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Abstract

The effects of thermal roughness on X-ray studies of liquid surfaces will be discussed. In contrast to solid surfaces,
for which the surface height–height correlation function remains finite at large distances, for liquid surfaces thermal
fluctuations induce a logarithmic dependence for distances smaller than a gravitationally induced cutoff that is of the
order of mm. As a result of this there is no true specular X-ray reflectivity liquid surfaces. Theory and measurements
explaining this phenomena will be presented. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years X-ray reflectivity (XR) has in-
creasingly been demonstrated to be an important
technique for characterization of surface struc-
ture. Although the application of X-ray reflectiv-
ity to solids is relatively straightforward, as a
consequence of the two-dimensional character of
thermal fluctuations in the height of the liquid
surface, the application to liquids is somewhat
subtler. In this article we will discuss some of the
fundamental differences between X-ray reflectivity

from solid and liquid surfaces. We will also ex-
plain that, as a result of thermally excited capil-
lary fluctuations of the height of the liquid
surface, there is a limit to the largest incident
angles at which specular reflectivity from a liquid
surface can be said to exist. Finally, we will
demonstrate that the effect of thermal capillary
waves can be understood quantitatively in terms
of a relatively simple model and we will show that
because the phenomena is so well understood it
should be possible to separate the effects of capil-
lary roughness from other sources of surface dif-
fuse scattering.

The principal goal of measuring X-ray reflectiv-
ity, R(a), is to obtain a description of the average
electron density profile, �r(z)�, along the surface
normal, which we take to be the z-axis. For X-ray
reflectivity the ‘master formula’:
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RF(a) �F(Qz)�2 (1)

that relates R(a) to �r(z)� was originally pro-
posed by Als-Nielsen and the author in order to
model the electron density profile associated with
smectic order that is induced by the free surface of
a liquid nematic crystal [1,2]. In this expression
RF(a) is the theoretical Fresnel reflectivity for
X-rays incident at an angle a to an ideal flat
abrupt interface between vacuum (or low density
vapor) and a bulk phase with the average electron
density, ro(�), of the bulk material. Although
only an approximation this expression for R(a) is
accurate so long as a�ac [re(�)rel

2/p ]1/2

where ac is the critical angle for total external
reflection. When the inequality does not hold a
must be corrected to account for refraction effects
on passing from the low density vapor into the
material. The quantity F(Qz) defined by Eq. (1) is
the local structure factor of the surface. For X-
rays of wavelength l and a]5ac the wavevector
transfer along the surface normal is, as indicated
in Fig. 1, Qz= (4p/l) sin (a). In view of the fact
that all information on the phase is lost on taking
the absolute value of the integral in Eq. (1) it is
not possible to formally invert F(Qz) to extract a
unique �r(z)� from a measured R(a) [3]. On the
other hand if one has a reasonable idea of the
principal physical features of the surface it is

possible to numerically fit realistic models of
�r(z)� to the measured R(a).

2. Scattering from solid surfaces

The physical property that most makes X-ray
reflectivity a simple tool for a flat solid surfaces is
the fact that the characteristic length for correla-
tions in the normal displacement of the surface
height, h(rxy), at points rxy{x, y}and r%xy=
{x %, y %}is of sufficiently short range that for sepa-
rations larger than some microscopic correlation
length the mean square difference in height be-
tween two points rxy and r%xy �[h(rxy)−h(r%xy)]2�,
becomes independent of �rxy−r%xy �. This is both
the necessary and sufficient condition for validity
of the elementary Fresnel reflection law (i.e. the
incident and reflected angles are equal and in the
same plane). This can be derived formally by
considering an approximate expression for the
differential cross section for scattering of an X-ray
of wavelength l incident on a surface at angle a

ds

dV
:

A0

sin (a)
�e2re(�)

4pmec2

�
×

�F(Qz)�2
Qz

2

&
�rxy�\j

d2rxy �e{iQz [h(rxy )−h(0)]}�

×e [iQxy rxy ] (2)

where {e, me} are the electron {charge, mass},
re(�) is the electron density of the bulk, and Ao

is the cross sectional area of the incident beam.
Assuming that the statistical distribution of
{h(rxy)} obeys Gaussian statistics such that
�[h(rxy)−h(0)]2� approaches a finite value
2�h(0)2� as �rxy ��� one can demonstrate that
the effect of the height variations on the reflectiv-
ity is similar to the Debye–Waller effect that
thermal phonons have on Bragg reflection from a
3D crystalline lattice:

ds

dV
:

A0

sin (a)
�e2re(�)

4pmec2

n2

�F(Qz)�2
Qz

2 e−Qz
2�h(0)�2

4p2d2 (Qxy) (3)

Fig. 1. Kinematics of X-ray scattering from liquid surfaces.
Synchrotron radiation of wavelength l is incident at an angle
a within the y–z plane to the x–y plane of the surface. The
detector is positioned to probe angles b to the surface and u to
the y–z plane of incidence.
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In this Qxy={Qx, Qy} is the projection of the
wavevector transfer into the x–y surface plane:

Qx= (2p/l) cos (b) sin(2u)

Qy= (2p/l)(cos (a)−cos(b) cos(2u)) (4)

and d2(Qxy)=d(Qx)d(Qy) is a two-dimensional
delta-function. The condition that{Qx, Qy}=0 is
equivalent to the requirement of the Fresnel law
of reflection that a=b and u=0. The local sur-
face structure factor, F(Qz) is defined in terms of
an electron density profile �re(z)�, that is aver-
aged over a microscopic area parallel to the plane
of the surface. Averaging is necessary since rough-
ness on an atomic length scale due to fluctuations
in atomic positions can not be distinguished from
the roughness due to the atomic size.

The essential role of d2(Qxy) in the cross section
(Eq. (3)), is to provide a tool for distinguishing
between scattering from the bulk liquid and the
surface. To be able to do this it is necessary for
the resolution length of the spectrometer to be
large in comparison with the correlation lengths
j, for bulk sources of scattering. For example, if
the detector is at a distance L from the sample
with a defining aperture that has half widths
Dwx×Dwy, the angular resolution Du×Db:
(Dwx/L)× (Dwy/L) corresponds to wavevector
resolution DQx×DQy:{(2p/l)Du, (2p/l) sin
(b) Db}. Assuming that (2p/l)DuBB1/j, if u is
scanned across the specular condition the mea-
sured intensity will consist of a sharp reflectivity
peak with a resolution limited width, superposed
on top of a slowly varying background intensity
due to bulk diffuse scattering. As can be seen
from Eq. (3), surface roughness will reduce the
intensity of the specular reflectivity peak by
exp [−Qz

2�h(0)2�] but it will not effect the width
of the peak. The specular signal is the difference
between the intensity measured at the specular
condition (u=0)and the intensity measured at
some small, but finite u outside of the detector
resolution.

As will be discussed in the following section,
liquid surfaces differ from solids in that thermal
excitation of surface capillary waves induce a log-
arithmic dependence to the height–height correla-
tions, B [h(rxy)−h(r%xy)]2\� ln (�rxy−r%xy �) [4].

The purpose of this paper is to discuss the impli-
cations of this complication for the study of
reflectivity from liquid surfaces.

3. Scattering from liquid surfaces

The constraints on atomic positions associated
with the crystalline structure of solids, and which
serve to keep the facets on solid surface flat on an
atomic scale, are absent for fluids. As a result the
two-dimensional energy density associated with
fluctuations in the height of a liquid surface has
the form:

U=
1
2

grMh (rxy)2+
g

2
!�(h(rxy)

(y
�2

+
�(h(rxy)
(y

�2"
(5)

where rM is the mass density and g is the surface
tension of the liquid. In the same way that the
Debye wavevector is introduced in the phonon
theory of solids to limit the number of modes in a
crystal to a number of the order of the number of
atoms, it is natural to limit the maximum
wavevector for surface capillary waves to a value
Qmax that is of the order of the reciprocal of the
interatomic distance [5,6]. One can show that this
form of the energy density implies that the ther-
mal equilibrium height–height correlation func-
tion has the form:

�[h(rxy)−h(r%xy)]2�:kBT
pg

ln
� 1

Qmax�rxy−r%xy �
�

(6)

for separation distances 
g/grM (mm)� �rxy−
r%xy ��1/Qmax (A, ). As a result of the logarithmic
height correlations of liquid surfaces, the product
of the Debye–Waller like term and the d2(Qxy)
term in the differential cross section (Eq. (3)) for
a solid surface is replaced by an algebraic form
with a cusp like singularity centered at: Qxy=
{Qx, Qy}=0.

ds

dV
:

Ao

sin (a)
�e2re(�)

mec2

�2 �kBT
g

� 1
Qxy

2

� Qxy

Qmax

�h

�F(Qz)�2 (7)

where
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Fig. 2. Diffuse scattering from (a) the surface of water at room temperature and (b) liquid In at 170°C.

h=
kBT
2pg

Qz
2 (8)

This algebraic shape for the cross section implies
that the simple procedure that was used for differ-
entiating between the surface and bulk scattering
of solids can not be applied to liquid surfaces.
Below we will discuss a practical method that can
be used for liquid surfaces; however, for the mo-
ment we will proceed as though the background
scattering is negligible. In fact this is usually the
case for small incident angles where bulk diffuse
scattering is negligibly small in comparison with
surface scattering.

In the mean time note that it is only if the
quantity h=kBTQz2/(2pg)B2 that ds/dV dis-
plays the cusp algebraic singularity at Qxy:0 and
makes is possible to distinguish surface scattering
from scattering originating in the bulk of the
liquid. Physically this is because for sufficiently
small Qz, �exp {iBh(rxy)−h(0) Qz}�8rxy

h (see
Eq. (2)) varies slowly enough that the Fourier
transform in Eq. (2) is peaked at Qxy:0. For
larger Qz, or for h]2, the primary contributions
to the integral are weighted towards small rxy and
ds/dV is dominated by short distance, or atomic
scale, correlations. The result for h]2 is that
both bulk and surface diffuse scattering are domi-
nated by fluctuations on the same atomic length
scale and there is no physical way to separate the
two. Specular reflectivity from a liquid surface is

only observable for h52. For practical experi-
ments the limitation can even be more severe. For
example, if the detector resolution DQx transverse
to the plane of incidence is much broader than
DQy within the plane of incidence, the integral of
1/Qxy

2−h over the x-component of the resolution
function will result in a measured intensity as a
function of b (or Qy) whose algebraic form could
vary as slowly as 1/Qy

1−h In this case the reflectiv-
ity peak is confined to values of Qz for which
h51. To the best of our knowledge this impor-
tant limitation has not been discussed elsewhere in
the literature.

The line shape and the effects of h are illus-
trated in Fig. 2 for diffuse scattering measured
from the surface of a dielectric liquid (water) and
a liquid metal (In). In order to account for the
non-surface diffuse or bulk diffuse scattering the
measurements, and also the theory (solid lines),
correspond to:

DI(a, b)I(a, b, 0)

−(1/2) [I(a, b, Du)+I(a, b, −Du)]

where I(a, b, u) is the sum of all intensity that
falls within the acceptance solid angle of the
detector when it is located at (a, b, u). The angu-
lar offset Du:0.3 to 0.4°, corresponding to DQx

varying from the order of 0.03–0.06 A, −1 depend-
ing on l. The data for water (left panel) was taken
by simultaneously varying a and b in order to
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keep a+b(or Qz) constant. For the largest value
of a+b=5.0° the value of h:0.17 is much less
than 2 and the deviations from the simple Qxy

2

power law are not significant. The cusps are rela-
tively sharp and the integral over the cusp at the
specular position has approximately the same half
width as the detector. The solid lines are calcu-
lated by numerically integrating Eq. (7) over the
resolution function formed by a rectangular slit
with no adjustable parameters [6]. The small
peaks at the two extreme ranges of the scans are
the ‘Yoneida peaks’ that occur when either the
incident or scattered angles are equal to the criti-
cal angle for total external reflection [7].

The data in the right panel is from the surface
of a liquid metal (In) at 170°C. For this data a

was held constant and b was varied. The largest
Qz obtained, corresponding to a=4° and b=5.5°
corresponds to h:0.5 and the effects of finite h

are apparent. The solid lines were calculated by
integrating Eq. (7) over the known resolution
function. In this case the calculation requires
knowledge of the local structure factor F(Qz)
which was determined from the measurements of
the Qz dependence of the specular reflectivity,
which is I(a, a+Du)+I(a, a−Du) for Du:0.3°
as a function of Qz. We take this difference to be
a measure of the Qz dependence of the specular
reflectivity.

4. Specular reflectivity from a liquid surface

In view of the tails of the cusp like shape of the
scattering cross section (i.e. when h52) from the
liquid surface the separation between surface and
bulk diffuse scattering can be somewhat arbitrary.
We argue that so long as the bulk diffuse scatter-
ing varies slowly over an angular range compara-
ble to the spectrometer resolution specular
reflectivity can be interpreted as the difference
between the intensity that is observed when the
detector is centered on the nominal specular posi-
tion and that observed when the detector is
moved off of the specular condition by an amount
larger than the spectrometer resolution. To sim-
plify the discussion, for the moment we will ne-
glect bulk diffuse scattering. So long as h is �2

the reflectivity R(Qz) can in principle be calcu-
lated by integrating the peak in the differential
cross section at Qxy over the solid angle dV sub-
tended by the detector:

R(Qz)=
&

DbDu

ds

dV
=

l2

4p2

1
sin (a)

&
D2Qxy

d2Qxy

ds

dV
(9)

where D2Qxy (DQx)(DQy): (2p/l)2 sin (a) cos
(a)DbDu the projection of the detector resolution
onto the plane of the surface.

The detector solid angle most commonly used
in experiments is defined by a rectangular shape
discussed earlier; however, if we make the heuris-
tic approximation of taking D2

Qxy to be circular
with a radius Qres Eq. (9) is easily integrated to
obtain:

R(Qz):
16p2re(�)2e4

m2c4

� 1
Qz

4

�� Qres

Qmax

�h

�F(Qz)�2
(10)

There are two important features to note about
this result.

First, if Qres:Qmax the predicted reflectivity is
identical to the Fresnel reflectivity expected from
an ideal flat surface in which the electron density
jumps abruptly from the vacuum to p(�) for the
bulk liquid [2]:

R(Qz):RF(Qz)
16p2re(�)2e4

m2c4 (11)

where RF(Qz)8 (l/Qz
4). The physical reason for

this is as follows. The Fourier components of
capillary roughness h(Qxy) with wavevector Qxy

scatter X-rays away from the specular condition;
however, if the acceptance solid angle of the
detector is large enough to collect this radiation
the measured reflectivity is not reduced by this
scattering [8–10]. It follows that if the acceptance
solid angle of the detector, as defined by Qres, is
large enough to collect scattering from all of the
surface capillary waves the measured intensity
should be the same as that of the ideal flat sur-
face. Daillant et al. had discussed an alternative
proposal to that of introducing a high Qxy cutoff
to the integral from which Eq. (6) is derived. They
prefer to assume that for short distances the en-
ergy density given by Eq. (5) is dominated by the
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higher order [(2h(rxy)/(x2]2 [11]. This has the
effect of changing the denominator in the integral
to something of the form rM+g �Qxy �2+K �Qxy �4
and serves to effectively cut off the integral at
Qxy

2 :
g/K although this is just as sensible an
approximation as the imposition of the hard cut-
off at Qmax, introduced here, unless there is short
wavevector data to justify the K �Qxy �4 term there
is also no reason to prefer it. Furthermore we find
it hard to justify assuming that terms of order Qxy

4

are sufficiently large in comparison terms of order
Qxy

2 to cutoff the integral, while terms of order
Qxy

6 and higher order are negligible. The argument
is similar to the wavevector expansions that form
the basis for the rigorous underpinning of hyr-
droynamics [12]. Furthermore, it seems that it
would be very difficult to experimentally differen-
tiate the Qxy

4 algebraic form of the cutoff from
others that might be suggested.

Second, in view of the fact that the projection
of the height of the detector aperture onto the
x–y plane is proportional to sin (a) the reflec-
tometer resolution within the plane of incidence,
DQy: (2p/l) sin (a)Db becomes increasingly

coarse as Qz= (4p/l) sin (a) increases. As a re-
sult, with increasing Qz more and more of the
radiation that is scattered away from the specular
direction falls within the acceptance solid angle of
the detector. This is evident in the fact that Qres/
Qmax, which is less than unity, increases with
increasing Qz and has the effect that for fixed
detector slits the dependence of the reflectivity on
Qz is slightly less rapid than the explicit depen-
dence shown in Eq. (10) [9,10].

Historically, most of the published treatments
of these effects have been described by introduc-
ing a phenomenological resolution dependent sur-
face roughness s2(a) such that [8]:

R(Qz):RF(Qz)exp [−s2(a)Qz
2] (12a)

where

s2(a):
�kBT

2pg

�
ln
�Qmax

Qres

�
=

h

Qz
2 ln

�Qmax

Qres

�
(12b)

and Qres is proportional to Qz= (4p/l) sin(a). As
a practical matter the logarithmic dependence of
s2(a) on a can often be neglected. For example
the dependence on a is clearly not important
when Qz is small and exp (−s2(a)Qz

2):1. The
dependence on a only becomes important when
s2(a)Qz

2:1; however, the range of a between the
value at which s2(a)Qz

2:1 and the values when
exp [−s2(a)Qz

2] becomes small enough that mea-
surements become impossible is rarely larger than
a factor of 3 or 4. Over this range of a, or Qz, the
logarithmic dependence can often be neglected.
This can be seen in the data shown in Fig. 3 from
Schwartz et al. [8]. The data shown is a log–log
plot of [R(Qz)/RF(Qz)] vs. Qz

2 for three different
vertical openings of the aperture before the detec-
tor. As can be seen for each aperture the data is
nearly linear, implying that the a2 dependence on
a is nearly constant over the measured range of
0BQz+0.5. On the other hand, evidence of the
effect of the size of the detector is illustrated in
the inset by the expected linear dependence be-
tween the best fit values of s(a) and the logarithm
of the vertical aperture opening.

In a separate experiment Ocko et al. studied the
temperature dependence of the specular reflectiv-
ity from a series of n-alkanes (C20 and C36).
They made use of the fact that the surface tension

Fig. 3. Specular reflectivity data for water in the form R(Qz)/
RF(Qz) vs. Qz

2 for detector heights of 0.8 mm (	), 2.0 mm (
)
and 5.0 mm (�). The solid lines represent the best fit to Eqs.
(12a) and (12b). The inset shows the dependence of the
average value of s on the vertical detector opening, kid. The
slope of the connecting line is in perfect agreement with the
predictions of Eq. (12b) if one assumes that Qres8 sin (a).
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Fig. 4. (Left) normalized specular reflectivity data in the form of R(Qz)/RF(Qz) from the surface of liquid Ga as a function of
temperature. (Right) the same data as in the left panel divided by the predicted effect of thermal capillary waves (l/Qz

2)(Qres/Qmax)h.

of these alkanes is a strong function of tempera-
ture to demonstrate the validity of Eqs. (12a) and
(12b) [13].

For liquid metals the combination of larger
surface tension and larger electron density allows
X-ray reflectivity to be measured to values of
Qz:3 A, −1 and the effect of capillary waves is
much more dramatic. The left panel in Fig. 4
shows data for the ratio [R(Qz)/RF(Qz)] from the
surface of liquid Ga for a range of temperatures.
As discussed elsewhere the atoms at the surface of
liquid metals are expected to be arranged in layers
parallel to the surface and this is confirmed by the
quasi Bragg peak observed for Ga at Qz:
2.4 A, −1 [14,15]. The fact that all of this tempera-
ture dependence is due to thermal capillary waves
is demonstrated in the right panel of Fig. 4 where
we show the results of dividing the data on the
left by (Qres/Qmax)h. As can be seen the predicted
effect due to thermal capillary waves completely
accounts for all of the temperature dependence.
Note that for liquid Ga at 160°C the value of
h:1.

5. Diffuse scattering from inhomogeneous surfaces

Finally we would like to point out that the
diffuse scattering from thermal capillary waves on
liquid surfaces is sufficiently well understood that

Fig. 5. Measured DI/I0 vs. (b–a) for PBLG (a) homogeneous
Langmuir monolayer and (b) an inhomogeneous bilayer. The
solid curves (—) are theoretically expected predictions for
homogeneous PBLG films based on Eq. (7) [6].
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any deviation between the experimental data
and the capillary wave model can be interpreted
in terms of surface inhomogeneities. The one
published example of this approach is the exper-
iment by Fukuto et al. on diffuse scattering
from Lang-muir monolayers of the synthetic
polypeptide, poly-g-benzyl-L-glutamate (PBLG)
on the surface of water [6]. The data in the
upper panel of Fig. 5 illustrates diffuse scatter-
ing from a homogeneous monolayer of PBLG,
the data in the lower panel shows data from
similar measurements at higher surface density
in which some of the molecules have been ex-
pelled into a second layer. Under conditions at
which the data in the lower panel were taken
the film is inhomogeneous. In both panels the
solid lines represent the theoretical predictions
calculated from Eq. (7) using the functional
form for F(Qz) that best fits the specular reflec-
tivity R(Qz). For the homogeneous monolayer
(upper panel) the data and theory agree per-
fectly. For the inhomogeneous layer (lower
panel) the theoretical prediction of capillary
wave theory is consistently below the data indi-
cating excess scattering. This data has been ana-
lyzed and the correlation length for the surface
inhomogeneity arising from two-dimensional
clusters of molecules in the second layer is of
the order of l000 A, .

6. Summary

In this paper we have discussed some of the
basic phenomena that must be considered in in-
terpreting X-ray scattering from the liquid sur-
face. It has widely been recognized that surface
roughness due to thermally excited capillary
waves are responsible for a Debye–Waller like
factor that reduces the intensity of specular
reflectivity for larger angles. What has not previ-
ously been discussed; however, is the fact that
for incident angles larger than the value for
which the exponent h=2 it is not possible to
distinguish surface and bulk scattering. This ef-
fect can be exasperated by the shape of the res-
olution function and for some situations the
practical limit for measuring specular reflectivity

from liquid surfaces might correspond to h:1.
Nevertheless, the effects of thermal capillary
waves are well understood and detailed studies
of in-plane correlations from liquid surfaces are
possible for liquids with h52.
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