

Cardiovascular and Affective Recovery from Anticipatory Threat

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Waugh, Christian E., Sommer Panage, Wendy Berry Mendes, and Ian H. Gotlib. 2010. Cardiovascular and affective recovery from anticipatory threat. Biological Psychology 84(2): 169-175.
Published Version	doi:10.1016/j.biopsycho.2010.01.010
Accessed	February 18, 2015 5:08:23 PM EST
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:4214915
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

(Article begins on next page)

RUNNING HEAD: Recovery from anticipatory threat

Cardiovascular and affective recovery from anticipatory threat

Christian E. Waugh, PhD^{*}, Sommer Panage, B.S.

Stanford University

Wendy Berry Mendes, PhD

Harvard University

Ian H. Gotlib, PhD

Stanford University

* To whom correspondence should be addressed: Christian E. Waugh Jordan Hall, Bldg. 420 Stanford University Stanford, CA 94305 (650)725-9617 waughc@stanford.edu

Word count: 3982; 2 Tables and 4 Figures.

This research was supported by Grant MH074849 from the National Institute of Mental Health to Ian H. Gotlib and Grant HL079383 from the National Heart Lung and Blood Institute to Wendy B. Mendes. The authors thank Brian Dunmire with his help running participants and processing physiology data. The authors report no conflicts of interest, either financial or scholarly.

Abstract

Anticipating a stressor elicits robust cardiovascular and affective responses. Despite the possibility that recovery from these responses may have implications for physical and mental well-being, little research has examined this issue. In this study, participants either gave a public speech or anticipated giving a speech. Compared with speech-givers, participants who anticipated giving a speech, on average, exhibited a similar heart rate (HR) recovery trajectory and reported lower negative affect during recovery. Only in the anticipation condition, however, were HR recovery and affective recovery associated: poor affective recovery predicted incomplete HR recovery. These are the first data to compare explicitly recovery from anticipation of a stressor with recovery from the stressor itself. These findings suggest that failing to recover from anticipation has unique physiological costs that, in turn, may contribute to mental and physical illness.

Keywords: anticipation, recovery, stress, affect, cardiovascular, parasympathetic, HR, RSA HR = heart rate; CV = cardiovascular; PA = positive affect; NA = negative affect. Alfred Hitchcock, the master of suspense, once said, "There is no terror in a bang, only in the anticipation of it." In describing his theory of heightening suspense in films, Hitchcock touched on a topic that has long interested researchers: that anticipating a stressful event is itself stressful. Indeed, investigators have demonstrated that anticipating certain types of stressful events reliably elicits negative thoughts and emotions (Feldman, Cohen, Hamrick, & Lepore, 2004; Spacapan & Cohen, 1983), cardiovascular engagement (Epstein, 1970; Feldman, et al., 2004; Fredrickson, Mancuso, Branigan, & Tugade, 2000), cortisol reactivity (C. Kirschbaum, Wust, & Hellhammer, 1992), and even immunological changes (Breznitz, et al., 1998). In fact, for some people, anticipating a stressful event is so aversive that, if possible, they will choose to shorten the anticipation period by experiencing the stressful event sooner rather than later (Berns, et al., 2006; Loewenstein, 1987).

Certainly, the various cognitive, emotional, and physiological effects associated with anticipating a stressful experience can be adaptive. For example, the negative affect associated with anticipating a stressful event can motivate people to take measures to try to avoid the impending stressful event (Aspinwall & Taylor, 1997). Similarly, the increased physiological response associated with anticipation can help people prepare their bodies for the stressor by increasing the metabolic resources available for responding to the event (Obrist, 1981). But what happens if people fail to recover after the anticipated stressor is no longer imminent? Successful physiological and affective recovery from stress, denoted as a relatively quick and/or complete return to baseline level from some previous activation level, has been postulated to be one of the most important factors in preventing stress from adversely influencing mental and physical health (Brosschot, Gerin, & Thayer, 2006; McEwen, 1998). To date, however, research examining this formulation has focused almost exclusively on recovery from the actual occurrence of stressful events, such as public speaking (Clemens Kirschbaum, Pirke, & Hellhammer, 1993) or terrorist attacks (Fredrickson, Tugade, Waugh, & Larkin, 2003). Relatively unexplored are the many times in people's lives when they must recover from the anticipation of a stressful event that does not transpire. It is clear that these frequent anticipatory experiences can be stressful regardless of whether the events occur or not. Unsuccessful recovery from this anticipatory stress (i.e., relatively slow or incomplete return to baseline levels), therefore, may be an important pathway through which stress influences mental and physical health (Waugh, Tugade, & Fredrickson, 2008).

One potential difference in the mechanisms underlying recovery from anticipation and recovery from the stressful event itself is the interaction between affect and heart rate (HR). The relation between HR reactivity and state affect in stressful situations is weak (Burns, 1995, Cohen, et al., 2000), in part because HR responses during stressors are driven primarily by the effort required to meet an external challenge (Peters, et al., 1998) and less by individual differences in affective responses to that challenge. Because HR increases during anticipation are due mainly to the *perceived* effort required to meet the challenge (Obrist, 1981), and not the *actual* effort, there may be a tighter coupling between these HR responses and the affective states associated with these perceptions. Indeed, there is indirect evidence that when recovering from the anticipation of a negative event, individual differences in affective recovery are associated with cardiovascular recovery. Low trait resilience – the inability to successfully adapt to stressful situations (Block & Kremen, 1996) – was found to predict both slower cardiovascular recovery (Tugade & Fredrickson, 2004) and incomplete affective recovery (Waugh, Fredrickson, & Taylor, 2008) from anticipatory threat.

In the present study, participants were randomly assigned to either *give* a speech or only *anticipate* having to give a speech. We compared HR and affective recovery from the anticipation of a stressful event with HR and affective recovery from the stressful event itself. We predicted that affective recovery would be associated with HR recovery, but only for those participants who were recovering from the anticipation of giving a speech.

Methods

Participants

Participants were recruited through advertisements on local classifieds websites (e.g. <u>http://www.craigslist.com</u>). Participation was limited to individuals who did not have any cardiovascular problems, were between the ages of 18 and 55, and were not pregnant. Sixty-one individuals participated in this study (33 females; Mean age = 33.6 years, SD = 12.7 years). *Self-report measures*

Affect. At various points in the experimental session (see Procedure), participants rated "how much you feel right now" on each of 20 different emotion terms from 1 ("not at all") to 5 ("a great deal") using the Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988). The positive affect (PA) subscale consisted of seven emotion terms (*proud, excited, strong, enthusiastic, determined, attentive,* and *active*) with reliability α s = .84 to .91 (for each scale in the session). The negative affect (NA) subscale consisted of ten emotion terms (*distressed, upset, guilty, scared, hostile, irritable, ashamed, nervous, jittery,* and *afraid*) with reliability α s = .81 to .86. We excluded three emotion terms (*inspired, alert,* and *interested*) because they did not load highly with either PA or NA.

Physiological measures

Acquisition. Physiological activity was recorded at a sampling rate of 1 kHz with an integrated system and software package (Biopac MP150, AcqKnowledge; Biopac Systems, Goleta, CA). Cardiovascular activity was recorded with the electrocardiogram (ECG) amplifier module and disposable snap ECG electrodes using a standard or modified lead II configuration.¹

Signal processing. Physiological data were scored in 1-minute intervals using the Mindware software package (HRV 2.51; Mindware, Westerville, OH). We inspected the cardiovascular data for artifacts and missing R-peaks (based on improbable inter-beat intervals). For each minute, if one R-peak was missing, an R-peak was inserted at a time-point halfway in between the two neighboring R-peaks. If more than one R-peak was missing, that minute was not scored. After correcting for artifacts and missing R-peaks, HR was calculated in beats per minute (BPM).²

Procedure

Pre-task. After participants signed the consent forms, the experimenter attached the ECG sensors. After a 10-minute habituation period, a 5-minute baseline period was recorded during which participants rested quietly (Figure 1).

Speech Preparation. After baseline, the experimenter explained to the participants that they would have two minutes to prepare a five-minute speech that they would then give to an evaluator, who would be judging their speech on clarity, coherence, and persuasiveness. They were then told that there would be two separate coin flips. After two minutes of preparation, the first coin flip would determine whether they had to give the speech immediately or wait another

¹ The distribution of the lead configurations was similar for both the speech and anticipation conditions, $\chi^2 = .321$, p > .05, and adding lead configuration as a factor in the models did not affect the results. We also measured electromyographic activity to assess startle eye-blinks in response to auditory startle probes at various points in the task. Because of insufficient blink data, these data are not presented here.

² We recognize that IBI is the preferred metric over HR. Using IBI as the dependent variable did not alter any of the patterns or significance levels in the data. We chose to use HR for ease of interpretability, particularly given our emphasis on cardiovascular 'activation' and recovery from activation.

five minutes for the second coin flip, which would determine whether they gave the speech then or not at all. The experimenter then told participants the speech topic was, "Why are you a good friend?" and left them alone to prepare the speech for two minutes.

Stress period. After two minutes of speech preparation, participants rated their current affect. The experimenter then flipped a real coin to randomly assign participants into either the *Speech* (n = 26) or the *Anticipation* (n = 35) condition. If the coin landed heads, participants gave their prepared speech to a trained stoic evaluator. If the coin landed tails, the experimenter told participants that they had five more minutes to wait to find out if they would have to give the speech. After five minutes, the experimenter flipped a double-tailed coin to ensure that the participants in the anticipation condition would not have to give the speech. No participants reported suspicion about this fixed coin flip.

Recovery period. Participants in both conditions sat and rested for five minutes. After this recovery period, participants again rated their current affect.

Script-control. To isolate the physiological activity due mainly to psychological states and not to the demand associated with speaking (Linden, 1987), all participants underwent a speech-control condition in which they read a neutral script aloud³. After five minutes of reading aloud, participants were told to relax and sit quietly for five minutes.

Post-task. At the end of the experimental session, participants rated their current affect. Because of experimenter error, only a subset of participants (N = 38; speech n = 17, anticipation n = 21) also retrospectively rated their affect during the stress period (either giving a speech or anticipating having to give a speech). Participants were then debriefed and were paid. *Statistical Strategy*

³ Participants reported less positive (M = 2.93, SE = .16) and less negative (M = 1.17, SE = .05) affect to reading the script than they did during baseline (Ms = 3.26, 1.34 for positive and negative affect, respectively), ts(37) = 2.92, 2.22, respectively, both ps < .05.

Affective responses. For all repeated-measures analyses of variance (ANOVAs), the degrees of freedom were subjected to Greenhouse-Geisser correction and the alphas were subjected to bonferroni corrections at each level of analysis.

Psychophysiology. Following previous research (Kristjansson, Kircher, & Webb, 2007), we used hierarchical linear modeling (HLM6; Raudenbush, Bryk, & Congdon, 2008) to analyze the physiological data. For HR, we specified a 2-level HLM model. Level 1 of the model consisted of data points for each of the 17 minutes within the experimental session. Level 2 of the model consisted of changes in slopes and intercepts at Level 1 for each participant.

We took the following steps to build each of the HLM models. First, we partialled out possible confounds between the conditions due to speaking. For the participants in the speech condition, we regressed the HR for each minute of the stress and recovery periods on the HR in the corresponding minute of the script-control periods and subtracted this regression intercept. This created psychological indices of physiological activity; to avoid confusion with the raw measures, we will call this variable pHR.

Next, at Level 1 we fit a series of dummy-coded variables that corresponded to theorized patterns in the data, and patterns that we observed when graphing the data. To do this, we used a piecewise regression approach (Llabre, Spitzer, Saab, & Schneiderman, 2001), which we used to fit different regression lines to different task periods (baseline, preparation, 'stress', and recovery) within one continuous time-series. To obtain an estimate of these regression coefficients for the task periods, we created dummy-coded variables with 1's when that task period was 'on' and 0's everywhere else. For example, the stress period consisted of the time period between minutes 8 and 12, so its dummy variable was 0x7, 1x5, 0x5. Using this piecewise approach, we can simultaneously model the entire 17 minutes of the session instead of treating

each task period as independent. The parameters we considered for inclusion in the model corresponded to three possible patterns in the data: *magnitude change, linear slope,* and *quadratic curve*. The magnitude change predictor was the on/off dummy-coded variable mentioned above and represents change in physiology during that task period relative to baseline. The linear slope predictors were dummy-coded as -2, -1, 0, 1, 2 for the five minutes when that task period was 'on' and as 0 when it was off (except for the prep period, which was dummy-coded -1, 1). The quadratic curve predictors were dummy-coded as linear slope squared (4, 1, 0, 1, 4). The linear and quadratic predictors were centered to reduce collinearity.

Next, we added *condition* at Level 2 of the model predicting each of the Level 1 intercepts and slopes. We dummy-coded *condition* as 1 (speech) and 2 (anticipation) and then standardized this variable so that the intercepts represent the mean of all participants. To assess the relation between affective and cardiovascular recovery, at Level 2 we added positive and negative affect recovery variables. To calculate affective recovery relative to baseline affect, we regressed post-recovery positive/negative affect on baseline positive/negative affect (each affect variable regressed separately) and created standardized residuals. Finally, to examine whether the relation between affective and cardiovascular recovery was moderated by stress condition, we multiplied the standardized condition variable with each affective recovery variable and added these interaction terms to Level 2.⁴

Level 2 predictors were treated as random effects: that is, error terms were estimated at each Level 2 equation to allow for randomly varying slopes (Bryk & Raudenbush, 1992). We report robust standard errors because negative affective recovery did not follow a normal

⁴ The anticipation and speech groups did not differ in their gender distribution, $\chi^2(1,61) = .32$, p > .05, or mean age, t(54) = 1.19, p > .05. Moreover, including gender or age at level 2 of the HLM models did not affect any of the results.

distribution, S-W(61) = .75, p < .001. Finally, we used restricted maximum likelihood to estimate the coefficients.

Results

Affective responses

Affective reactivity. We first examined whether the magnitude of the affective responses to anticipating giving a speech was comparable to that of actually giving the speech. There were no significant differences between the anticipation and speech groups in levels of negative (Ms =1.68 and 1.46, respectively) and positive affect (Ms = 2.96 and 3.09, respectively), ts < 1.3, suggesting that anticipating giving a speech elicits affective responses comparable to actually giving a speech.

Affective recovery. Next, we compared participants' affective responses after recovery and compared these with their affective responses during baseline and after speech preparation (Figure 2). Separate Stressor (Speech, Anticipation) repeated over Period (Baseline, Prep, Recovery) ANOVAs conducted on negative and positive affect yielded significant main effects ($\alpha_{corr} = .025$) of Period for both negative affect, F(2[1.9], 118[112.6]) = 20.19, p < .001, and positive affect, F(2[1.9], 118[112.6]) = 5.46, p = .005, both $\varepsilon s = .95$. Negative affect followed a quadratic pattern, F(1, 59) = 35.25, p < .001, characterized ($\alpha_{corr} = .0125$) by an increase from baseline to speech preparation, t(60) = 4.41, p < .001, followed by a decrease from speech preparation to post-recovery, t(60) = 6.22, p < .001. Participants also marginally decreased in positive affect from baseline to speech preparation, t(60) = 2.53, p = .014, but unlike negative affect, there was no post-recovery rebound, t(60) = .76, p > .0125. This pattern of results indicates that our task was successful as a stress induction.

The main effect of period for negative affect was qualified ($\alpha_{corr} = .025$) by an interaction of period and stressor, F(2[1.9], 118[112.6]) = 3.76, p = .028, $\varepsilon = .95$ (Figure 2). Whereas participants in the anticipation condition reported significantly lower negative affect after recovery than during baseline, t(34) = 2.84, p = .007, suggesting a 'relief' effect, participants in the speech condition did not differ in the level of negative affect they reported at baseline and after recovery, t(25) = 1.34, p > .025.? Thus, recovery from anticipation and from the stressful event itself both followed homeostatic 'return to baseline' patterns, with a slight affective benefit (decreased NA) for participants recovering from anticipation.

pHR model

For pHR, we tested the hypothesis that affective recovery would predict pHR recovery, but only for those participants recovering from the anticipation of a speech. Based on *a priori* reasoning and on visual inspection of the data, we examined the magnitude of changes during speech preparation, stress, and recovery, as well as linear and quadratic effects during the stress period (Table 1; Figure 3a). At Level 2, we added PA and NA recovery as well as the interaction between PA/NA recovery and condition. This is the resulting model:

Level 1:

 $pHR = \beta_0 + \beta_1 * PrepM + \beta_2 * PrepL + \beta_3 * StressM + \beta_4 * StressL + \beta_5 * StressQ + \beta_6 * RecM + e$

Level 2:

 $\beta_i = \gamma_{i0} + \gamma_{i1} * \text{Condition} + \gamma_{i2} * \text{PARec} + \gamma_{i3} * \text{PARec} * \text{Condition} + \gamma_{i4} * \text{NARec} + \gamma_{i5} * \text{NARec} * \text{Condition} + r_i$

The subscript *i* corresponds to each parameter at Level 1. Prep and Rec refer to the speech preparation and recovery periods, respectively. PARec and NARec refer to the positive and

negative affective recovery variables, respectively. 'M' is magnitude change, 'L' is linear slope, and 'Q' is quadratic curve.

Preparation and Stress periods. Overall, relative to baseline, participants experienced an increase in pHR when preparing the speech ($\gamma_{10} = 8.03$ bpm) and during the stress period ($\gamma_{30} =$ 5.82 bpm; Table 1). Although there was no effect of condition on overall stress magnitude⁵, there was a significant effect of condition on the linear slope and marginal effect of condition on the quadratic curve during the stress period. Simple-slopes analyses revealed that for participants in the speech condition, there was a significant decrement in HR of 2.08 bpm for each successive minute of the stress period, t(55) = 3.89, p < .001, and a quadratic trend across the stress period of about .84 bpm per minute, t(55) = 2.46, p = .017. There were no linear or quadratic trends in HR for participants in the anticipation condition, both ts < 1.1, ps > .05. Considered together with visual inspection of the data, these results indicate that participants in the speech condition experienced an initial spike in pHR for the first few minutes of the speech that declined to similar pHR levels exhibited by participants in the anticipation condition for the last half of the stress period (as reflected in the non-significant difference in stress magnitude). Importantly, this similarity in pHR levels in the two stress conditions in the final minutes of the stress period facilitates the interpretation of differences in the recovery responses. There were no effects of PA and NA recovery on HR responses during the preparation and stress periods, and no interactions between these affective recovery variables and stress condition.

⁵ When using the raw HR as the dependent variable instead of pHR, the only effect that changed was for stress magnitude: participants who gave a speech exhibited greater HR (6.10 bpm) than did participants who anticipated giving a speech, t(55) = 2.02, p = .048. This raw HR difference between the stress conditions is 4.9 bpm greater than when using pHR (1.23 bpm), and is roughly equivalent to the average HR response to reading the script (4.49 bpm). This further supports our reasoning that stress level differences between giving a speech and anticipating giving a speech are due to the demands of speaking and justifies our use of pHR instead of raw HR. Nevertheless, in the discussion section we present the benefits and limitations of this approach.

Recovery period. Overall, relative to baseline, there was no significant change in pHR during the recovery period and there was no interaction with stress condition, indicating that on average, pHR for participants in both the anticipation and speech conditions returned to baseline levels. We did, however, obtain the predicted interaction between stress condition and NA recovery on pHR recovery (Figure 4). Simple slopes analyses reveal that for participants in the anticipation condition, increased negative affect during the recovery period predicted increased pHR (1.61 bpm) during recovery, t(55) = 3.36, p = .002. There was no significant relation between negative affective recovery and pHR recovery for participants in the speech condition, t(55) = -1.49, p > .05. Follow-up analyses reveal that those participants who experienced high negative affect during recovery (+1 SD) in the anticipation condition also exhibited significantly higher pHR during recovery, t(55) = 3.41, p = .002.

Discussion

In this study, we formally compared recovery from anticipatory stress to recovery from the stressful event itself. After an initial spike in HR for speech-givers, most likely due to the increased task engagement and/or to the effort involved with giving the speech (Obrist, Webb, Sutterer, & Howard, 1970), anticipating a speech and giving a speech induced similar sustained levels of HR, followed by the return of HR to baseline after the offset of the stress period. This pattern of findings suggests that on average, recovery from the anticipation of a stressor involves a similar cardiovascular profile as recovering from the stressful event itself. As hypothesized, however, the affective mechanisms underlying these cardiovascular recovery profiles were quite different. On average, participants who only anticipated giving a speech exhibited decreased NA during recovery compared both with their own baseline and with participants who gave a speech. Consistent with our hypothesis, however, there was a physiological cost for those in the anticipation condition who did not show this NA recovery: persistent NA from baseline to the recovery period predicted increased HR during recovery.

This finding elucidates the results of studies showing little to no relation between NA and HR during actual stressors. Experiencing a stressful event, like a public speech, conflates physiological responses associated due to both psychological states and physical engagement with the environment. Just anticipating a stressful event, however, eliminates this conflation, thus revealing the relation between psychological stress (NA) and sustained HR during recovery. The design of the present study does not allow us to determine whether emotional recovery influenced peripheral physiology or vice-versa, or whether there was a third variable (e.g. persistent negative cognitions; Brosschot, et al., 2006) that influenced both. Importantly, though, these data are the first pieces of evidence that the mechanisms involved with recovering from anticipation of a stressor may be different than those involved in recovery from anticipation, given that there is a physiological cost (increased HR) for failing to recover affectively, which in turn may have implications for physical health (Lauer & Froelicher, 2002).

One of the remarkable findings from this study was that after the first two minutes, anticipating a speech and giving a speech elicited similar levels of HR. This finding, however, comes with two caveats. First, to isolate HR activity due to psychological influences, we partialled out HR activity due to speaking (Linden, 1987) as measured during script-reading. Indeed, without controlling for the effects of speaking, giving a speech did elicit greater levels of HR activity than did anticipating giving a speech (see Footnote 6). The main benefit of controlling for the physiological demands of speaking to create a more psychological measure of HR is that it reduces possible non-psychological confounds between anticipating giving a speech and actually giving a speech (Feldman, et al., 2004). One limitation of partialling out the HR due to speaking, however, is that it statistically treats the physiological demands of speaking and the psychological demands of giving a speech as additive. It is unclear whether these two sources of physiological demand are indeed additive, or if they interact in a different manner. The second caveat is that we operationalized anticipation as the active preparation of a public speech and other forms of anticipation involve different physiological profiles. For example, passive anticipation more reliably activates the vascular system (e.g. increased systolic blood pressure) than the myocardial system (e.g. HR; Gregg, James, Matyas, & Thorsteinsson, 1999). In addition, anticipation marked by excessive worrying induces a decrease in vagal reactivity (Hofmann, et al., 2005), and there may have been too much variability in whether participants worried or not during the anticipation period in the present study to capture this effect. Future investigations of recovery from anticipatory stress should broaden our operationalization of anticipation by addressing these caveats.

In sum, this study is the first to compare formally cardiovascular and affective reactivity to and recovery from the anticipation of a stressor with reactivity to and recovery from the stressor itself. On average, recovering from anticipation and recovering from a stressor exhibited strikingly similar cardiovascular profiles – a decrease in HR to baseline levels. These two situations were differentiated, however, by affective recovery. On average, participants who anticipated the speech reported lower NA during recovery compared both with their own baseline and with speech-givers' NA affect during recovery. Failure to show this NA recovery, however, came with a cardiovascular cost – persistently raised HR during recovery. These results

suggest that investigators who are interested in stress-related health outcomes should also examine recovery from anticipatory stress, paying particular attention to the potential deleterious health effects associated with poor affective recovery following anticipatory of a stressor.

References

- Aspinwall, L. G., & Taylor, S. E. (1997). A stitch in time: Self-regulation and proactive coping. *Psychological Bulletin, 121*(3), 417-436.
- Berns, G. S., Chappelow, J., Cekic, M., Zink, C. F., Pagnoni, G., & Martin-Skurski, M. E. (2006). Neurobiological substrates of dread. *Science*, *312*, 754-758.
- Block, J., & Kremen, A. M. (1996). IQ and ego-resiliency: Conceptual and empirical connections and separateness. *Journal of Personality and Social Psychology*, 70(2), 349-361.
- Breznitz, S., Ben-Zur, H., Berzon, Y., Weiss, D. W., Levitan, G., Tarcic, N., et al. (1998). Experimental induction and termination of acute psychological stress in human volunteers: Effects on immunological, neuroendocrine, cardiovascular, and psychological parameters. *Brain, Behavior, and Immunity, 12*, 34-52.
- Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. *Journal of Psychosomatic Research*, 60, 113-224.
- Bryk, A., & Raudenbush, S. (1992). *Hierarchical linear models: Applications and data analysis methods*. Newbury Park: Sage Publications.
- Burns, J. W. (1995). Interactive effects of traits, states, and gender on cardiovascular reactivity during different situations. *Journal of Behavioral Medicine*, *18*(3), 279-303.
- Cohen, S., Hamrick, N., Rodriguez, M. S., Feldman, P. J., Rabin, B. S., & Manuck, S. B. (2000). The stability of and intercorrelations among cardiovascular, immune, endocrine, and psychological reactivity. *Annals of Behavioral Medicine*, *22*(3), 171-179.
- Epstein, S. S. (1970). Heart rate and skin conductance during experimentally induced anxiety: Effects of anticipated intensity of noxious stimulation and experience. *Journal of experimental psychology*, 84(1), 105-112.
- Feldman, P. J., Cohen, S., Hamrick, N., & Lepore, S. J. (2004). Psychological stress, appraisal, emotion, and cardiovascular response in a public speaking task. *Psychology and Health*, *19*(3), 353-368.
- Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M. (2000). The undoing effect of positive emotions. *Motivation and Emotion*, 24(4), 237-258.
- Fredrickson, B. L., Tugade, M. M., Waugh, C. E., & Larkin, G. R. (2003). What good are positive emotions in crisis? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. *Journal of Personality and Social Psychology*, 84(2), 365-376.
- Gregg, M. E., James, J. E., Matyas, T. A., & Thorsteinsson, E. B. (1999). Hemodynamic profile of stressinduced anticipation and recovery. *International Journal of Psychophysiology*, *34*, 147-162.
- Hofmann, S. G., Moscovitch, D. A., Litz, B. T., Kim, H.-J., Davis, L. L., & Pizzagalli, D. A. (2005). The Worried Mind: Autonomic and Prefrontal Activation During Worrying. *Emotion*, 5(4), 464-475.
- Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The "Trier Social Stress Test": A tool for investigating psychobiological stress responses in a laboratory setting. *Neuropsychobiology*, 28(1-2), 76-81.
- Kirschbaum, C., Wust, S., & Hellhammer, D. (1992). Consistent sex differences in cortisol responses to psychological stress. *Psychosom Med*, 54(6), 648-657.
- Kristjansson, S. D., Kircher, J. C., & Webb, A. K. (2007). Multilevel models for repeated measures research designs in psychophysiology: An introduction to growth curve modeling. *Psychophysiology*, 44, 728-736.
- Lauer, M. S., & Froelicher, V. (2002). Abnormal heart-rate recovery after exercise. *Lancet, 360*(9340), 1176-1177.
- Linden, W. (1987). A microanalysis of autonomic activity during human speech. *Psychosomatic Medicine*, 49(562-578).

- Llabre, M. M., Spitzer, S. B., Saab, P. G., & Schneiderman, N. (2001). Piecewise latent growth curve modeling of systolic blood pressure reactivity and recovery from the cold pressor test. *Psychophysiology*, 38, 951-960.
- Loewenstein, G. (1987). Anticipation and the Valuation of Delayed Consumption. *Economic Journal*, 97(387), 666-684.
- McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. *Annals of the New York Academy of Sciences*, 840, 33 - 44.
- Obrist, P. A. (1981). Cardiovascular psychophysiology: A perspective. New York: Plenum.
- Obrist, P. A., Webb, R. A., Sutterer, J. R., & Howard, J. L. (1970). The cardiac-somatic relationship: Some reformations. *Psychophysiology*, *5*, 569 - 587.
- Peters, M. L., Godaert, G. L. R., Ballieux, R. E., van Vliet, M., Willemsen, J. J., Sweep, F. C. G. J., et al. (1998). Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. *Psychoneuroendocrinology*, 23(1), 1-17.
- Raudenbush, S., Bryk, A., & Congdon, R. (2008). HLM6. Chicago: Scientific Software International.
- Spacapan, S., & Cohen, S. (1983). Effects and aftereffects of stressor expectations. *Journal of Personality* and Social Psychology, 45(6), 1243-1254.
- Tugade, M. M., & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. *Journal of Personality and Social Psychology*, 86(2), 320-333.
- Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. *Journal of Personality and Social Psychology*, 54(6), 1063 - 1070.
- Waugh, C. E., Fredrickson, B. L., & Taylor, S. F. (2008). Adapting to life's slings and arrows: Individual differences in resilience when recovering from an anticipated threat. *Journal of Research in Personality*, 42, 1031-1046.
- Waugh, C. E., Tugade, M. M., & Fredrickson, B. L. (2008). Psychophysiology of resilience to stress. In V. Tepe (Ed.), SOAR: Biobehavioral resilience to stress (pp. 117-138): Taylor & Francis.

Table 1

Predictors	Coefficient	SE	t	р
Intercept: baseline HR				
Intercept, γ_{00}	70.314	1.439	48.861	< .001
Condition, γ_{01}	-0.676	1.494	-0.453	.652
PA change, γ_{02}	1.332	1.625	0.82	.416
PA by Condition, γ_{03}	0.106	1.537	0.069	.946
NA change, γ_{04}	-3.266	1.184	-2.759	.008
NA by Condition, γ_{05}	-1.554	1.157	-1.343	.185
Preparation Magnitude				
Intercept, γ_{10}	8.025	1.056	7.602	< .001
Condition, γ_{11}	0.363	1.098	0.331	.742
PA change, γ_{12}	1.501	1.235	1.216	.230
PA by Condition, γ_{13}	0.112	1.309	0.086	.932
NA change, γ_{14}	0.474	1.026	0.462	.646
NA by Condition, γ_{15}	0.007	1.028	0.007	.995
Preparation Slope				
Intercept, γ_{20}	-1.566	0.298	-5.263	< .001
Condition, γ_{21}	0.181	0.319	0.57	.571
PA change, γ_{22}	0.331	0.306	1.082	.285
PA by Condition, γ_{23}	0.103	0.329	0.313	.755
NA change, γ_{24}	0.121	0.215	0.564	.574
NA by Condition, γ_{25}	-0.184	0.207	-0.888	.379
'Stress' Magnitude				
Intercept, γ_{30}	5.817	1.136	5.121	< .001
Condition, γ_{31}	-0.626	1.258	-0.498	.620
PA change, γ_{32}	0.408	1.008	0.404	.687
PA by Condition, γ_{33}	0.763	1.113	0.685	.496

Hierarchical Linear Modeling of Heart Rate

NA change, γ_{34}	1.005	0.797	1.261	.213
NA by Condition, γ_{35}	0.709	0.814	0.871	.388
'Stress' Slope				
Intercept, γ_{40}	-0.902	0.267	-3.378	.002
Condition, γ_{41}	1.025	0.293	3.501	.001
PA change, γ_{42}	-0.169	0.235	-0.718	.476
PA by Condition, γ_{43}	0.287	0.260	1.105	.274
NA change, γ_{44}	0.329	0.261	1.262	.213
NA by Condition, γ_{45}	-0.138	0.257	-0.536	.594
'Stress' Quadratic				
Intercept, γ_{50}	0.444	0.165	2.686	.010
Condition, γ_{51}	-0.342	0.183	-1.871	.066
PA change, γ_{52}	-0.091	0.158	-0.573	.568
PA by Condition, γ_{53}	-0.206	0.170	-1.21	.232
NA change, γ_{54}	-0.149	0.093	-1.598	.115
NA by Condition, γ_{55}	0.056	0.104	0.534	.595
Recovery Magnitude				
Intercept, γ_{60}	0.518	0.319	1.624	.110
Condition, γ_{61}	0.200	0.296	0.675	.502
PA change, γ_{62}	-0.296	0.303	-0.977	.333
PA by Condition, γ_{63}	-0.443	0.275	-1.609	.113
NA change, γ_{64}	0.629	0.306	2.059	.044
NA by Condition, γ_{65}	1.146	0.286	4.013	< .001

Note. n = 61, df = 55. Each bolded subtitle indicates the level 1 predictor. PA = Positive Affect, NA = Negative Affect. Condition refers to stressor type (anticipation, speech) and is standardized, so coefficients need to be multiplied by 2 to calculate the estimated difference between conditions.

Figure Captions

Figure 1. Schematic of the task. Circles with 'Affect' represent the times at which affective measurements were taken, except for the retrospective ratings of affect toward the stressor (speech or anticipation).

Figure 2. Positive and negative affect throughout the task. Participants in the speech and anticipation conditions only differ in their negative affect during recovery. Error bars are standard error of the mean. Base = baseline; Prep = speech preparation; Rec = recovery.

Figure 3. Cardiovascular data. Grey dotted lines represent the pHR data (raw data transformed by partialling out HR activity in script-reading condition) for the speech and anticipation conditions. Black lines represent the fitted Level 1 and Level 3 parameters from the full HLM models. BASE = baseline; PR. = speech preparation; REC = recovery; BPM = beats per minute. Error bars are standard error of the mean.

Figure 4. Interaction between stress condition and negative affect recovery on heart rate recovery. Values are derived from fitted parameters from full HR HLM model. HiNeg and LoNeg represent participants at + 1 SD and -1 SD of negative affect during the recovery period (controlling for baseline negative affect). Participants in the anticipation condition who exhibited greater negative affect during recovery exhibited greater heart rate during recovery compared with: a) their own baseline levels of heart rate; b) participants in the anticipation condition who exhibited less negative affect during recovery; and c) participants in the speech condition who also exhibited increased negative affect during recovery.

* *p* < .05.