result lower mean squared error.

The main diagnostic of success in matching is also balance, as well as the number
of observations remaining after matching. Trying different matching methods is not like
trying different models, some of which are right and some wrong, since balance provides
a reasonably straightforward objective function to maximize and choose matching solu-
tions. Just as we iteratively evaluate a likelihood function to its optimal parameter values
(and ignore any intermediate parameter values on the way to the MLEs), one should try as
many matching solutions as possible and choose the one with the best balance as the final
preprocessed data set. Although this point is often misunderstood (such as by occasional
mistaken claims in the literature that differences across matching solutions should con-
tribute to uncertainty estimates), matching solutions with suboptimal balance are in fact
irrelevant and should play no part in our ultimate inferences.10

To ensure that selection during preprocessing depends only on Xi (to prevent inducing
bias), the outcome variable Yi should not be examined during the preprocessing stage.
As long as Yi is not consulted and is not part of the rule by which one drops observations,
preprocessing cannot result in stacking the deck one way or another. Experimenters
typically follow a similar procedure by repeating randomization as often as desired before
collecting the outcome data; if an undesirable randomization is obtained, such as with all
men in the treated group and all women in the control group, they merely discard the first
randomization and do it again until better balance is obtained (see Rubin 2001).

6 Misinterpretations and Practical Implications of the
Theoretical Matching Literature

In this section, we correct instances where the theoretical literature on matching in sta-
tistics, economics, epidemiology, medicine, and biostatistics has been misunderstood
by applied researchers in these and other fields. (For technical literature reviews, see
Rosenbaum (2002), Imbens (2004), and Stuart (2004) and the detailed user’s guide to
the software that accompanies this paper described in the Appendix). We describe these
issues for the ATT, so that matching is designed to choose control units that look most like
the treated units.

6.1 Selecting Covariates

All variables in Xi that would have been included in a parametric model without prepro-
cessing should be included in the matching procedure. By the usual rules for avoiding
omitted variable bias, these should include all variables that affect both the treatment
assignment and, controlling for the treatment, the dependent variable. To avoid posttreat-
ment bias, we should exclude variables affected by the treatment.

The theoretical literature emphasizes that including variables only weakly related to
treatment assignment usually reduces bias more than it will increase variance (Rubin and
Thomas 1996; Heckman et al. 1998), and so most believe that all available control var-
iables should always be included. However, the theoretical literature has focused primarily
on the case where the pool of potential control units is considerably larger than the set of

10If uncertainty remains about how to measure balance, and several solutions have almost the same balance,
then one might wish to include this in our uncertainty estimates, but the decision to do so is a normative one
and should be left to the investigator since all uncertainty estimation techniques exclude some sources of
uncertainty.
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treated units. Some researchers seem to have incorrectly generalized this advice to all data
sets. If, as is often the case, the pool of potential control units is not much larger than the
pool of treated units, then always including all available control variables is bad advice.
Instead, the familiar econometric rules apply about the trade-off between the bias of
excluding relevant variables and the inefficiency of including irrelevant ones: researchers
should not include every pretreatment covariate available.

6.2 Exact Matching

Exact matching is a powerful technique but is misunderstood in at least two ways. First, the
technique is to match all control units with exactly the same covariate values. Many
confuse this with one-to-one exact matching, which is unnecessarily more limited, as it
uses only one control unit for each treated unit. Using all exact control matches for each
treated unit reduces variance further without any increase in bias and so dominates one-to-
one matching. Second, some researchers only use exact matches, even if the number is
very small. This procedure is flawed because it minimizes bias without regard to variance
and can also lead to biased estimates of the ATT if many treated units have to be discarded
because no matches are available (Rosenbaum and Rubin 1985).

If, after exact matching, a large number of units are exactly matched, then we have
exact balance with little inefficiency and further matching procedures are unnecessary.
Indeed, exact balance means that a difference in means is sufficient for the analysis (but to
account for the difference in the number of treatment and control units, a weighted dif-
ference in means across exactly matched subclasses should be used). If an insufficient
number of matches are found, we either repeat exact matching with fewer covariates or
switch to other methods. In the former, we balance the included variables but do not
balance at all on the rest. The excluded variables may be partially balanced due to
correlations with the included variables, but some balance will be absent. In contrast,
other methods, such as propensity score matching, use all variables but only approximately
match.

6.3 Common Support Problems

Finding balance is traditionally broken into two components: ensuring common support
by pruning observations where the empirical density of the control units and that for the
treated units do not overlap and additional selection (or later adjustment) to make the
portions of the densities that do overlap have the same heights. Areas outside of common
support are particularly problematic since they require extrapolation, which can generate
considerable model dependence. And indeed the farther the extrapolation is from the data,
the larger model dependence can become. For example, asking in 2001 what Iraq would be
like if the United States attempted to impose democracy there was pure extrapolation
since the United States had not previously attempted the same thing in another country
like Iraq in all relevant respects. Such an inference could only be made on the basis of
theoretical modeling assumptions because relevant empirical observations from the con-
trol group did not exist.

In the applied literature, researchers often skip common support checks, which can be
a major mistake.11 After all, balance can always be improved and potential model

11Some try to find common support by using the ‘‘propensity score,’’ which we describe below. This approach may
not be appropriate, however, since the propensity score can only be used to find common support when it is
validated, but validation cannot occur when the data include observations outside common support (see King
and Zeng 2007, and the discussion below).
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dependence reduced by removing units that require extrapolation. Part of the reason this
step is skipped so often is that it has not until recently been clear how to identify units
that require extrapolation. One conservative approach, developed by King and Zeng
(2007) is to prune observations from the control group that are outside of the
‘‘convex hull’’ of the treatment group. With one pretreatment covariate, the convex
hull of the treatment group is merely the range of the subset of observations of X that
are in the treatment group, so control units with Xi greater than max(X | T 5 1) or less than
min(X | T 5 1) are discarded. The general definition of the convex hull (which is more
sophisticated than the range in multiple dimensions) also works to define regions of
extrapolation with any number of covariates.12 Across this and the other methods of
checking common support, the more conservative the approach that defines common
support more restrictively, the less model dependence. Of course, more conservative
approaches also leave fewer observations. For other recent ideas on identifying common
support, see Iacus and Porro (2006).

6.4 The Propensity Score Tautology

A commonly used matching procedure is to summarize all the variables in X with a single
variable called the propensity score (Rosenbaum and Rubin 1983). The propensity score
is the true probability of unit i receiving treatment, given the covariates Xi, e(Xi)5 p(Ti 5

1 | Xi). It is usually estimated via a logistic regression of Ti on a constant term and Xi

(without regard to Yi). Unfortunately, the role of the propensity score in the theoretical
literature differs profoundly from the way it has been widely used in practice. Understanding
this disconnect, an explanation of which to our knowledge has not explicitly appeared before
in the literature, is fundamental to making good practical use of this important concept.

Theoretically, the true propensity score is valuable because it is a ‘‘balancing score,’’
meaning that if the treatment and control groups have identical propensity score distribu-
tions, then all the covariates will be balanced between the two groups.13 In addition, if
treatment assignment is strongly ignorable given the covariates Xi, then it is also ignorable
given only the propensity score. This means that matching can be done using just the one-
dimensional propensity score, instead of all the variables in X. Using the true propensity
score in this way, as does much of the applied literature, would thus apparently solve the
curse of dimensionality for matching.

In practice, however, we do not know the true propensity score (except in unusual
situations like experiments). Wewould still be able to appeal to some of the true propensity
score’s theoretical properties if we had a consistent estimate of it, but such an estimate
would require knowing the correct functional form for the assignment model, which is
highly unlikely. Moreover, few useful theoretical results exist for the case when the true
form of the propensity score equation remains unknown. These theoretical results would
therefore seem to be entirely self-defeating: In order to use nonparametric matching to
avoid parametric modeling assumptions, we must know the parametric functional form of
the propensity score equation.

Fortunately, there is a way out. We suggest, first, looking past the theoretical properties
of the propensity score, except for the purpose of motivating the goal of better propensity

12Similarly, if any treated units fall outside the convex hull of the control units, these too are often discarded.
Dropping treated units changes the causal effect being estimated, and so should be done with more caution, but
if it remains a relevant quantity of interest, at least it can be estimated in a reasonable way.

13The propensity score is one of many balancing scores. For example, X itself is a balancing score, which explains
why exact matching works.
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score specification, and, second and more importantly, recognizing the value of what we
call the propensity score tautology. The propensity score tautology in our view is the main
justification for using this technology in practice: The estimated propensity score is a bal-
ancing score when we have a consistent estimate of the true propensity score. We know we
have a consistent estimate of the propensity score when matching on the propensity score
balances the raw covariates. Of course, once we have balance on the covariates, we are
done and do not need to look back. That is, it works when it works, and when it does not
work, it does not work (and when it does not work, keep working at it).

The tautology thus provides a way to make irrelevant the knowledge of whether we
have satisfied the conditions necessary to use the theoretical results about the true or
consistently estimated score. The goal of matching is to achieve the best balance for a large
number of observations, using any method of matching that is a function of Xi, so long as
we do not consult Yi. As it turns out, and for whatever reason, one such method that
researchers sometimes find useful in some applications is based on propensity scores.
The reason the propensity score approach often works in practice to balance the covariates
relatively quickly may be related to its as yet unproven theoretical properties, but this
conjecture is irrelevant to making valid causal inferences. At least given the current state of
the literature, only the propensity score tautology is useful in practice. Other theoretical
results have no direct bearing on practice.

In applications, the usual practice is to estimate the propensity score by a logistic
regression of Ti on Xi. Since we are in the situation where exact matching is insufficient,
a common procedure is to match each treated unit to the control unit with the most similar
value of the estimated propensity score êðXiÞ (which is known as nearest neighbor match-
ing on the propensity score).14 If this procedure balances X (and thus satisfies the proce-
dures for checking balance we describe below), we use it. If not, then we respecify the
logistic regression by adding interactions or squared terms and match again. If that works,
then we use it. If not, we try even more elaborate specifications (such as other functional
forms such as CART, neural network analyses, or others) or more sophisticated matching
methods (Frölich 2004; Smith and Todd 2005).

6.5 Deciding Which Observations to Match

The collective wisdom of the theoretical literature recommends the following three pro-
cedures for the actual process of choosing matched data sets. Unfortunately, most match-
ing applications merely use software defaults and miss the advantages of these more
sophisticated techniques.

First, if many more control than treatment units are available, choosing more than one
control match for each treated unit will increase the efficiency of the procedure (although
each match past the first usually reduces the variance less than the previous one) and can in
some instances greatly reduce the bias too (Smith 1997). If, instead, fewer controls are
available than those treated, then matching with replacement—allowing each control unit
to be matched to more than one treated unit—is a good option (Dehejia and Wahba 1999).
Alternatively, we can consider switching the definition of treatment and control groups

14When matching without replacement, two different approaches of matching nearest neighbors are available.
The first, known as ‘‘greedy’’ matching, starts with some treated unit and matches the closest control unit that
has not yet been matched. This approach, although slightly faster and easier to understand, is not invariant to the
order in which units are matched. A second approach, known as ‘‘optimal’’ matching, avoids this issue by
minimizing the total distance within matched units (e.g., Rosenbaum 1989). Our software implements both,
incorporating optimal matching code provided by Hansen (2005).
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(although, if using ATT, this will change the substantive definition of the causal effect
unless one uses more sophisticated estimators; Lechner 2000).

Second, we are sometimes in the situation of suspecting from prior evidence (but not
from the present data set) that some covariates have a disproportionately large effect on
our outcome variable. When this is the case, even slightly mismatching on these variables
may severely bias our causal effect. To avoid this problem, we suggest matching using two
separate metrics, one for the large-effect variables and another for the rest. If feasible, we
create pools of exact matches on the large-effect variables and then use nearest neighbor
matching based on the remaining variables to choose specific matches within these pools.
If exact matching does not turn up sufficient observations, then we can choose the nearest
neighbor on the large-effect variables, defined by the Mahalanobis distance, among all
units within say 0.25 standard deviations (also known as ‘‘calipers’’) of the propensity
score computed from all variables.15 If some of the variables in X represent binary vari-
ables with very few in one category, common practice is to include them in the propensity
score but not in the Mahalanobis distance calculation (Gu and Rosenbaum 1993; Rubin
and Thomas 2000).

Finally, if finding a matching procedure with good balance and a large number of
observations is difficult, subclassification can be a useful technique (Imai and van Dyk
2004). In subclassification, we form groups in which the distributions of covariates are the
same, even though across the subclasses the distributions of covariates may be quite
different. Subclassification can be accomplished by dividing the units into roughly equally
sized subclasses where the estimated propensity score is, by construction, approximately
constant and thus balanced. Many rely on the theoretical result that five or six subclasses
are sufficient to adjust for a univariate covariate such as the propensity score (Cochran
1968; Rosenbaum and Rubin 1984), but applied researchers have not fully appreciated
that as n increases more subclasses are generally preferable. In addition, the number and
definition of the subclasses should be tuned to the nature of the empirical distributions to
ensure adequate treatment and control units in each subclass. A useful alternative is ‘‘full
matching,’’ which offers variable numbers of matches in each subclass (Hansen 2004).

6.6 The Balance Test Fallacy

A good matching procedure reduces bias by increasing balance, decreases the variance or
at least does not increase it much, and prevents inducing new biases by matching only
based on X without consulting y until the analysis stage. We assume that matching is
based only on X, and checking the number of observations remaining after matching is
easy. Thus, the main issue we address in this section and the next is how to evaluate
balance. Conceptually, verifying balance involves checking whether equation (11),
p̃ðXijTi 5 1Þ5 p̃ðXijTi 5 0Þ; holds. One way to think about this process is to imagine,
for all the variables in Xi, forming a multidimensional histogram for all the treated units
and comparing it to another multidimensional histogram of all the control units. Because
of the curse of dimensionality, multidimensional histograms with more than a few cova-
riates tend to be very coarse or have many empty bins and so are difficult to evaluate and
compare. Thus, researchers usually examine various low-dimensional summaries instead.
If a low-dimensional summary differs between the treated and control groups, then we
know equation (11) does not hold. The risk of course is that even if the treatment and
control groups match according to some low-dimensional summaries, we still cannot be

15The 0.25 standard deviation figure, although not a universal constant of nature, is the most common recom-
mendation in the literature; it appears to have been interpolated from the results in Cochran and Rubin (1973).
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certain that equation (11) holds since it is a multivariate concept, and so using several
different checks is always a good idea.

Here we describe what Imai, King, and Stuart (2006) call the balance test fallacy, which
unfortunately afflicts numerous applications of matching in most fields. The critical mis-
understood point is that balance is a characteristic of the observed sample, not some
hypothetical population. The idea that hypothesis tests are useful for checking balance
is therefore incorrect, and t statistics below 2 and p values above 0.05 have no special
relevance for assessing balance. But in addition, the fallacy has several serious implica-
tions. First, balance tests do not provide levels below which imbalance can be ignored:
The closer the two observed treatment and control groups in the sample, the better. The
problem that has been ignored is that if imbalance, no matter how small, occurs for
a variable that happens to have a large enough effect on Y, then this tiny or ‘‘insignificant’’
imbalance can translate into a large bias and/or inefficiency in our causal estimates, so
there is no reason to stop if you can find better balance.

More serious is that balance tests can also be highly misleading, even when using them
as objective functions to optimize. In particular, pruning too many observations reduces
the statistical power of a hypothesis test (i.e., the probability of rejecting the null hypoth-
esis) and thus affects the test, even if this pruning does not improve balance at all. Imai,
King, and Stuart (2006) illustrate this danger by creating a sequence of matched data sets
by randomly pruning increasing numbers of control group observations. Random match-
ing has no systematic effect on balance, but the test statistic indicates that the more data
you randomly discard, the better balance gets, which is a fatal flaw. In fact, since hypoth-
esis tests are driven in part by factors other than balance (including the number of remain-
ing observations, the ratio of remaining treated to control units, and the variance of the
treated and control groups), they are not even monotonic functions of balance: the t test
can get apparently better while balance gets worse, or vice versa.

6.7 Better Matching Evaluations

Instead of using hypothesis tests for assessing balance, we need to assess the difference
in the multivariate empirical densities of X for the treatment and control groups. Since
working with multivariate densities is difficult, we follow the common procedure of
working with lower dimensional summaries, but we do so by directly assessing differ-
ences. We also recommend that the measures applied be presented in the units of the
original variables, so that the substance of the problem is emphasized and the relationship
between the size of the remaining imbalance can be compared to one’s views about the
potential importance of the variable in question.

One particularly simple low-dimensional summary compares the mean of each variable
in X for the treated group with the mean of each variable in the control group. The smaller
these differences are the better. One rule of thumb that has been offered is if one or more of
these differ by more than a quarter of a standard deviation of the respective X variable, then
better balance is needed (Cochran 1968), but finding ‘‘small’’ imbalance in the original
units is the real goal. It is also useful to compare the standard deviations of each variable
between the two groups, as well as interactions or higher order moments. Another useful
procedure is to compare treatment and control histograms one variable at a time or in pairs
if enough data are available.

Our preferred approach is to use an empirical quantile-quantile plot, or QQ plot, for
each variable (and often their interactions) to compare the full empirical distributions for
the treated and control groups for each variable. QQ plots are usually the best way to
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compare two univariate distributions: They plot the quantiles of a variable of the treatment
group against that of the control group in a square plot (we give an example in Section 7).
We also numerically summarize these plots with mean and maximum deviation between
the two distributions on the scale of the variables being measured (which is the average or
maximum deviation from the 45-degree line).16 (If one wishes to compare the balance
across different covariate dimensions, then differences in empirical cumulative distribu-
tion functions can be used, instead.)

A paradoxical but sometimes useful procedure is to examine the QQ plot of the pro-
pensity scores of the control and treated units. This is paradoxical (and part of the pro-
pensity score tautology) because it relies on the propensity score as a summary of the data
to check whether propensity score matching is adequate. It is useful nonetheless as one
of our procedures for checking balance because it offers a low-dimensional summary not
obviously worse than examining the variables one at a time. Indeed, for the reasons
discussed above, it is often a good low-dimensional summary.

The immediate goal of matching is balance, which involves adjusting the data set
to reduce dependence between Ti and Xi. Since for feasibility scholars will use one-
dimensional summaries to substitute for the comparison of multidimensional histograms,
evaluating balance should always be done in multiple ways. Relying on any one measure
to assess balance will never be adequate (unless matching is exact). In addition, the
ultimate goal of matching is not merely balance but reducing bias and model dependence
in estimating the causal effect of Ti on Yi. We exclude any information from Yi in the
matching procedure so as to avoid selection bias, but the key is that causal estimation bias
and model dependence is a function of both imbalance in our covariates and our best prior
information about the importance of each covariate (the effect of Xi on Yi controlling for
Ti). Obtaining good balance on covariates that are likely to be important is more crucial
than those that have less of an effect since important covariates will inflate any remaining
imbalance to produce more model dependence. Thus, obtaining a good matched data set
requires careful assessment and evaluation through multiple objective functions (none of
which involve balance hypothesis tests), as well as the combination of the quantitative
measures discussed above and available prior information about the likely relative impor-
tance of each of one’s covariates. Automated searches can also be useful in this regard,
such as the promising approach of Diamond and Sekhon (2005), whose software makes it
possible to choose appropriate balance measures (and is also incorporated in MatchIt).

If some covariates are omitted from some of the matching procedures, the balance on
them should still be checked. Doing so is often a good way to discover that some covariates
are indeed important, since researchers frequently have good qualitative knowledge of
variables not coded in Xi, especially in nonsurvey data on countries or regions and
can check balance qualitatively even when quantitative measures are not available to
match on (Rosenbaum 2002, chap. 3). Indeed, preprocessing can help researchers better
understand their data when supplemented by good qualitative information and research
(e.g., Rosenbaum and Silber 2001).

If meeting these criteria for balance proves impossible, we then need to recognize
that preprocessing by matching may not be helpful. Unfortunately, if preprocessing is

16For example, the maximum distance of quantile functions is given by max0,a,1jF̃�1
Xt ðaÞ � F̃�1

Xc ðaÞj; where F̃Xt

and F̃Xc are the empirical cumulative probability distribution functions of a single variable X for the matched
treatment and matched control groups, respectively. That is, F̃XtðxÞ5 1

n*t

Pn*

i51 IfXi�xgTi and F̃XcðxÞ5
1
n*c

Pn*

i51 IfXi�xgð1� TiÞ; where n*t 5
Pn*

i51 Ti and n*c 5
Pn*

i51ð1� TiÞ; are the size of matched treatment and
matched control groups, respectively, n* 5 n*t þ n*c is the size of matched data, and If�g denotes the indicator
function.
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unhelpful, then any parametric procedure will likely require severe extrapolation and
hence will be highly model dependent. In the unusual situation where particular parametric
assumptions are somehow justified and verified, then it may be reasonable to proceed. In
most applications, however, model sensitivity that cannot be improved by preprocessing
because balance is too hard to achieve marks a data set that is too fragile for making robust
causal inferences by any means.

6.8 Parametric Outcome Analysis

After choosing the final matched sample, preferably with maximum balance, reduced
heterogeneity, and a large number of observations remaining, the parametric analysis
can then proceed. Unfortunately, with few exceptions the parametric analysis chosen in
practice by applied researchers after matching has been a simple difference in means (or
the equivalent of a regression of Yi on Ti without any control variables). This is unfortunate
since the procedure assumes that Ti and Xi are unrelated. If the assumption is false, and it is
false except in the rare case when exact matching is possible for all observations, then the
result is the same for omitted variable bias that occurs whenever a potential confounding
variable is ignored.

Thus, a better procedure is to use the same parametric analysis on the preprocessed data
as would have been used to analyze the original raw data set without preprocessing. This
can include the same maximization algorithms, the same software, the same model check-
ing and fit procedures, and the same methods of computing and interpreting quantities of
interest. The only reason to change these procedures is if best practices in statistical
modeling were not followed, such as forgetting to focus on a single causal variable at a
time, not avoiding posttreatment bias, etc.17 Using preprocessed data should reduce model
dependence, and this too is worth checking: as one should even without preprocessing, we
should check the sensitivity of causal effect estimates to changes in the specification.

6.9 Computing Uncertainty Estimates

Parsing what the theoretical literature on matching-based estimators says about proper
methods of computing uncertainty estimates, such as standard errors or confidence intervals,
is difficult without understanding a fundamental difference in perspectives that is rarely
discussed. Neither perspective is right or wrong, and each is useful in some circumstances.

In the matching literature, some proposed nonparametric estimators—such as a differ-
ence in means with bias adjustment—are used to estimate the ATE after matching. Since
the goal of nonparametric estimation is to make as few assumptions as possible, the
variance estimation as well as point estimation tend to be based on complicated and
sometimes application-specific procedures (e.g., Abadie and Imbens 2006a).

In contrast, our perspective (which is similar to the special cases analyzed by some
statisticians; for example, Rubin and Thomas 2000) is to begin with what social scientists
are now doing, which is estimating some form of parametric (usually regression type)
model. We then ask how matching as nonparametric preprocessing can improve this current

17Standard parametric data analysis procedures only need to be changed when using subclassification, full
matching, or matching with replacement. In the latter two, we must use weights to ensure that the parametric
analysis reflects the actual observations. For subclassification, parametric analyses should be conducted sepa-
rately within each subclass and the results combined by taking a weighted average (with weights based on the
number of units in each subclass) or, if insufficient observations exist within each subclass, fit an overall model
with fixed or random effects for the subclasses (Imai and van Dyk 2004).
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practice. Thus, since social scientists are already making parametric assumptions, we do not
ask anyone following best practices to change their assumptions, and we do not reduce them
either; we merely ask how to compute variance estimates in social scientists’ current para-
metric models if the data are also preprocessed. The answer turns out to be simple: use the
same variance estimator as one would normally do in using a parametric analysis.

We thus take advantage of a common feature of all the methods of computing un-
certainty estimates associated with regression-type parametric methods: They are all
conditional on the pretreatment variables Xi (and Ti), which are therefore treated as fixed
and exogenous.18 Since our preprocessing procedures modify the raw data only in ways
that are solely a function of X, a reasonable method for defining uncertainty is to continue
to treat X, and thus our entire preprocessing procedures, as fixed. The advantage of this
definition is that we can easily compute standard errors and confidence intervals using the
same methods researchers have been using with their parametric methods all along, but
applied to the preprocessed instead of the raw data.

Thus, when estimating the ATT or ATE, we compute estimates of l1(Xi) and l0(Xi) and
their uncertainty as usual from a parametric model applied to the preprocessed data. If
computing conditional causal effects (either on average over all observations or just the
average for the treated units), we set l1(Xi)5 yi if Ti 5 1 and use the parametric model to
estimate l0(Xi) and its uncertainty, whereas if Ti 5 0, we set l0(Xi) 5 yi and use the
parametric model to estimate l1(Xi) and its uncertainty estimate.

7 Empirical Illustrations

We now offer two empirical illustrations of how preprocessing raw data via nonparametric
matching can reduce model dependence. For pedagogical reasons, and to save space, we
use different methods of checking balance via equation (11) in our two applications.
A replication data file for these analyses is available in Ho et al. (2006).

7.1 Democratic Senate Majorities and Food and Drug Administration
Drug Approval Time

An influential article by Carpenter (2002) tests a key hypothesis in the literature on in-
stitutional and partisan determinants of regulatory policy by examining several determi-
nants of approval times for new drugs by the U.S. Food and Drug Administration (FDA).
Here, for purposes of illustration, we focus on a portion of Carpenter’s Hypothesis 1,
which suggests that Democratic oversight of the FDA should lead to slower approval of
new drugs (p. 495) and the specification of Model 1 of Table 2 (p. 499).

To test this hypothesis, Carpenter uses a log-normal survival model of approval times
regressed on several causal variables of political oversight (median-adjusted Americans
for Democratic Action (ADA) scores for House and Senate Committees as well as for
House and Senate floors, Democratic majority in House and Senate, and Democratic
Presidency) and 18 control variables including clinical and epidemiology factors and firm
characteristics.19 The data set consists of 408 new drugs reviewed by the FDA, 262 of which
were eventually approved. The remaining 146 drug applications were still pending at the

18These include methods based on using the asymptotic normal approximation to the likelihood function, direct
simulation from the finite sampling distribution or posterior density, various frequentist bias corrections, robust
Bayesian analysis involving classes of posteriors, and even nonparametric bootstrapping, among others.

19In the original paper, Carpenter (2002) uses a log-normal frailty model with a common (ungrouped) random
effect. For computational simplicity, we drop the random effect. This has small effects on the quantities we
estimate and no effect on our conclusions.
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time of data collection and hence are treated as right-censored observations. (Inferences
from the censored observations are necessarily model dependent by design, and so this
aspect of the problem is not influenced by the methods we introduce.) Approval time is
measured in months passed from the submission of an application.

We focus on the causal effect of a Democratic majority in the Senate, one of the seven
oversight variables. In particular, we estimate the in-sample (conditional) ATT. In the
original analysis, the reported coefficient for the Democratic Senate majority variable is
in the opposite direction of Carpenter’s hypothesis and imprecisely estimated. Although
not the central finding of the original article, for our purposes this variable is of particular
interest because Carpenter (2002, 498) finds that ‘‘[t]he coefficient estimate for this vari-
able [Democratic Senate majority] is not significant in other regressions, and even
switches sign when firm variables are added.’’ We therefore examine whether the model
sensitivity that prevented Carpenter from drawing solid conclusions about the Democratic
Senate majority variable is reduced by preprocessing the data.

King and Zeng (2006) show that bias in making causal inferences can be decomposed
into four terms: omitted variable bias, posttreatment bias, interpolation bias, and extrap-
olation bias. Before we analyze the data, we address each source of bias. We first consider
the possibility of posttreatment bias. Carpenter’s remaining six oversight variables are
conceptually and statistically highly related and seem likely to be in part consequences of
a Democratic Senate majority. For example, the change in the majority party of the Senate
may well affect the median-adjusted ADA score in the Senate Committee. As such, we
omit these variables to avoid posttreatment bias. (Posttreatment bias may still exist in this
research design if other variables controlled for are consequences of a Democratic Senate
majority. For example, if media coverage of a particular disease is affected by Democratic
control, bias would be induced.) Although posttreatment bias is a critical issue in accu-
rately estimating causal effects, it would affect parametric models with or without pre-
processing and so is separate from our present goal of reducing model dependence; we do
not pursue it further here.

Next, we examine extrapolation bias. As an initial cut, we examine whether the control
units are in the convex hull of the treated units, using the method developed by King and
Zeng (2006). None are. Of course this is a conservative test for common support, but it
explains in part why Carpenter (2002) finds the results are highly model dependent. This
situation makes Carpenter’s analysis an especially difficult inference—and a hard case for
us in trying to reduce model dependence—but it also informs our analysis. Since neither
extrapolation bias nor omitted variable bias can be entirely eliminated without more data
collection, we focus on reducing model dependence in interpolation bias and hence the
overall bias by preprocessing the data.

To proceed, we estimate the propensity score using logistic regression with all covariates
as linear predictors. We then discard 15 control units and 2 treated units that are outside of
the common support of the estimated propensity score. Finally, we conduct one-to-one
nearest neighbor propensity score matching (without replacement) while placing exact
restrictions on the six binary variables (whether primary indication is a lethal condition,
acute condition, and/or results in hospitalization; whether disease mainly affects men,
women, and/or children). We choose one-to-one matching rather than one-to-many match-
ing or full matching because our convex hull analysis indicates that most of the observations
are likely to be outside of common support, and we want to make sure we keep only the
most comparable units. This preprocessing procedure discards 102 units (10 treated units
and 92 control units) from the original sample that would have required substantial, model-
dependent extrapolations. The matched data set then consists of 306 observations.
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Table 1 summarizes how preprocessing can improve covariate balance. The table
presents three balance measures after matching for each covariate and their percent im-
provement as compared to the original balance before matching. Matching substantially
improves the balance of each covariate. Exact restrictions with six binary variables make
their balance perfect, which is indicated by the fact that the values of all the balance
measures are zero and their percent improvements are 100. Mean differences are consid-
erably smaller for all but one covariate; empirical quantile measures also indicate a large
improvement in balance for most variables. Preprocessing slightly increases the values of
empirical quantile measures in two cases. Uniform improvement of balance for all cova-
riates and all measures is unlikely unless exact matching is possible for all covariates. In
this particular example, the lack of common support in the original data makes matching
more difficult. Therefore, we adjust the remaining sample differences by fitting the para-
metric models to the preprocessed data. By choosing the matched set of control units that
look most similar to the treated units, the treated-control comparison will take place only
among units similar on the background variables and thus will not be affected as much by
the model specification.

We now run the same log-normal survival analysis as Carpenter using the preprocessed
data set. We use the same model as Carpenter’s, with the exceptions noted above, such as
the exclusion of the other six oversight variables. Since nothing changed other than the
removal of observations that would have required highly model-dependent inferences and
posttreatment variables that would have introduced another source of bias, we do not need
any change in his analysis procedures. We compute MLEs, standard errors, and confidence
intervals using the same procedures Carpenter did on the raw data. By applying this
procedure to the preprocessed data, the estimated ATT is approximately �33.5 months
with an estimated standard error of 7.5, indicating that a Democratic Senate majority
significantly decreases the average approval time of new drugs. This result is of the
same sign as Carpenter’s estimate and thus continues to contradict the initially posited
hypothesis.

Although data analysis would end here for those interested in the substantive research
question at hand, for our methodological purposes we go a step further to study model
dependence. For simplicity, we portray model dependence by the variability in maximum
likelihood (point) estimates of the conditional in-sample ATT across different specifica-
tions of pretreatment covariates, although the same conclusions apply to most other
quantities of interest too.

We obtain the MLE of the ATT for every possible specification in which the 18 cova-
riates enter the model with the treatment indicator (i.e., all possible subsets of covariates
from the 18). Even though we ignored interactions and nonlinearities (which are of course
additional key aspects of model dependence), this amounts to 262; 143ð5 P18

i51
18

i

� ��
sur-

vival analyses, all of which we ran on the raw data and then again on the preprocessed data.
In practice, scholars may of course have substantive knowledge to narrow down these
262,143 specifications, but for our investigation we run each of these models on the raw
data and on the preprocessed (matched) data. Figure 2 presents a kernel density plot
(a smoothed histogram) for the two sets of results. The key result here is that estimates
are far more model dependent using the raw data than using the matched data. For example,
the variance across estimated point ATTs from the matched data (the solid curve) is
less than one-tenth the size of that from the raw data (the dashed curve). The distribution
of estimates for the matched data is also closer to the density of the normal distribution,
which will happen when control variables included are having effects only due to random
error.
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Table 1 Remaining covariate imbalance after matching for the FDA data

Variable names

Empirical quantile measures

Mean difference Mean difference Maximum difference

Imbalance % Improvement Imbalance % Improvement Imbalance % Improvement

Estimated propensity score 0.04 56.76 0.04 56.20 0.09 52.85
Clinical/epidemiological variables

Incidence of primary indication 0.07 19.91 0.07 12.53 0.50 80.11
Primary indication is lethal condition 0.00 100.00 0.00 100.00 0.00 100.00
Death rate, primary indication �0.00 99.90 0.01 71.26 0.29 86.56
Primary indication is acute condition 0.00 100.00 0.00 100.00 0.00 100.00
Primary indication results in hospitalization 0.00 100.00 0.00 100.00 0.00 100.00
Hospitalizations associated with indication 0.13 2.56 0.15 5.91 3.01 �1.37
Disease mainly affects women 0.00 100.00 0.00 100.00 0.00 100.00
Disease mainly affects men 0.00 100.00 0.00 100.00 0.00 100.00
Disease mainly affects children 0.00 100.00 0.00 100.00 0.00 100.00
Orphan drug �0.01 51.21 0.01 57.39 1.00 0.00

Disease politics (groups and media) variables

National and regional groups �0.00 89.60 0.02 53.07 0.80 26.61
Nightly television news disease stories �0.14 �15.63 0.14 �27.60 3.23 �11.21
Washington Post disease stories �0.13 49.06 0.14 42.33 1.68 8.84
Days of congressional hearings �0.02 20.22 0.07 29.66 1.70 38.55
Order of disease market entry 0.05 34.02 0.23 �17.66 1.00 16.67

FDA variable

CDER staff �0.68 10.77 1.57 5.78 3.06 17.96

Note. The table presents three different measures of resulting imbalance after matching—sample mean differences and mean and maximum values of differences in empirical quantile

functions—as well as their percent balance improvement over the raw data. In almost all dimensions and across three different measures, matching substantially improves balance.
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Figure 2 illustrates reduced sensitivity of the point estimate of the ATE. However,
preprocessing also leads to a decrease in model sensitivity of the variance of the esti-
mated treatment effect. We do not show the confidence intervals associated with each
point in the density plots, however, despite the fact that matching drops more than
100 observations, preprocessing the data improves statistical efficiency. For example,
the mean length of the resulting 95% confidence interval for the estimated in-sample
ATT (averaged over all the 262,143 specifications) is only 43.7 for preprocessed data,
which is approximately 20% shorter than the average length for the raw data. Similarly,
the maximum length is 44.7 for the matched data, which is also substantially shorter than
that for the raw data (63.3).

In his original analysis, Carpenter was unable to draw conclusions from the raw data
due to high levels of model dependence. However, our preprocessing shows that there does
exist sufficient information in the data to draw conclusions without difficult-to-justify
functional form assumptions. Contrary to the original hypothesis, a Democratic Senate
majority reduces the average approval time of new drugs. Using the raw data, Carpenter
notes large model sensitivity, concluding that oversight covariates appear not to matter.
However, the result from the matched data seems to indicate that the actual result may be
relatively more firm than indicated by the usual parametric approach. One might of course
still wonder why the matched estimates appear to suggest less of a difference in approval
times between Democratic and Republican Senate majorities (i.e., a smaller treatment
effect) than did the raw data. Two substantive explanations may be that imbalance in the
raw data stemmed from the facts that the size of FDA staff and media coverage were
substantially higher under Republican Senate majorities. Since staff levels and media
coverage tend to decrease approval times, in the raw data more delay may have been
inappropriately attributed to Democratic Senate majorities.

Fig. 2 Kernel density plot (a smoothed histogram) of point estimates of the in-sample ATT of the
Democratic Senate majority on FDA drug approval time across 262,143 specifications. The solid line
presents a density plot of the MLEs of ATT using the matched data set, whereas the dashed line is
based on the raw data. The vertical arrow shows the point estimate from Carpenter’s Model 1 based
on the raw data. The estimate does not match Carpenter’s estimate exactly because it is on a different
scale and also because of the slightly different set of predictors used, as discussed above. The figure
shows that ATT estimates are considerably more sensitive to model specification using the raw data
as compared with the preprocessed matched data.
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7.2 Causal Effect of Visibility on Candidate Evaluations

For our second application, we reanalyze a study of citizen evaluations of the ideological
positions of candidates for the U.S. House of Representatives by Koch (2002). The quan-
tity of interest is the causal effect of candidate visibility on citizen voter evaluations of the
candidate’s ideology (scored as a seven-point ordinal scale, where high scores indicate
greater conservatism).20 We confine ourselves to studying the effect of visibility on
Republican male candidates21—crucial, but not identical, to the study of differences in
visibility effects across gender in Koch (2002). We began by replicating the original
analysis, which we did successfully.

Since randomly assigning visibility to candidates in real elections is infeasible, Koch
(2002) collects observational data with pretreatment covariates including candidate
ideology, voter perception of party ideology, respondent ideology, candidate feeling
thermometer, and political awareness. Koch uses least squares to adjust for these cova-
riates, making three typical assumptions,22 which, for our purposes, we do not challenge.
Instead, we focus on the sensitivity of inferences to differences in specification, realizing
of course that in practice qualitative evidence may help narrow the set of models. Even
with a relatively small number of covariates, the curse of dimensionality looms large.
Given the combinations that can be created by the unique values of these covariates and
the treatment, it is easy to calculate that a parametric model that imposes no unverified
functional form assumptions would require estimating 263,938,500 parameters—a prob-
lem of course in a data set with only 1203 observations. Koch reduces these parameters to
only six (five main effects and one interaction term), assuming no other interactions or
nonlinearities.23

The parametric adjustments are important since more and less visible Republican male
candidates differ appreciably in terms of background explanatory covariates. More visible
candidates on average are more liberal than less visible candidates, who are rated 0.19 on
a scale from 0 to 1 (roughly one-third of a standard deviation lower than the average rating
of 0.23 of more visible candidates). In addition, more visible candidates score on average
almost two-fifths of a standard deviation higher on a feeling thermometer than less visible
candidates. Figure 3 gives one summary of these differences in the QQ plot of the pro-
pensity score. The QQ plot of the raw data (in black) is consistently below the 45-degree
line, indicating that treated units are substantially different than control units. Model
dependence is therefore likely to be a serious problem.

The original data include 853 respondents for more visible Republican male candidates,
compared to only 350 respondents for less visible ones. We therefore redefine the treat-
ment to examine the impact of a candidate being less visible on those 350 respondents.

20Visibility is measured originally by whether a candidate had campaign expenditures exceeding more than
$750,000. For simplicity and to maintain comparison to Koch (2002), we stipulate, rather than evaluate the
appropriateness of, these and other measurements and methods.

21This corresponds to estimates presented in Table 2, Column 4, of Koch (2002). So as not to compare visible
male candidates with less visible female candidates, we condition on gender in this illustration and focus on
visibility as the key causal variable.

22First, the study assumes that visibility does not itself affect any of the pretreatment covariates. This might be
violated, for example, if visibility influences the affect felt for a candidate as measured by the feeling thermom-
eter. Controlling for the feeling thermometer would thereby induce posttreatment bias. Second, the study assumes
that the visibility of one candidate does not affect the potential outcomes of another candidate. Visibility of
a candidate might, for example, detract local media attention from a candidate in an adjoining district, violating
independence. Third, the study assumes that ‘‘visibility’’ is the same treatment for all candidates.

23As originally modeled, the analysis interacts gender and visibility as the treatment of interest, but as we
condition on gender the treatment becomes visibility alone.
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Through experimentation, we find that propensity score matching improves balance
substantially. We estimate the propensity score via a logistic regression of visibility on
all six pretreatment covariates. We conduct one-to-one nearest neighbor matching based
on the estimated propensity score, resulting in 350 respondents for more visible candidates
matched with 350 respondents for less visible candidates. As Figure 3 demonstrates,
matching leads to treatment and control group values of the estimated propensity score
being identical at almost every quantile, with gray dots lining up along the 45-degree line.
The percent balance improvement in mean differences is substantial, ranging at worst from
approximately 75% in perception of party ideology, political awareness, and respondent
ideology, and at best to 96.0–98.3% for the remaining covariates.

With this preprocessed data set, we can now run the comparable least squares analysis
as in Koch (2002). The only difference is that we run the analysis for the matched data
set. This analysis yields an estimated ATE of �0.04 with an estimated standard error of
0.07, suggesting that there is not much of an effect of less visibility on Republican male
candidates.

We now turn to our main (methodological) purpose of evaluating model sensitivity by
studying the variance of causal effect point estimates for 63 5
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regressions con-

taining all possible subsets of Koch’s six covariates, again for simplicity restricting our-
selves to only permutations of the possible main effects. We thereby estimate 63 separate
point estimates for the raw and for the preprocessed data.

Fig. 3 QQ plot of propensity score for candidate visibility. The black dots represent empirical QQ
estimates for the raw data. The gray dots represent QQ estimates for the matched data. The 45-degree
line indicates identical distributions. The propensity score is estimated with a logistic regression of
treatment (less visibility) on candidate ideology, voter perception of party ideology, respondent
ideology, candidate feeling thermometer, and political awareness.
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Figure 4 plots densities of the ATTs from the raw and preprocessed data. As expected,
estimates are much less variable in the preprocessed data. Estimated effects from the raw
data (see the dashed line) range from �0.07 to 0.10, signifying that low visibility for male
candidates has no predictable effect on whether voters perceive candidates as more liberal.
The point estimate from the raw data (or any one point estimate) cannot represent the
enormous variability in these results. Estimates from the preprocessed data stand in stark
contrast to the estimates from the raw data. The variability of coefficient estimates is
substantially smaller, ranging from �0.06 to �0.04, every one of which indicates that
less visibility reduces voters’ perceptions of the candidates as liberal. More importantly
from our perspective, the standard deviation across specifications of the raw data is 10
times as large as for the preprocessed data. On average, point estimates are also lower for
the matched data, suggesting that preexisting differences in feeling thermometer may have
been inappropriately attributed to visibility in the raw data.

8 What Can Go Wrong

The advantage of matching is that it is relatively robust to small changes in procedures and
produces a data set that is by design less sensitive to modeling assumptions. However, like
any method, using it badly or to ill effect is certainly possible. Thus, in this section, we
discuss four ways in which preprocessing can go wrong and how researchers might try to
avoid these problems.

First, since the curse of dimensionality affects balancing diagnostics, we may well miss
a higher dimensional aspect of imbalance when checking lower dimensional summaries.
Even if we are uninterested in testing these with our parametric model, they can affect our
estimates. Such will be the case with parametric models with or without preprocessing,
and so in all but the most unusual cases preprocessing should at least not make things
worse. One pathological case where preprocessing could hurt is if some covariate has

Fig. 4 Kernel density plot of point estimates of the effect of being a less visible male Republican
candidate across 63 possible specifications with the Koch data. The dashed line presents estimates for
the raw data set and the solid line for the matched data set. The vertical arrow presents the point
estimate of the regression comparable to the one presented in the original paper. This figure shows
that treatment effect estimates are much more sensitive to model specification for the raw data set
compared to the matched data set.
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a huge effect on the outcome variable and preprocessing slightly reduces balance on this
variable but improves it for all the others. A researcher might be fooled into choosing
a matching trade-off like this if he or she were not aware of the large effect of this
covariate. Carefully evaluating what covariates are likely to have the largest effects, and
using multiple measures of balance, are essential to avoid this pitfall.

Second, as with all statistical methods, a bias-variance trade-off exists for matching.
If we drop many observations during preprocessing, and balance is not substantially
improved, the mean squared error (or other mean-variance summary) of the estimated
causal effect might actually increase. Users must pay close attention to this trade-off
during the process of matching, but unfortunately no precise rules exist for how to make
these choices. In particular, the methodological literature offers no formal estimates of
mean squared error and so in marginal cases it can be difficult to know whether or how
much preprocessing will help. Of course, dropping observations does not necessarily mean
that preprocessing is worse since improving balance can also increase efficiency, and in
any event including imbalanced observations requiring extrapolation in a parametric anal-
ysis merely produces false precision. So although estimated standard errors may increase
in some cases with preprocessing, they would likely be more accurate. Moreover, in many
situations, eliminating observations far from the rest of the data as matching does will
reduce heterogeneity and thereby further reduce variance.

Third, the matching literature offers a large number of possible and seemingly ad hoc
procedures. From one perspective, we might be concerned about the sensitivity of our
results to changes in this process, just as we have been concerned with the sensitivity of
causal effect estimates to parametric modeling assumptions. This is not normally viewed
as a major issue since the right procedure is the one that maximizes balance (with n as
large as possible), no matter how many procedures we try. By applying this criterion in
a disciplined way (i.e., without consulting Y) to a large number of possible matching
procedures, no choices are open to the analyst. Instead, researchers should merely run
as many as possible and choose by maximizing balance. Unlike parametric modeling
exercises, we need not choose this matching procedure or another; we merely run as many
as feasible, particularly those most likely to reduce bias and model dependence, and apply
this criterion.

Finally, by dropping observations, we may wind up losing some critically important
cases or may change either the information base of our sample or, in special cases such as
when dropping treated units, the definition of the causal effect. Examining the dropped
cases provides an easy diagnostic for this problem. However, we must be alert to the
problem that if we learn that some critical units are dropped, then it may mean that no
appropriate matches can be found for them. In this situation, we may be forced to conclude
that the data do not contain sufficient information to answer the questions posed, no matter
what method is chosen.

9 Concluding Remarks

Anyone using a parametric statistical technique for long enough (and it does not take very
long) will recognize the difficulty of choosing which of hundreds of possible regressions to
present in a written work. This choice is difficult, fraught with ethical and methodological
dilemmas, and not covered in any serious way in classical statistics texts. Parametric
methods merely assume that we know the correct specification. In practice, the ‘‘correct’’
specification is chosen after looking at the estimates, and so it is never clear to a reader
whether an article is a true test of a hypothesis, in the sense that the author was vulnerable
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to being proved wrong, or whether the article is merely a proof of the existence of at least
one specification consistent with the author’s favored hypothesis. Researchers are often
frustrated with how their key causal estimates depend on specification decisions they have
not thought about and on which they have few real opinions.

We provide a way around at least part of this problem. Preprocessing raw data with the
matching procedures we recommend makes familiar parametric methods a much more
reliable tool of empirical analysis and, in particular, causal effect estimates become far
more insensitive to seemingly arbitrary choices in model specification. If we read an article
demonstrating that balance has been achieved for a data set, readers can worry consider-
ably less that slightly different specifications than those discussed in the text will greatly
alter its empirical conclusions. Analysts using preprocessing have two chances to get their
analyses right, in that if either the matching procedure or the subsequent parametric
analysis is specified correctly (and even if one of the two is incorrectly specified), causal
estimates will still be consistent.

10 Appendix: Matching Software

A variety of excellent software is available to perform matching (Parsons 2000, 2001;
Abadie et al. 2002; Becker and Ichino 2002; Bergstralh and Kosanke 2003; Leuven and
Sianesi 2004; Sekhon 2004; Hansen 2005). However, each program implements only
a specialized subset of available statistical procedures. Moreover, they are spread over
a range of different languages and packages, which normally makes it impractical to use
more than one for any applied project. Thus, as a companion to and in the same spirit as
this paper, we have written software (called MatchIt, available at http://gking.harvard.edu/
matchit) that implements the vast majority of the matching procedures suggested in the
diverse scholarly literatures on this subject. Where possible, MatchIt builds on and incor-
porates existing packages and, across all the specialized techniques, MatchIt offers a sin-
gle, simple, and unified syntax. Adding procedures to MatchIt is also easy.

MatchIt operates with a single command that takes an existing data set and produces as
output a single preprocessed matched data set. The preprocessed data set can then be used
by standard parametric software just as one would have used the original data set. MatchIt
also works seamlessly with the general-purpose statistics program, Zelig (Imai, King, and
Lau 2006), so that output from MatchIt can be fed into Zelig without any extra steps.
MatchIt and Zelig are freely available and run under many operating systems via the open
source and free statistical program R.
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