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RANKS OF TWISTS OF ELLIPTIC CURVES

AND HILBERT’S TENTH PROBLEM

B. MAZUR AND K. RUBIN

Abstract. In this paper we investigate the 2-Selmer rank in families of qua-
dratic twists of elliptic curves over arbitrary number fields. We give sufficient
conditions on an elliptic curve so that it has twists of arbitrary 2-Selmer rank,
and we give lower bounds for the number of twists (with bounded conduc-
tor) that have a given 2-Selmer rank. As a consequence, under appropri-
ate hypotheses we can find many twists with trivial Mordell-Weil group, and
(assuming the Shafarevich-Tate conjecture) many others with infinite cyclic
Mordell-Weil group. Using work of Poonen and Shlapentokh, it follows from
our results that if the Shafarevich-Tate conjecture holds, then Hilbert’s Tenth
Problem has a negative answer over the ring of integers of every number field.

1. Introduction and main results

In this paper we investigate the 2-Selmer rank in families of quadratic twists
of elliptic curves over arbitrary number fields. We give sufficient conditions on an
elliptic curve so that it has twists of 2-Selmer rank r for every r ≥ 0, and discuss
other conditions under which the 2-Selmer ranks of all quadratic twists have the
same parity. We also give lower bounds for the number of twists (with bounded
conductor) that have a given 2-Selmer rank.

Since the 2-Selmer rank is an upper bound for the Mordell-Weil rank, our results
have consequences for the Mordell-Weil rank. Under appropriate hypotheses we can
find many twists with trivial Mordell-Weil group, and (assuming the Shafarevich-
Tate conjecture below) many others with infinite cyclic Mordell-Weil group.

Here are two applications of our results. The first settles an open question
mentioned to us by Poonen.

Theorem 1.1. If K is a number field, then there is an elliptic curve E over K
with E(K) = 0.

The second application combines our results with work of Poonen and Shlapen-
tokh. It relies on a weak version of the Shafarevich-Tate conjecture, Conjecture
XT2(K) below.

Theorem 1.2. Suppose Conjecture XT2(K) holds for every number field K. Then
for every number field K, Hilbert’s Tenth Problem is undecidable (i.e., has a nega-
tive answer) over the ring of integers of K.

We now discuss our methods and results in more detail. If K is a number field
and E is an elliptic curve over K, let Sel2(E/K) be the 2-Selmer group of E/K

This material is based upon work supported by the National Science Foundation under grants
DMS-0700580 and DMS-0757807.
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2 B. MAZUR AND K. RUBIN

(see §2 for the definition) and

d2(E/K) := dimF2
Sel2(E/K).

Then rank(E(K)) ≤ d2(E/K), so

d2(E/K) = 0 =⇒ rank(E(K)) = 0.

If F/K is a quadratic extension, let EF denote the quadratic twist of E by F/K.
We will allow the “trivial quadratic extension” F = K, in which case EF = E. For
X ∈ R+ define

Nr(E,X) := |{quadratic F/K : d2(E
F /K) = r and NK/Qf(F/K) < X}|

where f(F/K) denotes the finite part of the conductor of F/K.

1.1. Controlling the Selmer rank. Not all elliptic curves have twists of every
2-Selmer rank. For example, some elliptic curves have “constant 2-Selmer parity”,
meaning that d2(E

F /K) ≡ d2(E/K) (mod 2) for all quadratic extensions F/K.
A theorem of T. Dokchitser and V. Dokchitser [DD, Theorem 1] (see Theorem 9.3
below), combined with standard conjectures, predicts that E/K has constant 2-
Selmer parity if and only if K is totally imaginary and E acquires everywhere good
reduction over an abelian extension ofK. See §9 for a discussion of the phenomenon
of constant 2-Selmer parity, and some examples.

We expect that constant parity and the existence of rational 2-torsion are the
only obstructions to having twists of every 2-Selmer rank. We also expect that
Nr(E,X) should grow like a positive constant times X , whenever it is nonzero.
Namely, we expect the following.

Conjecture 1.3. Suppose K is a number field and E is an elliptic curve over K.

(i) If r ≥ dim2 E(K)[2] and r ≡ d2(E/K) (mod 2), then Nr(E,X) ≫ X.
(ii) If K has a real embedding, or if E/K does not acquire everywhere good

reduction over an abelian extension of K, then Nr(E,X) ≫ X for every
r ≥ dimF2

E(K)[2].

When K = Q and E is y2 = x3 − x, Heath-Brown [HB] has shown that
limX→∞ Nr(E,X)/X = αr for every r ≥ 2, with an explicit positive constant
αr. Related results have been obtained by Swinnerton-Dyer [SD] when K = Q and
E is an elliptic curve with all 2-torsion points rational.

In the direction of Conjecture 1.3, we have the following results.

Theorem 1.4. Suppose K is a number field, E is an elliptic curve over K, r ≥ 0,
and E has a quadratic twist E′/K with d2(E

′/K) = r. Then:

(i) If Gal(K(E[2])/K) ∼= S3, then Nr(E,X) ≫ X/(logX)2/3.
(ii) If Gal(K(E[2])/K) ∼= Z/3Z, then Nr(E,X) ≫ X/(logX)1/3.

Note that Gal(K(E[2])/K) is isomorphic to S3 or Z/3Z if and only if E(K)[2] =
0.

When K = Q, a version of Theorem 1.4 was proved by Chang in [Ch1, Theo-
rem 4.10]. Also in the case K = Q, Chang has proved (slightly weaker) versions
of Theorem 1.7 and Corollary 1.12 below, namely [Ch2, Theorem 1.1] and [Ch2,
Corollary 1.2], respectively.

In the statements below, we will use the phrase “E has many twists” with some
property to indicate that the number of such twists, ordered by NK/Qf(F/K), is
≫ X/(logX)α for some α ∈ R.
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Theorem 1.5. Suppose K is a number field, and E is an elliptic curve over K
such that E(K)[2] = 0. Suppose further that either K has a real embedding, or that
E has multiplicative reduction at some prime of K.

If r = 0, 1, or r ≤ d2(E/K), then E has many quadratic twists E′/K with
d2(E

′/K) = r.

Theorem 1.6. Suppose K is a number field, and E is an elliptic curve over K
such that Gal(K(E[2])/K) ∼= S3. Let ∆E be the discriminant of some model of E,
and suppose further that K has a place v0 satisfying one of the following conditions:

• v0 is real and (∆E)v0 < 0, or
• v0 ∤ 2∞, E has multiplicative reduction at v0, and ordv0(∆E) is odd.

Then for every r ≥ 0, E has many quadratic twists E′/K with d2(E
′/K) = r.

Theorem 1.7. Suppose K is a number field, and E is an elliptic curve over K
such that E(K)[2] = 0. If 0 ≤ r ≤ d2(E/K) and r ≡ d2(E/K) (mod 2), then E
has many quadratic twists E′/K such that d2(E

′/K) = r.

Corollary 1.8. Suppose K is a number field, and E is an elliptic curve over K
with constant 2-Selmer parity such that Gal(K(E[2])/K) ∼= S3. Let j(E) be the
j-invariant of E, and suppose further that j(E) 6= 0 and K has an archimedean
place v such that (j(E))v ∈ R and (j(E))v < 1728. Then for every r ≡ d2(E/K)
(mod 2), E has many quadratic twists E′/K such that d2(E

′/K) = r.

For every number field K, there are elliptic curves E over K satisfying the
hypotheses of Theorem 1.6. In fact, E can be taken to be the base change of an
elliptic curve over Q (see Lemma 5.4).

Corollary 1.9. Suppose K is a number field. There are elliptic curves E over K
such that for every r ≥ 0, E has many twists E′/K with d2(E

′/K) = r.

1.2. Controlling the Mordell-Weil rank. Using the relation between d2(E/K)
and rank(E(K)) leads to the following corollaries.

Corollary 1.10. Suppose K is a number field, and E is an elliptic curve over K
such that E(K)[2] = 0. Suppose further that either K has a real embedding, or that
E has multiplicative reduction at some prime of K. Then E has many twists E′/K
with E′(K) = 0.

When K = Q, Corollary 1.10 was proved by Ono and Skinner ([OS, §1], [O,
Corollary 3]), using methods very different from ours (modularity and special values
of L-functions).

Theorem 1.1 is an immediate consequence of the following corollary.

Corollary 1.11. Suppose K is a number field. There are elliptic curves E over K
such that E has many twists E′/K with E′(K) = 0.

If E is an elliptic curve over a number field K, let X(E/K) denote the Shafare-
vich-Tate group of E over K (see §2). A conjecture that is part of the folklore
(usually called the Shafarevich-Tate Conjecture [Ca1, p. 239, footnote (5)]) predicts
that X(E/K) is finite. If the 2-primary subgroup X(E/K)[2∞] is finite, then the
Cassels pairing shows that dimF2

X(E/K)[2] is even. We record this 2-parity
conjecture as follows.

Conjecture XT2(K). For every elliptic curve E/K, dimF2
X(E/K)[2] is even.



4 B. MAZUR AND K. RUBIN

Corollary 1.12. Suppose K is a number field, and E is an elliptic curve over K
such that E(K)[2] = 0. Suppose further that either K has a real embedding, or that
E has multiplicative reduction at some prime of K. If Conjecture XT2(K) holds,
then E has many quadratic twists with infinite cyclic Mordell-Weil group.

Skorobogatov and Swinnerton-Dyer [SSD] obtained results related to Corollary
1.12 in the case where all the 2-torsion on E is rational over K.

1.3. Controlling the rank over two fields simultaneously. Suppose L/K is a
cyclic extension of prime degree of number fields. With care, we can simultaneously
control the 2-Selmer rank of twists of E over K and over L, leading to the following
result.

Theorem 1.13. Suppose L/K is a cyclic extension of prime degree of number
fields. Then there is an elliptic curve E over K with rank(E(L)) = rank(E(K)).

If Conjecture XT2(K) is true, then there is an elliptic curve E over K with
rank(E(L)) = rank(E(K)) = 1.

Assuming standard conjectures, the second assertion of Theorem 1.13 can fail
when L/K is not cyclic. See Remark 7.7 for more about this.

By using the final assertion of Lemma 5.4 in the proof of Theorem 1.13, we can
take the elliptic curve E in Theorem 1.13 to be a twist over K of an elliptic curve
defined overQ. Similarly, in Corollaries 1.9 and 1.11 we can conclude that there are
elliptic curves E/Q that have many quadratic twists E′/K having d2(E

′/K) = r
or E′(K) = 0, respectively.

Poonen and Shlapentokh showed how to use Theorem 1.13 together with ideas
from [P, Theorem 1 and Corollary 2], [De], and [Sh] to prove Theorem 1.2 about
Hilbert’s Tenth Problem. In fact one can be more precise about how much of
Conjecture XT2 is required; see Theorem 8.1.

A theorem of Eisenträger [E, Theorem 7.1] gives the following corollary of
Theorem 1.2.

Corollary 1.14. Suppose Conjecture XT2(K) holds for every number field K.
Then Hilbert’s Tenth Problem has a negative answer over every infinite ring A that
is finitely generated over Z.

1.4. Some remarks about the proofs. Our methods are different from the clas-
sical 2-descent, and are more in the spirit of the work of Kolyvagin, especially
as described in [MR1]. If F is a quadratic extension of K, the 2-Selmer group
Sel2(E

F /K) is defined as a subgroup of H1(K,EF [2]) cut out by local conditions
(see Definition 2.3). The GK-modules E[2] and EF [2] are canonically isomorphic,
so we can view Sel2(E

F /K) ⊂ H1(K,E[2]) for every F . In other words, all the
different 2-Selmer groups are subgroups of H1(K,E[2]), cut out by different local
conditions. Our method is to try to construct F so that the local conditions defin-
ing Sel2(E/K) and Sel2(E

F /K) agree everywhere except at most one place, and
to use that one place to vary the 2-Selmer rank in a controlled manner.

For example, to prove Theorem 1.4 we find many different quadratic extensions
F for which all of the local conditions defining Sel2(E/K) and Sel2(E

F /K) are the
same, so in fact Sel2(E

F /K) = Sel2(E/K).
For another example, suppose the hypotheses of Theorem 1.6 are satisfied. We

will take F = Q(
√
π), where π is a generator of a prime ideal p chosen using the Ce-

botarev theorem, so that the local conditions defining Sel2(E/K) and Sel2(E
F /K)
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are the same for all places different from p. By choosing the prime p appropri-
ately, we will also ensure that Sel2(E

F /K) ⊂ Sel2(E/K) with codimension one, so
d2(E

F /K) = d2(E/K)− 1.
Similarly, we can choose a different F such that Sel2(E/K) ⊂ Sel2(E

F /K) with
codimension one, so d2(E

F /K) = d2(E/K) + 1. Now Theorem 1.6 follows by
induction.

Theorems 1.5, 1.7, and 1.13 are proved in the same general manner.
A key tool in several of our arguments is a theorem of Kramer [Kr, Theorem 1]

that gives a formula for the parity of d2(E/K) + d2(E
F /K) in terms of local data.

See Theorem 2.7 below.

1.5. Layout of the paper. In the next section we define the 2-Selmer group and
study the local subgroups that occur in the definition. In §3 we give a general
result (Proposition 3.3) comparing the 2-Selmer ranks of quadratic twists, and lay
the groundwork (Lemma 3.5) for using the Cebotarev theorem to construct useful
twists.

Theorem 1.4 is proved in §4. Theorems 1.5, 1.6 and 1.7, and Corollaries 1.8, 1.9,
1.10, 1.11, and 1.12, are all proved in §5. In §6 we prove Theorem 1.13 in the case
[L : K] = 2, and the rest of Theorem 1.13 is proved in §7. Theorem 1.2 is proved
in §8. In §9 we discuss elliptic curves with constant 2-Selmer parity.

1.6. Acknowledgements. The authors would like to thank Bjorn Poonen for ask-
ing the questions that led to this work. They also thank Poonen and Alexandra
Shlapentokh for explaining how Theorem 1.13 implies Theorem 1.2, and for allowing
us to describe their proof in §8.

2. Local conditions

Fix for this section a number field K.

Definition 2.1. Suppose E is an elliptic curve over K. For every place v of K, let
H1

f (Kv, E[2]) denote the image of the Kummer map

E(Kv)/2E(Kv) −→ H1(Kv, E[2]).

(Note that H1
f (Kv, E[2]) depends on E, not just on the Galois module E[2].)

Lemma 2.2. (i) If v ∤ 2∞ then dimF2
(H1

f (Kv, E[2])) = dimF2
(E(Kv)[2]).

(ii) If v ∤ 2∞ and E has good reduction at v, then

H1
f (Kv, E[2]) ∼= E[2]/(Frobp − 1)E[2]

with the isomorphism given by evaluating cocycles at the Frobenius auto-
morphism Frobp.

Proof. Suppose v ∤ 2∞, and let ℓ > 2 be the residue characteristic of v. Then
E(Kv) is a commutative profinite group with a pro-ℓ subgroup of finite index, so
H1

f (Kv, E[2]) ∼= E(Kv)/2E(Kv) and E(Kv)[2] are (finite dimensional) F2-vector
spaces of the same dimension.

If in addition E has good reduction at v, then (see for example [Ca2])

H1
f (Kv, E[2]) = H1(Kur

v /K,E[2]) ⊂ H1(Kv, E[2])

and (ii) follows. �
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Definition 2.3. Suppose E is an elliptic curve over K. The 2-Selmer group
Sel2(E/K) ⊂ H1(K,E[2]) is the (finite) F2-vector space defined by the exactness
of the sequence

0 −→ Sel2(E/K) −→ H1(K,E[2]) −→ ⊕

v
H1(Kv, E[2])/H1

f (Kv, E[2]).

The Kummer map E(K)/2E(K) → H1(K,E[2]) induces an exact sequence

(1) 0 −→ E(K)/2E(K) −→ Sel2(E/K) −→ X(E/K)[2] −→ 0

whereX(E/K)[2] is the kernel of multiplication by 2 in the Shafarevich-Tate group
of E/K.

Recall that d2(E/K) := dimF2
Sel2(E/K).

Remark 2.4. If E is an elliptic curve over K and EF is a quadratic twist, then
there is a natural identification of Galois modules E[2] = EF [2]. This allows us
to view Sel2(E/K), Sel2(E

F /K) ⊂ H1(K,E[2]), defined by different sets of lo-
cal conditions. By choosing F carefully, we can ensure that the local conditions
H1

f (Kv, E[2]), H1
f (Kv, E

F [2]) ⊂ H1(Kv, E[2]) coincide for all but at most one v,
and then using global duality we will compare d2(E/K) and d2(E

F /K).

Lemma 2.5. If F is a quadratic extension of K, then

d2(E/K) + d2(E
F /K) ≡ d2(E/F ) + dimF2

(E(F )[2]) (mod 2).

Proof. Let Sel2∞(E/K) denote the 2-power Selmer group of E/K, the direct limit
over n of the 2n-Selmer groups Sel2n(E/K) defined analogously to Sel2(E/K)
above. Using the Cassels pairing it is straightforward to show (see for example
[MR2, Proposition 2.1])

(2) corankZp
(Sel2∞(E/K)) ≡ d2(E/K) + dimF2

E(K)[2] (mod 2).

The natural map

Sel2∞(E/K)⊕ Sel2∞(EF /K) −→ Sel2∞(E/F )

has finite kernel and cokernel, so

corankZp
(Sel2∞(E/K)) + corankZp

(Sel2∞(EF /K)) = corankZp
(Sel2∞(E/F )).

Combining this with (2), and observing that E(K)[2] ∼= EF (K)[2], proves the
congruence of the lemma. �

Fix for the rest of this section an elliptic curve E/K and a quadratic extension
F/K. Recall that EF is the twist of E by F/K. Let ∆E be the discriminant of
some model of E.

Definition 2.6. If v is a place of K, let EN(Kv) ⊂ E(Kv) denote the image of the
norm map E(Fw) → E(Kv) for any choice of w above v (this is independent of the
choice of w), and define

δv(E,F/K) := dimF2
(E(Kv)/EN(Kv)).

The following theorem of Kramer will play an important role in many of our
proofs below.

Theorem 2.7 (Kramer). We have

d2(E
F /K) ≡ d2(E/K) +

∑

v

δv(E,F/K) (mod 2).
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Proof. This is a consequence of [Kr, Theorem 1]. Combining Theorems 1 and 2 of
[Kr] shows that

rank(E(F )) + dimF2
(X(E/F )[2]) ≡

∑

v

δv(E,F/K) (mod 2).

By (1), the left-hand side of this congruence is d2(E/F )− dimF2
(E(F )[2]), and by

Lemma 2.5 this is congruent to d2(E/K) + d2(E
F /K). �

Remark 2.8. A key step in Kramer’s proof is the following remarkable con-
struction. There are alternating Cassels pairings hE on Sel2(E/K) and hEF on
Sel2(E

F /K). Their sum is a new alternating pairing on Sel2(E/K)∩ Sel2(E
F /K),

and Kramer shows [Kr, Theorem 2] that the kernel of hE+hEF is NF/KSel2(E/F ).
Therefore

dimF2
((Sel2(E/K) ∩ Sel2(E

F /K)) ≡ dimF2
(NF/KSel2(E/F )) (mod 2).

Lemma 2.9. Under the identification H1
f (Kv, E[2]) = E(Kv)/2E(Kv), we have

H1
f (Kv, E[2]) ∩H1

f (Kv, E
F [2]) = EN(Kv)/2E(Kv).

Proof. This is [Kr, Proposition 7] or [MR2, Proposition 5.2] (the proof given in
[MR2] works even if p = 2, and even if v | ∞). �

Lemma 2.10 (Criteria for equality of local conditions after twist). If at least one
of the following conditions (i)-(v) holds:

(i) v splits in F/K, or
(ii) v ∤ 2∞ and E(Kv)[2] = 0, or
(iii) E has multiplicative reduction at v, F/K is unramified at v, and ordv(∆E)

is odd, or
(iv) v is real and (∆E)v < 0, or
(v) v is a prime where E has good reduction and v is unramified in F/K,

then H1
f (Kv, E[2]) = H1

f (Kv, E
F [2]) and δv(E,F/K) = 0.

Proof. By Lemma 2.9, we have

H1
f (Kv, E[2]) = H1

f (Kv, E
F [2]) ⇐⇒ EN(Kv) = E(Kv) ⇐⇒ δv(E,F/K) = 0.

If v splits in F/K then EN(Kv) = E(Kv).
If v ∤ 2∞ and E(Kv)[2] = 0, then H1

f (Kv, E[2]) = H1
f (Kv, E

F [2]) = 0 by Lemma
2.2(i).

If E has multiplicative reduction at v, F/K is unramified at v, and ordv(∆E) is
odd, then [Kr, Propositions 1 and 2(a)] shows that δv(E,F/K) = 0.

If v is real and (∆E)v < 0, then E(Kv) is connected and δv(E,F/K) = 0.
If E has good reduction at v and v is unramified in F/K, then δv(E,F/K) = 0

by [Maz, Corollary 4.4]. This completes the proof. �

Lemma 2.11 (Criterion for transversality of local conditions after twist). If v ∤ 2∞,
E has good reduction at v, and v is ramified in F/K, then

H1
f (Kv, E[2]) ∩H1

f (Kv, E
F [2]) = 0, δ(E,F/K) = dimF2

(E(Kv)[2]).

Proof. For such v, [Maz, Corollary 4.6] or [MR2, Lemma 5.5] show that EN(Kv) =
2E(Kv). Now the first assertion of the lemma follows from Lemma 2.9, and the
second from Lemma 2.2(i). �
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3. Comparing Selmer groups

We continue to fix a number field K, an elliptic curve E/K, and a quadratic
extension F/K.

Definition 3.1. If T is a finite set of places of K, let

locT : H1(K,E[2]) −→ ⊕v∈TH
1(Kv, E[2])

denote the sum of the localization maps. Define strict and relaxed 2-Selmer groups
ST ⊂ ST ⊂ H1(K,E[2]) by the exactness of

0 // ST // H1(K,E[2]) //

⊕

v/∈T H1(Kv, E[2])/H1
f (Kv, E[2]),

0 // ST
// ST

locT
// ⊕v∈TH

1(Kv, E[2]).

Then by definition ST ⊂ Sel2(E/K) ⊂ ST , and we define

VT := locT (Sel2(E/K)) ⊂ ⊕v∈TH
1
f (Kv, E[2]).

Lemma 3.2. dimF2
ST − dimF2

ST =
∑

v∈T dimF2
H1

f (Kv, E[2]).

Proof. We have exact sequences

0 // Sel2(E/K) // ST
locT

// ⊕v∈T (H1(Kv, E[2])/H1
f (Kv, E[2]))

0 // ST
// Sel2(E/K)

locT
// ⊕v∈TH

1
f (Kv, E[2]).

By Poitou-Tate global duality (see for example [Mi, Theorem I.4.10], [T1, Theorem
3.1], or [Ru, Theorem 1.7.3]), the images of the right-hand maps are orthogonal
complements under the (nondegenerate) sum of the local Tate pairings, so their
F2-dimensions sum to

∑

v∈T dimF2
H1

f (Kv, E[2]). The lemma follows directly. �

Proposition 3.3. Suppose that all of the following places split in F/K:

• all primes where E has additive reduction,
• all v of multiplicative reduction such that ordv(∆E) is even,
• all primes above 2,
• all real places v with (∆E)v > 0,

and suppose in addition that all v of multiplicative reduction such that ordv(∆E) is
odd are unramified in F/K.

Let T be the set of (finite) primes p of K such that F/K is ramified at p and
E(Kp)[2] 6= 0. Then

d2(E
F /K) = d2(E/K)− dimF2

VT + d

for some d satisfying

0 ≤ d ≤ dimF2
(⊕p∈TH

1
f (Kp, E[2])/VT ),

d ≡ dimF2
(⊕p∈TH

1
f (Kp, E[2])/VT ) (mod 2).

Proof. Let V F
T := locT (Sel2(E

F /K)) ⊂ ⊕p∈TH
1
f (Kp, E[2]).

By Lemma 2.10, H1
f (Kv, E[2]) = H1

f (Kv, E
F [2]) if v /∈ T . Therefore we have

ST ⊂ Sel2(E
F /K) ⊂ ST , and we have exact sequences

0 // ST
// Sel2(E/K)

locT
// VT

// 0

0 // ST
// Sel2(E

F /K)
locT

// V F
T

// 0.
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We deduce that

(3) d2(E
F /K) = d2(E/K) + dimF2

V F
T − dimF2

VT .

Let

t :=
∑

p∈T dimF2
H1

f (Kp, E[2]).

By Lemma 2.11 we have Sel2(E/K)∩Sel2(E
F /K) = ST , and by the remark above

we also have Sel2(E/K) + Sel2(E
F /K) ⊂ ST . Hence

(4) dimF2
VT + dimF2

V F
T = dimF2

(Sel2(E/K)/ST ) + dimF2
(Sel2(E

F /K)/ST )

≤ dimF2
(ST /ST ) = t,

where the final equality holds by Lemma 3.2.
Recall the local norm index δv(E,F/K) of Definition 2.6. By Lemma 2.10,

δv(E,F/K) = 0 if v /∈ T , and by Lemma 2.11,
∑

p∈T

δv(E,F/K) = t,

so d2(E
F /K) ≡ d2(E/K) + t (mod 2) by Kramer’s congruence (Theorem 2.7).

Comparing this with (3) we see that

(5) dimF2
V F
T ≡ t− dimF2

VT = dimF2
(⊕p∈TH

1
f (Kp, E[2])/VT ) (mod 2).

By (4) we have

(6) 0 ≤ dimF2
V F
T ≤ t− dimF2

VT = dimF2
(⊕p∈TH

1
f (Kp, E[2])/VT ).

If we let d = dimF2
V F
T , then the conclusion of the proposition follows from (3),

(5), and (6). �

Corollary 3.4. Suppose E, F/K, and T are as in Proposition 3.3.

(i) If dimF2
(⊕p∈TH

1
f (Kp, E[2])/VT ) ≤ 1, then

d2(E
F /K) = d2(E/K)− 2 dimF2

VT +
∑

p∈T dimF2
H1

f (Kp, E[2]).

(ii) If E(Kp)[2] = 0 for every p ∈ T , then d2(E
F /K) = d2(E/K).

Proof. The first assertion follows directly from Proposition 3.3. For (ii), note that
T is empty in this case, so (ii) follows from (i). �

Let M := K(E[2]). If c ∈ H1(K,E[2]) and σ ∈ GK , let c(σ) ∈ E[2]/(σ − 1)E[2]
denote the image of σ under any cocycle representing c. This is well-defined.

Lemma 3.5. Suppose Gal(M/K) ∼= S3 and σ ∈ GK . Suppose that C is a finite
subgroup of H1(K,E[2]), and φ : C → E[2]/(σ − 1)E[2] is a homomorphism.

Then there is a γ ∈ GK such that γ|MKab = σ|MKab and c(γ) = φ(c) for all
c ∈ C.

Proof. Let Γ := Gal(M/K) ∼= Aut(E[2]). Then H1(Γ, E[2]) = 0, so the restriction
map

H1(K,E[2]) →֒ Hom(GM , E[2])Γ

is injective.
Fix cocycles {c1, . . . , ck} representing an F2-basis of C. Then c1, . . . , ck restrict

to linearly independent homomorphisms c̃1, . . . , c̃k ∈ Hom(GM , E[2])Γ.
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Let N ⊂ K̄ be the (abelian) extension of M fixed by ∩i ker(c̃i) ⊂ GM . Put
W := GM/ ∩i ker(c̃i) = Gal(N/M). Then W is an F2-vector space with an action
of Γ, c̃1, . . . , c̃k are linearly independent in Hom(W,E[2])Γ, and

(7) c̃1 × · · · × c̃k : W →֒ E[2]k

is a Γ-equivariant injection. ThusW is isomorphic to a Γ-submodule of the semisim-
ple module E[2]k, so W is also semisimple. But if U is an irreducible constituent
of W , then U is also an irreducible constituent of E[2]k, so U ∼= E[2]. Therefore
W ∼= E[2]j for some j ≤ k. But then j = dimF2

Hom(W,E[2])Γ ≥ k, so j = k and
(7) is an isomorphism.

The group Γ acts trivially on Gal((MKab∩N)/M), but Gal(N/M) = W ∼= E[2]k

has no nonzero quotients on which Γ acts trivially, so MKab ∩N = M .
Since (7) is surjective and MKab ∩ N = M , we can choose τ ∈ GM such that

ci(τ) = φ(ci) − ci(σ) for 1 ≤ i ≤ k, and τ |MKab = 1. Then ci(τσ) = ci(τ) +
τ(ci(σ)) = φ(ci) for every i. Since the ci represent a basis of C, the proposition is
satisfied with γ := τσ. �

Lemma 3.6. Suppose E(K)[2] = 0, and c1, c2 are cocycles representing distinct
nonzero elements of H1(K,E[2]). Then there is a γ ∈ GK such that γ|MKab = 1
and c1(γ), c2(γ) are an F2-basis of E[2].

Proof. Let Γ := Gal(M/K), so either Γ ∼= S3 or Γ ∼= Z/3Z. In either case E[2] is
an irreducible Γ-module, and H1(Γ, E[2]) = 0, so the restriction map

H1(K,E[2]) →֒ Hom(GM , E[2])Γ

is injective. Let c̃1, c̃2 be the distinct nonzero elements of Hom(GM , E[2])Γ obtained
by restricting c1, c2 to GM .

For i = 1, 2 let Ni be the fixed field of ker(c̃i). Then c̃i : Gal(Ni/M) → E[2] is
nonzero and Γ-equivariant, so it must be an isomorphism.

Let N = N1 ∩ N2. Since c̃i identifies Gal(Ni/N) with a Γ-stable subgroup of
E[2], we either have N1 = N2 or N1 ∩N2 = M .

If N1 = N2, then c̃1, c̃2 : Gal(N/M) → E[2] are different isomorphisms, so we
can find τ ∈ Gal(N/M) such that c̃1(τ) and c̃2(τ) are distinct and nonzero.

If N1 ∩N2 = M , then again we can find τ ∈ Gal(N1N2/M) such that c̃1(τ) and
c̃2(τ) are distinct and nonzero.

Since Γ acts trivially on Gal((MKab∩N1N2)/M), but Gal(N1N2/M) ∼= E[2] or
E[2]2 has no nonzero quotients on which Γ acts trivially, we have MKab ∩N1N2 =
M . Thus we can choose γ ∈ GM such that γ|MKab = 1 and γ|N1N2

= τ . This γ
has the desired properties. �

4. Proof of Theorem 1.4

In this section we will prove Theorem 1.4. Suppose K is a number field, N is a
finite abelian extension of K, and M is another Galois extension of K.

Fix a nonempty union of conjugacy classes S ⊂ Gal(M/K). If p is a prime of K
unramified in M/K, let Frobp(M/K) denote the Frobenius (conjugacy class) of p
in Gal(M/K). Define a set of primes of K

P := {p : p is unramified in NM/K and Frobp(M/K) ⊂ S}.
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and two sets of ideals N1 ⊂ N of K

N := {a : a is a squarefree product of primes in P},
N1 := {a ∈ N : [a, N/K] = 1},

where [ · , N/K] is the global Artin symbol.

Lemma 4.1. There is a positive real constant C such that

|{a ∈ N1 : NK/Qa < X}| = (C + o(1))
X

(logX)1−|S|/[M :K]
.

Proof. The proof is a straightforward adaptation of a result of Serre [Se, Théorème
2.4], who proved this when K = N = Q.

Let G = Gal(N/K). If χ : G → C× is a character, let

fχ(s) :=
∑

a∈N

χ(a)Na−s =
∏

p∈P

(1 + χ(p)Np−s)

where χ(a) = χ([a, N/K]). Then standard methods show that

log fχ(s) =
∑

p∈P

log(1 + χ(p)Np−s) ∼
∑

p∈P

χ(p)Np−s ∼ δχ log(
1

s−1 )

where

δχ :=

{

0 if χ is not the trivial character,

|S|/[M : K] if χ is trivial,

and we write g(s) ∼ h(s) for functions g, h defined on the half-plane ℜ(s) > 1 to
mean that g(s) − h(s) extends to a holomorphic function on ℜ(s) ≥ 1. It follows
that

∑

a∈N1

Na−s =
1

[N : K]

∑

χ

fχ(s) = (s− 1)−|S|/[M :K]g(s)

with a function g(s) that is holomorphic and nonzero on ℜ(s) ≥ 1. The lemma now
follows from a variant of Ikehara’s Tauberian Theorem [W, p. 322]. �

Now fix an elliptic curve E over K with E[2] = 0, and let ∆ be the discriminant
of an integral model of E. Let N = K(8∆∞), the ray class field of K modulo 8∆
and all archimedean places, and let M := K(E[2]). Let P and N1 be as defined
above, with this N and M and with S the set of elements of order 3 in Gal(M/K).
Since E(K)[2] = 0 we have |S| = 2.

Proposition 4.2. Suppose a ∈ N1. Then there is a quadratic extension F/K of
conductor a such that d2(E

F ) = d2(E).

Proof. Fix a ∈ N1. Then a is principal, with a totally positive generator α ≡ 1
(mod 8∆). Let F = K(

√
α). Then all primes above 2, all primes of bad reduction,

and all infinite places split in F/K. If p ramifies in F/K then p | a, so p ∈ P . Thus
the Frobenius of p in Gal(M/K) has order 3, which shows that E(Kp)[2] = 0. Now
the proposition follows from Corollary 3.4(ii). �

Proof of Theorem 1.4. Recall that S is the set of elements of order 3 in Gal(M/K),
so

|S|
[M : K]

=

{

1/3 if Gal(M/K) ∼= S3,

2/3 if Gal(M/K) ∼= Z/3Z.
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Case 1: d2(E/K) = r. By Proposition 4.2,

Nr(E,X) ≥ |{a ∈ N1 : NK/Qa < X}|.
The estimate of Lemma 4.1 for the right-hand side of this inequality proves Theorem
1.4 in this case.

Case 2: d2(E/K) arbitrary. We have assumed that E has a twist EL with

d2(E
L/K) = r. Every twist (EL)F

′

of EL is also a twist EF of E, and

f(F/K) | f(L/K)f(F ′/K).

so Nr(E,X) ≥ Nr(E
L, X/NK/Qf(L/K)). Now Theorem 1.4 for E follows from

Theorem 1.4 for EL, which is proved in Case 1. �

5. Twisting to lower and raise the Selmer rank

In this section we will use Corollary 3.4 and Lemmas 3.5 and 3.6 to prove The-
orems 1.5, 1.6, and 1.7:

(1) Lemmas 3.5 or 3.6 will provide us with Galois automorphisms that evaluate
Selmer cocycles in some useful way,

(2) the Cebotarev Theorem will provide us with primes whose Frobenius au-
tomorphisms are the Galois automorphisms we chose in (1),

(3) Corollary 3.4 will enable us to calculate d2(E
F /K), where F is a quadratic

extension ramified at one of the primes chosen in (2).

We use Proposition 5.1 below to prove Theorem 1.6, Proposition 5.2 to prove The-
orem 1.7, and Proposition 5.3 to prove Theorem 1.5. We also prove Corollaries 1.8,
1.9, 1.10, 1.11, and 1.12.

Proposition 5.1. Suppose E/K satisfies the hypotheses of Theorem 1.6. Suppose
L/K is a quadratic extension (or L = K) such that the place v0 of Theorem 1.6 is
unramified in L/K, L′/K is a cyclic extension of odd degree, and Σ is a finite set
of places of K.

(i) There is a quadratic twist A of E such that d2(A/K) = d2(E/K) + 1 and
d2(A

L/K) = d2(E
L/K) + 1.

(ii) If d2(E/K) > 0 and d2(E
L/K) > 0, then there is a quadratic twist A of

E such that d2(A/K) = d2(E/K)− 1 and d2(A
L/K) = d2(E

L/K)− 1.
(iii) If Sel2(E

L/K) 6⊂ Sel2(E/K) inside H1(K,E[2]), then there is a qua-
dratic twist A of E such that d2(A/K) = d2(E/K) + 1 and d2(A

L/K) =
d2(E

L/K)− 1.

In all three cases we can take A = EF , where the quadratic extension F/K satisfies:

• all places in Σ− {v0} split in F/K,
• F/K ramifies at exactly one prime p, and that prime satisfies p /∈ Σ, p is
inert in L′, and E(Kp)[2] ∼= Z/2Z.

Proof. Let ∆ be the discriminant of (some integral model of) E. Let M :=
K(E[2]) = K(EL[2]), so M is an S3-extension of K containing the quadratic exten-

sion K(
√
∆). Enlarge Σ if necessary so that it includes all infinite places, all primes

above 2, and all primes where either E or EL has bad reduction. Let v0 ∤ 2 be the
distinguished place of Theorem 1.6, either real with ∆v0 < 0, or of multiplicative
reduction with ordv0(∆) odd.
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Let d be the (formal) product of all places in Σ−{v0}. Let K(8d) denote the ray
class field of K modulo 8d, and let K[8d] denote the maximal 2-power extension

of K in K(8d). Note that K(
√
∆)/K is ramified at v0 but K[8d]/K is not, and

[L′ : K] is odd, so the fields K[8d], L′,M are linearly disjoint. Therefore we can fix
an element σ ∈ GK such that

• σ|M ∈ Gal(M/K) ∼= S3 has order 2,
• σ|K[8d] = 1,
• σ|L′ is a generator of Gal(L′/K).

It follows in particular that E[2]/(σ − 1)E[2] ∼= Z/2Z.
Let C = Sel2(E/K) + Sel2(E

L/K) ⊂ H1(K,E[2]), and suppose φ : C →
E[2]/(σ−1)E[2] is a homomorphism. By Lemma 3.5 we can find γ ∈ GK such that

• γ|ML′K[8d] = σ,
• c(γ) = φ(c) for every c ∈ C.

Let N be a Galois extension of K containing ML′K[8d], large enough so that
the restriction of C to N is zero. (For example, one can take the compositum of
L′K(8d) with the fixed field of the intersection of the kernels of the restrictions of
c ∈ C →֒ Hom(GM , E[2]).) Let p be a prime of K not in Σ, whose Frobenius in
Gal(N/K) is the conjugacy class of γ. Since γ|K[8d] = σ|K[8d] = 1, and [K(8d) :

K[8d]] is odd, there is an odd positive integer h such that γh|K(8d) = 1. Thus ph is
principal, with a generator π ≡ 1 (mod 8d), positive at all real embeddings different
from v0. Let F = K(

√
π). Then all places v ∈ Σ−{v0} split in F , F/K is ramified

at p and nowhere else, p is inert in L′/K because γ|L′ generates Gal(L′/K), and
E(Kp)[2] 6= 0 because Frobp|E[2] = σ|E[2] has order 2.

We will apply Corollary 3.4, with T = {p}. Since E has good reduction at p, it
follows from Lemma 2.2(ii) that

(8) H1
f (Kp, E[2]) ∼= E[2]/(Frobp − 1)E[2] = E[2]/(σ − 1)E[2],

and similarly with E replaced by EL, so

dimF2
H1

f (Kp, E[2]) = dimF2
H1

f (Kp, E
L[2]) = 1.

Further, the localization maps

locT : Sel2(E/K), Sel2(E
L/K) −→ H1

f (Kp, E[2])
∼−→ E[2]/(σ − 1)E[2]

are given by evaluation of cocycles at Frobp = γ. Hence by our choice of γ, (8)
identifies

locT (Sel2(E/K)) = φ(Sel2(E/K)), locT (Sel2(E
L/K)) = φ(Sel2(E

L/K)).

Thus by Corollary 3.4(i) we conclude that

d2(E
F /K) =

{

d2(E/K) + 1 if φ(Sel2(E/K)) = 0,

d2(E/K)− 1 if φ(Sel2(E/K)) 6= 0.

d2((E
F )L/K) = d2((E

L)F /K) =

{

d2(E
L/K) + 1 if φ(Sel2(E

L/K)) = 0,

d2(E
L/K)− 1 if φ(Sel2(E

L/K)) 6= 0.

For assertion (i), let φ = 0. For (ii), if d2(E/K) > 0 and d2(E
L/K) > 0, then

we can choose a φ that is nonzero on both Sel2(E/K) and Sel2(E
L/K). For (iii), if

Sel2(E
L/K) 6⊂ Sel2(E/K), then we can choose a φ that is zero on Sel2(E/K) and

nonzero on Sel2(E
L/K). In all three cases, the proposition holds with A = EF . �
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Proof of Theorem 1.6. Note that if E satisfies the hypotheses of Theorem 1.6, then
so does every quadratic twist of E.

If r ≥ d2(E/K), then applying Proposition 5.1(i) r − d2(E/K) times (with
L = L′ = K) shows that E has a twist E′ with d2(E

′/K) = r.
If 0 ≤ r ≤ d2(E/K) then applying Proposition 5.1(ii) d2(E/K)− r times shows

that E has a twist E′ with d2(E
′/K) = r.

Now Theorem 1.4 shows that for every r ≥ 0, E has many twists E′ with
d2(E

′/K) = r. �

Proposition 5.2. Suppose E/K is an elliptic curve such that E(K)[2] = 0. If
d2(E/K) > 1, then E has a quadratic twist EF over K such that d2(E

F /K) =
d2(E/K)− 2.

Proof. The proof is similar to that of Proposition 5.1(ii). Let M := K(E[2]), and
let ∆ be the discriminant of (some integral model of) E. Let K(8∆∞) denote the
ray class field of K modulo the product of 8∆ and all infinite places.

Since d2(E/K) > 1, we can choose cocycles c1, c2 representing F2-independent
elements of Sel2(E/K). By Lemma 3.6 we can find γ ∈ GK such that

• γ|MK(8∆∞) = 1,
• c1(γ), c2(γ) are an F2-basis of E[2].

Let N be a Galois extension of K containing MK(8∆∞), large enough so that
the restriction of Sel2(E/K) to N is zero. Let p be a prime of K where E has good
reduction, not dividing 2, whose Frobenius in Gal(N/K) is the conjugacy class of
γ. Then p has a totally positive generator π ≡ 1 (mod 8∆). Let F = K(

√
π).

Then all places v dividing 2∆∞ split in F/K, and p is the only prime that ramifies
in F/K.

We will apply Corollary 3.4 with T = {p}. Since E has good reduction at p, it
follows from Lemma 2.2(ii) that

H1
f (Kp, E[2]) = E[2]/(Frobp − 1)E[2] = E[2]/(γ − 1)E[2] = E[2].

The localization map locT : Sel2(E/K) → H1
f (Kp, E[2]) is given by evaluation of

cocycles at Frobp = γ, so by our choice of γ, the classes locT (c1) and locT (c2)
generate H1

f (Kp, E[2]). In particular locT is surjective, so in the notation of Corol-
lary 3.4 we have dimF2

VT = dimF2
H1

f (Kp, E[2]) = 2. Corollary 3.4(i) now yields
d2(E

F /K) = d2(E/K)− 2, as desired. �

Proof of Theorem 1.7. Suppose 0 ≤ r ≤ d2(E/K). Applying Proposition 5.2
(d2(E/K) − r)/2 times shows that E has a twist E′ with d2(E

′/K) = r, and
then Theorem 1.4 shows that E has many such twists. �

Proof of Corollary 1.8. Let k = Q(j(E)) ⊂ K. Fix an elliptic curve E0 over k with
j(E0) = j(E). Since j(E) 6= 0, 1728, E0 is a quadratic twist of E over K. Thus
[k(E0[2]) : k] ≥ [K(E0[2]) : K] = [K(E[2]) : K], so Gal(k(E0[2])/k) ∼= S3. Also

j(E)− 1728 = j(E0)− 1728 = c6(E0)
2/∆E0

so (∆E0
)v < 0 at the real embedding v of k. Therefore E0/k satisfies the hy-

potheses of Theorem 1.6, so Theorem 1.6 shows that d2(E
F
0 /k) can be arbitrarily

large as F varies through quadratic extensions of k. Since E(K)[2] = 0, the map
Sel2(E

F
0 /k) → Sel2(E

F
0 /K) is injective, and so d2(E

F /K) can be arbitrarily large
as F varies through quadratic extensions of K. Now the corollary follows from
Theorem 1.7. �
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Proposition 5.3. Suppose E/K is an elliptic curve such that E(K)[2] = 0, and
either K has a real embedding, or E has multiplicative reduction at some prime of
K. Then E has a quadratic twist EF /K such that d2(E

F /K) 6≡ d2(E/K) (mod 2)
and d2(E

F /K) ≥ d2(E/K)− 1.

Proof. Let M := K(E[2]), and let ∆ be the discriminant of (some integral model
of) E. Let d be the (formal) product of ∆ and all infinite places, let K(8d) denote
the ray class field of K modulo 8d, and let K[8d] denote the maximal 2-power

extension of K in K(8d). We have M ∩K[8d] = K(
√
∆).

Let v0 be the distinguished place, either real or of multiplicative reduction. Let
x = (xv) be an idele of K defined by:

• xv = 1 if v 6= v0,
• xv0 = −1 if v0 is real, xv0 is a unit at v0 such that Kv0(

√
xv0 ) is the

unramified quadratic extension of Kv0 if v0 is nonarchimedean.

Let σ = [x,K[8d]/K] ∈ Gal(K[8d]/K) be the image of x under the global Artin
map. We consider two cases.

Case 1: σ(
√
∆) =

√
∆. In this case we can choose γ ∈ Gal(MK[8d]/K) such that

γ|K[8d] = σ and γ|M has order 3.

Case 2: σ(
√
∆) = −

√
∆. In this case Gal(M/K) ∼= S3, and σ is nontrivial on

M ∩K[8d] = K(
√
∆). By Lemma 3.5 we can find γ ∈ GK such that γ|K[8d] = σ,

γ|M has order 2, and c(γ) ∈ (γ− 1)E[2] for every cocycle c representing an element
of Sel2(E/K).

In either case, let p be a prime of K not dividing 2∆, whose Frobenius in
Gal(MK[8d]/K) is γ. Then some odd power ph is principal, with a generator
π such that π ∈ (K×

v )2 if v | 2∆∞ and v 6= v0, Kv0(
√
π) = C if v0 is real, and

Kv0(
√
π) is the unramified quadratic extension of Kv0 if v0 is nonarchimedean.

Let F = K(
√
π), and recall the local norm index δv(E,F/K) of Definition 2.6.

All places v | 2∆∞ different from v0 split in F/K, so by Lemma 2.10, δv(E,F/K) =
0 and H1

f (Kv, E[2]) = H1
f (Kv, E

F [2]) if v 6= v0, p. It follows (using Kramer’s
congruence Theorem 2.7 for (9)) that

(9) d2(E
F /K) ≡ d2(E/K) + δv0(E,F/K) + δp(E,F/K) (mod 2),

and

(10) ker
[

Sel2(E/K) −→ H1
f (Kv0 , E[2])⊕H1

f (Kp, E[2])
]

⊂ Sel2(E
F /K).

Consider the Hilbert symbol (∆, π)v , which is 1 if ∆ is a norm from (F ⊗Kv)
×

to K×
v , and −1 if not. Then (∆, π)v = 1 if v 6= v0, p, and

∏

v(∆, π)v = 1, so
(∆, π)v0 = (∆, π)p. By [Kr, Proposition 6] if v0 is real, and by [Kr, Propositions 1,
2] if v0 is multiplicative, we have

δv0(E,F/K) =

{

1 if (∆, π)v0 = 1

0 if (∆, π)v0 = −1.

By [Kr, Proposition 3], and using that γ acts nontrivially on E[2] in both Case 1
and Case 2, we have

δp(E,F/K) =

{

0 if (∆, π)p = 1

1 if (∆, π)p = −1.
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Thus δv0(E,F/K) + δp(E,F/K) = 1, so (9) shows that d2(E
F /K) and d2(E/K)

have opposite parity.
In Case 1, E[2]/(γ− 1)E[2] = 0, so H1

f (Kp, E[2]) = 0 by Lemma 2.2(ii). In Case
2, the restriction map Sel2(E/K) → H1

f (Kp, E[2]) ∼= E[2]/(γ − 1)E[2] is given by
evaluating cocycles at γ, so by our choice of γ this image is zero. In both cases,
dimF2

H1
f (Kv0 , E[2]) ≤ 2, so by (10) we have d2(E

F /K) ≥ d2(E/K) − 2. This
completes the proof. �

Proof of Theorem 1.5. Let EF be a twist of E as in Proposition 5.3. Theorem 1.5
follows directly from Theorem 1.7 applied to E and to EF . �

Lemma 5.4. Suppose p is a prime of K not dividing 2. Then there is an elliptic
curve E/K with all of the following properties:

(i) E is semistable at all primes,
(ii) E has multiplicative reduction at p and ordp(∆E) = 1,
(iii) Gal(K(E[2])/K) ∼= S3.

If in addition the rational prime p below p is unramified in the Galois closure of
K/Q, then E can be taken to be the base change of an elliptic curve over Q.

Proof. Let Et be the elliptic curve y2 + y = x3 − x2 + t over K(t). Then

j(Et) = − 212

(4t+ 1)(108t+ 11)
, ∆(Et) = −(4t+ 1)(108t+ 11), c4(Et) = 16.

It follows from [S1, Proposition VII.5.1] that for every t ∈ OK , Et has semistable
reduction at all primes of K.

Let η ∈ OK be such that ordp(4η + 1) = 1, and let g(t) := η + (4η + 1)2t.
Then for every t ∈ OK we have ordp(4g(t) + 1) = 1. The splitting field of ft(x) :=
x3 − x2 + g(t) + 1/4 over K(t) has Galois group S3, since ft is irreducible and
its discriminant −(4g(t) + 1)(108g(t) + 11)/16 is not a square. Hence by Hilbert’s
Irreducibility Theorem, there is an integer t0 ∈ OK such that the splitting field of
ft0(x) over K is an S3-extension.

Let E be the elliptic curve Eg(t0). Then K(E[2]) is the splitting field of ft0(x),
so Gal(K(E[2])/K) ∼= S3, and

∆(E) = −(4g(t0) + 1)(108g(t0) + 11) = −(4g(t0) + 1)(27(4g(t0) + 1)− 16)

Thus E satisfies (i), (ii), and (iii).
Let K ′ be the Galois closure of K/Q, and p the rational prime below p, and

suppose p is unramified in K ′/Q. We can apply the lemma with p and Q in place
of p and K to produce a semistable elliptic curve E/Q such that ordp(∆E) = 1
and Gal(Q(E[2])/Q) ∼= S3.

Then E/K satisfies (i) and (ii). Further, Q(E[2]) ∩K ′ is a Galois extension of
Q that does not contain Q(

√
∆E) (since the latter is ramified at p). Therefore

Q(E[2]) ∩K = Q, and so Gal(K(E[2])/K) ∼= Gal(Q(E[2])/Q) ∼= S3. �

Proof of Corollary 1.9. By Lemma 5.4, we can find an elliptic curve E over K and
a prime p ∤ 2 such that E has multiplicative reduction at p, ordp(∆E) = 1, and
Gal(K(E[2])/K) ∼= S3. By Theorems 1.6 and 1.4, this E has many quadratic twists
E′ with d2(E

′/K) = r, for every r ≥ 0. �

Lemma 5.5. Suppose E is an elliptic curve over K. Then for all but finitely many
quadratic twists E′ of E, E′(K) has no odd-order torsion.
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Proof. This is proved in [GM, Proposition 1] whenK = Q; we adapt the proof given
there. By Merel’s Uniform Boundedness Theorem for torsion on elliptic curves [Me],
the set

{primes p : EF (K)[p] 6= 0 for some quadratic extension F/K}
is finite. On the other hand, if p is odd and ρp : GK → Aut(E[p]) ∼= GL2(Fp) de-
notes the mod-p representation attached to E, then there are at most two characters
χ of GK such that ρp ⊗ χ contains a copy of the trivial representation. Therefore
for fixed odd p, the set

{F/K quadratic : EF (K)[p] 6= 0}
has order at most 2. This completes the proof. �

Proof of Corollary 1.10. By Theorems 1.5 and 1.4, E has many quadratic twists
E′ with d2(E

′/K) = 0, and hence rank(E′(K)) = 0 by (1). Since E(K)[2] = 0,
none of these twists have rational 2-torsion, and by Lemma 5.5, only finitely many
of these twists have odd-order torsion. This proves the corollary. �

Proof of Corollary 1.11 (and Theorem 1.1). By Lemma 5.4 there is an elliptic curve
E over K with multiplicative reduction at a prime p ∤ 2, and with E[2] = 0. Now
the Corollary 1.11 follows from Corollary 1.10. �

Proof of Corollary 1.12. By Theorems 1.5 and 1.4, E has many quadratic twists
E′ with d2(E

′/K) = 1. Since E(K)[2] = 0, it follows from (1) that either
rank(E′(K)) = 1 or dimF2

X(E′/K)[2] = 1. But Conjecture XT2(K) says that
dimF2

X(E′/K)[2] is even, so rank(E′(K)) = 1. By Lemma 5.5, all but finitely
many of these twists have E′(K)tors = 0, and this proves the corollary. �

6. Proof of Theorem 1.13 when [L : K] = 2

Proposition 6.1. Suppose L/K is a quadratic extension. Then there is an elliptic
curve E/K such that Gal(K(E[2])/K) ∼= S3 and d2(E/K) + d2(E

L/K) is odd.

Proof. We thank the referee for pointing out the following simple proof of this
proposition.

Fix a prime p ∤ 6 that remains prime in L/K. Using Lemma 5.4, fix an elliptic
curve E over K with Gal(K(E[2])/K) ∼= S3, with multiplicative reduction at p,
and with ordp(∆E) = 1. Fix also a quadratic extension M/K that is ramified at p,
and split at all of the following places: all primes different from p where E has bad
reduction, all primes above 2, all infinite places, and all places ramified in L/K.

Recall the local norm index δv(E,L/K) of Definition 2.6. By Kramer’s congru-
ence (Theorem 2.7) we have

(11) d2(E/L) + d2(E
M/L) ≡

∑

w

δw(E,LM/L) (mod 2),

summing over all places w of L. We will show that the sum in (11) is odd.
If w divides 2∞, or w 6= p is a prime where E has bad reduction, then w splits

in LM/L, so Lemma 2.10(i) shows that δw(E,LM/L) = 0. If w is a prime where
E has good reduction and w is unramified in LM/L, then δw(E,LM/L) = 0 by
Lemma 2.10(v).

Suppose w ∤ 2∞, E has good reduction at w, and w ramifies in LM/L. Let
v denote the prime of K below w. If v splits in L/K into two places w,w′, then
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δw(E,LM/L) = δw′(E,LM/L) so the contribution δw(E,LM/L) + δw′(E,LM/L)
in (11) is even. If v is inert in L/K, then either E(Kv)[2] = 0, in which case
E(Fw)[2] = 0 as well, or E(Kv)[2] 6= 0, in which case E(Fw)[2] = E[2]. In either
case Proposition 2.11 shows that δ(E,LM/L) = dimF2

(E(Fw)[2]) is even.
We conclude now from (11) that

d2(E/L) + d2(E
M/L) ≡ δp(E,LM/L) (mod 2).

Since Lp is the unramified quadratic extension of Kp, E has split multiplicative
reduction over Lp. It follows from [Kr, Proposition 1] that δp(E,LM/L) = 1.

Therefore d2(E/L) + d2(E
M/L) is odd. Replacing E by EM if necessary, we

may suppose that d2(E/L) is odd. Since E(K)[2] = 0, we have E(L)[2] = 0 as
well, so d2(E/L) ≡ d2(E/K) + d2(E

L/K) (mod 2) by Lemma 2.5, and the proof
is complete. �

Theorem 6.2. Suppose L/K is a quadratic extension of number fields. There
is an elliptic curve E over K such that d2(E/K) = 0 and d2(E

L/K) = 1. In
particular rank(EL(K)) = rank(EL(L)), and if Conjecture XT2(K) holds then
rank(EL(K)) = rank(EL(L)) = 1.

Proof. Fix an elliptic curve A over K satisfying the conclusion of Proposition 6.1:
Gal(K(A[2])/K) ∼= S3 and d2(A/K), d2(A

L/K) have opposite parity.
Now apply Proposition 5.1(ii) repeatedly (with L′ = K), twisting A until we

produce a twist B with either d2(B/K) = 0 or d2(B
L/K) = 0. Switching B and

BL if necessary, we may suppose that d2(B/K) = 0.
Note that d2(B/K) and d2(B

L/K) still have opposite parity, so d2(B
L/K) ≥ 1.

If d2(B
L/K) = 1 we stop. If d2(B

L/K) > 1 we apply Proposition 5.1(iii) and then
Proposition 5.1(ii), to obtain at twist C with d2(C/K) = 0 and d2(C

L/K) =
d2(B

L/K) − 2. Continuing in this way we eventually obtain a twist E with
d2(E/K) = 0 and d2(E

L/K) = 1.
We have rank(E(K)) = 0, so

rank(EL(L)) = rank(E(K)) + rank(EL(K)) = rank(EL(K)),

and if Conjecture XT2(K) holds then rank(EL(K)) = 1. �

7. Two-descents over cyclic extensions of odd prime degree

Fix for this section a number field K, and a cyclic extension L/K of prime

degree p > 2. Let G = Gal(L/K). If R is a commutative ring, let R[G]
0
denote the

augmentation ideal in the group ring R[G].
Since |G| is odd, the group ring F2[G] is an étale F2-algebra. Concretely, if we

fix a generator of G we have G-isomorphisms

(12) F2[G] ∼= F2[X ]/(Xp − 1) ∼= F2 ⊕ (
∏

π F2[X ]/π(X))

where π runs through the irreducible factors of Xp−1 + · · · + 1 in F2[X ], and the
chosen generator of G acts on F2[X ] as multiplication by X . The submodule of
F2[G] corresponding to the summand F2 in (12) is F2[G]G, and the submodule of

F2[G] corresponding to
∏

π F2[X ]/π(X) is the augmentation ideal F2[G]
0
. Thus

(12) corresponds to the decomposition (independent of choice of generator of G)

F2[G] = F2[G]G ⊕ F2[G]0 = F2 ⊕ (⊕k∈Ωk)

where Ω is the set of simple submodules of F2[G] on which G acts nontrivially.
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If B is an F2[G]-module, then B ⊗F2[G] F2 = BG, and we define

Bnew = B ⊗F2[G] F2[G]
0
= ⊕k∈Ω(B ⊗F2[G] k).

This gives a canonical decomposition B = BG ⊕Bnew.
Suppose now that E is an elliptic curve over K. The 2-Selmer group Sel2(E/L)

has a natural action of F2[G]. Since |G| is odd, it is straightforward to check that
Sel2(E/L)G = Sel2(E/K), so

Sel2(E/L) = Sel2(E/K)⊕ Sel2(E/L)new.

For k ∈ Ω we define a non-negative integer

dk(E/L) := dimF2
(Sel2(E/L)⊗F2[G] k)/ dimF2

k,

the multiplicity of k in the F2[G]-module Sel2(E/L).

Remark 7.1. Our proof of Theorem 1.13 for L/K goes as follows. We show that
if E satisfies the hypotheses of Theorem 1.6, then:

(1) There is a twist E′ of E over K such that dk(E
′/L) = 0 for some k (see

Proposition 7.4).
(2) For every r ≥ 0, there is a twist E′ of E over K such that d2(E

′/K) = r
and Sel2(E

′/L)new = Sel2(E/L)new (see Proposition 7.5). In other words,
we can twist to get whatever size we want for the “old part” of Selmer,
while keeping the “new part” of Selmer unchanged.

Replacing E by a quadratic twist as necessary, by (1) we may assume dk(E/L) = 0
for some k. Then by (2) we may assume that both d2(E/K) = 1 and dk(E/L) = 0.
Since dk(E/L) = 0 for some k, we have rank(E(L)) = rank(E(K)) (see Lemma
7.2), and if Conjecture XT2(K) holds, then rank(E(K)) = 1.

Lemma 7.2. Suppose E is an elliptic curve over K. If dk(E/L) = 0 for some
k ∈ Ω, then rank(E(L)) = rank(E(K)).

Proof. Since G is cyclic of prime order, it has only 2 irreducible rational represen-
tations, namely Q (the trivial representation) and the augmentation ideal Q[G]

0
.

Therefore we have an isomorphism of G-modules

E(L)⊗Q ∼= Qa × (Q[G]
0
)b

for some a, b ≥ 0. Then E(L) has a submodule isomorphic to (Z[G]
0
)b, so E(L)⊗Z2

has a direct summand isomorphic to (Z2[G]0)b, so E(L) ⊗ F2 has a submodule

isomorphic to (F2[G]
0
)b, which implies that dk(E/L) ≥ b. Since dk(E/L) = 0 we

have b = 0, and so rank(E(L)) = rank(E(K)) = a. �

We will need the following G-equivariant version of Proposition 3.3.

Proposition 7.3. Suppose F/K is a quadratic extension and the hypotheses of
Proposition 3.3 are satisfied. Let T be the set of primes of K where F/K is ramified,
and let TL be the set of primes of L above T .

(i) If the localization map locTL
: Sel2(E/L)new → (⊕P∈TL

H1
f (LP, E[2]))new

is surjective, then there is an exact sequence

0 −→ Sel2(E
F /L)new −→ Sel2(E/L)new

locTL−−−→ (⊕P∈TL
H1

f (LP, E[2]))new −→ 0.

(ii) Suppose that for every prime p ∈ T , p is inert in L/K and E(Kp)[2] 6= 0.
Then Sel2(E

F /L)new = Sel2(E/L)new.
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Proof. The proof is identical to that of Proposition 3.3, using that the functor
B 7→ Bnew is exact on F2[G]-modules. As in the proof of Proposition 3.3, we have
(G-equivariant) exact sequences

(13) 0 // Snew
TL

// Sel2(E/L)new
locTL

// (⊕P∈TL
H1

f (LP, E[2]))new

(14) 0 // Snew
TL

// Sel2(E
F /L)new // (⊕P∈TL

H1
f (LP, E

F [2]))new

either of which can be taken as the definition of Snew
TL

. The proof of Proposition
3.3 showed that if locTL

is surjective, then the right-hand map of (14) is zero, and
then (13) is the exact sequence of (i).

Suppose p ∈ T is inert in L/K. Let Frobp ∈ Gal(Kur
p /Kp) be the Frobenius of

p, so FrobP = Frobpp is the Frobenius of the prime P above p. Since p ∈ T , the
hypotheses of Proposition 3.3 require that E has good reduction at p, so by Lemma
2.2(ii) there is a commutative diagram with horizontal isomorphisms

(15)

H1
f (LP, E[2])

∼
// E[2]/(FrobP − 1)E[2]

H1
f (Kp, E[2])

∼
//

Res

OO

E[2]/(Frobp − 1)E[2].

OO

If E(Kp)[2] 6= 0, then Frobp acts on E[2] as an element of order 1 or 2, so
FrobP|E[2] = Frobp|E[2] and the groups on the right have the same order. The
left-hand vertical map is injective since [LP : Kp] is odd. Therefore the left-
hand map is an isomorphism, so G acts trivially on H1

f (LP, E[2]), and we have
H1(LP, E[2])new = 0.

If every p ∈ T has these properties, then (⊕P∈TL
H1

f (LP, E[2]))new = 0, so (ii)
follows from (i). �

Proposition 7.4. Suppose E is an elliptic curve over K satisfying the hypotheses
of Theorem 1.6. If dk(E/L) > 0 for every k ∈ Ω, then there is a quadratic twist E′

of E over K such that

dk(E
′/L) = dk(E/L)− 1

for every k ∈ Ω.

Proof. Let ∆ be the discriminant of (some integral model of) E. LetM := K(E[2]),

so M is an S3-extension of K containing the quadratic extension K(
√
∆). Let Σ

be the set of all infinite places and all primes where E has bad reduction.
Let d be the (formal) product of all places in Σ − {v0}, where v0 ∤ 2 is the

distinguished place of Theorem 1.6, either real with ∆v0 < 0, or of multiplicative
reduction with ordv0(∆) odd. Let K(8d) denote the ray class field of K modulo
8d, and let K[8d] denote the maximal 2-power extension of K in K(8d). Note that

K(
√
∆)/K is ramified at v0, but LK[8d]/K is unramified at v0, so M ∩ LK[8d] =

K(
√
∆)∩LK[8d] = K. Fix an element σ ∈ GK , trivial on LK[8d], whose projection

to Gal(MLK[8d]/LK[8d]) ∼= Gal(M/K) ∼= S3 has order 2. Since σ has order 2 on
M , we have E[2]/(σ − 1)E[2] ∼= Z/2Z.

Since dk(E/L) ≥ 1 for every k ∈ Ω, it follows that Sel2(E/L)new has a submod-

ule free of rank one over F2[G]0. Let C ⊂ Sel2(E/L)new be such a submodule,

fix an isomorphism η : C → F2[G]
0
, and define φ : C → E[2]/(σ − 1)E[2] by
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φ(c) = f1(η(c))x, where f1 : F2[G] → F2 is projection onto the first coefficient, i.e,
f1(

∑

agg) = a1, and x is the nonzero element of E[2]/(σ − 1)E[2].
By Lemma 3.5 we can find γ ∈ GK such that

• γ|LMK[8d] = σ,
• c(γ) = φ(c) for all c ∈ C.

Let N be a Galois extension of K containing MLK[8d], large enough so that the
restriction of c to N is zero. Let p be a prime of K where E has good reduction, not
dividing 2, unramified in L/K, whose Frobenius in Gal(N/K) is in the conjugacy
class of γ. Since γ|K[8d] = σ|K[8d] = 1, and [K(8d) : K[8d]] is odd, there is an

odd positive integer h such that γh|K(8d) = 1. Therefore ph is principal, with a
generator π ≡ 1 (mod 8d), positive at all real embeddings different from v0. Let
F = K(

√
π). Then all places v dividing 2 and all places in Σ−{v0} split in F , and

F/K is ramified only at p. Let E′ be the quadratic twist of E by F . We will show
that E′ has the desired properties.

We will apply Proposition 7.3. Let T = {p}, and TL the set of primes of L above
p. For every P ∈ TL,

H1
f (LP, E[2]) = H1(Lur

P/LP, E[2]) = E[2]/(FrobP − 1)E[2] = E[2]/(σ − 1)E[2]

is a one-dimensional F2-vector space. Fix a prime of N above p whose Frobenius
in Gal(N/K) is equal to γ, and let P0 be the corresponding prime of L. Then
TL = {Pτ

0 : τ ∈ G}, and FrobPτ
0
/p(N/K) = τγτ−1. The localization map

locTL
: Sel2(E/L) → ⊕P∈TL

H1
f (LP, E[2]) ∼= F2[G]⊗Z (E[2]/(σ − 1)E[2])

is given on c ∈ C ⊂ Sel2(E/L)new by

locTL
(c) =

∑

τ

τ ⊗ c(τγτ−1) =
∑

τ

τ ⊗ cτ
−1

(γ) =
∑

τ

τ ⊗ φ(cτ
−1

)

=
∑

τ

τ ⊗ f1(τ
−1η(c))x =

∑

τ

τ ⊗ fτ (η(c))x = η(c)⊗ x

where fτ : F2[G] → F2 is the map fτ (
∑

agg) = aτ . Since the image of η is F2[G]
0
,

this shows that the localization map C → (⊕P∈TL
H1

f (LP, E[2]))new is surjective.
Now Proposition 7.3(i) shows that Sel2(E

F /L)new sits inside Sel2(E/L)new with
cokernel containing a copy F2[G]0, so dk(E

F /L) < dk(E/L) for every k ∈ Ω. �

Proposition 7.5. Suppose E is an elliptic curve over K satisfying the hypotheses
of Theorem 1.6. Then:

(i) There is a quadratic twist E′ of E/K such that d2(E
′/K) = d2(E/K) + 1

and Sel2(E
′/L)new = Sel2(E/L)new.

(ii) If Sel2(E/K) 6= 0, then there is a quadratic twist E′ of E/K such that
d2(E

′/K) = d2(E/K)− 1 and Sel2(E
′/L)new = Sel2(E/L)new.

Proof. Let Σ be the set of all places v | 2∞ of K and all v of bad reduction, and
let v0 be the distinguished place of Theorem 1.6, either real with ∆v0 < 0, or of
multiplicative reduction with ordv0(∆) odd. By Proposition 5.1, for (i) or (ii) we
can find a quadratic extension F/K satisfying

• d2(E
F /K) = d2(E/K) + 1 in (i), d2(E

F /K) = d2(E/K)− 1 in (ii),
• all v ∈ Σ− {v0} split in F/K, and v0 is unramified in F/K,
• F/K is ramified at exactly one prime p, p ∤ 2, p is inert in L/K, and
E(Kp)[2] ∼= Z/2Z.
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By Proposition 7.3(ii) applied with T = {p}, Sel2(EF /L)new = Sel2(E/L)new in
both cases. �

Corollary 7.6. Suppose E/K satisfies the hypotheses of Theorem 1.6, and r ≥ 0.
Then there is a twist E′ of E such that

d2(E
′/K) = r, rank(E′(L)) = rank(E′(K)).

Proof. Using Proposition 7.4 repeatedly, we can find a twist E′′ of E such that
dk(E

′′/L) = 0 for at least one k. Then applying Proposition 7.5 repeatedly, we can
find another twist E′ of E such that dk(E

′/L) = 0 and d2(E
′/K) = r. Now the

corollary follows from Lemma 7.2. �

Proof of Theorem 1.13. Let p = [L : K]. If p = 2, Theorem 1.13 is Theorem 6.2, so
we may assume that p is odd. By Lemma 5.4, we can find an elliptic curve E over
K and a prime p ∤ 2 such that E has multiplicative reduction at p, ordp(∆E) = 1,
and Gal(K(E[2])/K) ∼= S3. Then E satisfies the hypotheses of Theorem 1.6, so by
Corollary 7.6, E has a twist with the desired properties. �

Remark 7.7. Assuming standard conjectures, there are noncyclic extensions L/K
for which the second part of Theorem 1.13 fails to hold. For example, suppose F1

and F2 are distinct quadratic extensions of K such that every prime that ramifies in
F1/K splits in F2/K, and vice-versa. Let L = F1F2. It is not difficult to show that
for every elliptic curve E over K, the global root number of E over L is +1. Thus
(conjecturally) every elliptic curveE overK has even rank over L, so (conjecturally)
there is no elliptic curve E over K with rank(E(L)) = rank(E(K)) = 1.

8. Proof of Theorem 1.2

In this section we prove the following slightly stronger version of Theorem 1.2.
The proof of Theorem 8.1 from Theorem 1.13 is due to Bjorn Poonen and Alexandra
Shlapentokh. We thank them for allowing us to include their ideas here.

Theorem 8.1. Suppose K is a number field and Conjecture XT2(L) holds for
all subfields L of the Galois closure of K/Q. Then Hilbert’s Tenth Problem has a
negative answer over the ring of integers of K.

Definition 8.2. Suppose that R is a commutative ring with identity. Following
[DL, De], we say that a subset D of R is diophantine over R if there is a finite set
of polynomials f1, · · · , fk ∈ R[X,Y1, . . . , Ym] for some m such that for every x ∈ R,

x ∈ D ⇐⇒ for 1 ≤ i ≤ k there are y1,i, . . . , ym,i ∈ R

such that fi(x, y1,i, . . . , ym,i) = 0 for 1 ≤ i ≤ k.

Lemma 8.3 ([DL]). Suppose K ⊂ L are number fields. Then:

(i) If D1, D2 ⊂ OL are diophantine over OL, then so is D1 ∩D2.
(ii) If D ⊂ OK is diophantine over OK , and OK is diophantine over OL, then

D is diophantine over OL.
(iii) If Z is diophantine over OL, then Z is diophantine over OK .

Proof. This is Proposition 1(a), (c), and (d) of [DL]. �

Corollary 8.4. Suppose L/K is a cyclic extension of number fields. If Conjecture
XT2(F ) holds for all subfields F ⊂ L, then OK is diophantine over OL.
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Proof. We have K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L, where each Ki+1/Ki is cyclic of
prime degree. If Conjecture XT2(Ki) holds for every i, then by Theorem 1.13 for
every i there is an elliptic curve E/Ki such that rank(E(Ki)) = rank(E(Ki+1)) = 1.
By Theorem 1 of [P], it follows that OKi

is diophantine over OKi+1
. Now the

corollary follows from Lemma 8.3(ii) by induction. �

Proof of Theorem 8.1. Fix a number field K, and let L be the Galois closure of
K/Q. For every g ∈ Gal(L/Q), let L〈g〉 denote the fixed field of g in L. Then
L/L〈g〉 is cyclic, so OL〈g〉 is diophantine over OL by Corollary 8.4. But then by

Lemma 8.3(i), ∩gOL〈g〉 = OGal(L/Q)
L = Z is diophantine over OL, so by Lemma

8.3(iii), Z is diophantine over OK . Now the theorem follows from Matiyasevich’s
Theorem [Mat]. �

9. Elliptic curves with constant parity

In this section we discuss briefly the phenomenon of “constant parity”.

Definition 9.1. Suppose E is an elliptic curve defined over a number field K.
We will say that E/K has constant 2-Selmer parity if the parity of d2(E

F /K)
is constant as F ranges over all quadratic extensions of K, i.e., if d2(E

F /K) ≡
d2(E/K) (mod 2) for all quadratic extensions F/K.

Similarly, we can say that E has constant Mordell-Weil parity if the parity of
rank(EF (K)) is independent of the quadratic extension F/K, and E has constant
analytic parity if the global root number of EF /K is independent of F . Standard
conjectures imply that all three notions of constant parity are the same.

Example 9.2. Suppose E has complex multiplication by an imaginary quadratic
field k ⊂ K. Then E has constant (even) 2-Selmer parity, constant (even) Mordell-
Weil parity, and constant (even) analytic parity.

The question of constant analytic parity was studied by T. Dokchitser and V.
Dokchitser in [DD]. They proved the following.

Theorem 9.3 (Theorem 1 of [DD]). An elliptic curve E over a number field K
has constant analytic parity if and only if K is totally imaginary and E acquires
good reduction over an abelian extension of K.

The following example from [DD] shows that constant parity can be odd.

Example 9.4. Suppose K is totally imaginary, E/K has good reduction every-
where, and [K : Q]/2 is odd. Then E/K has constant odd analytic parity (see [Ro,
Theorem 2(i) and Proposition 8(i)]).

This applies in particular to the elliptic curve E : y2 + xy = x3 + x2 − 2x − 7
(labelled 121C1 in Cremona’s tables) and K the splitting field of x3 − 11.

From now on we will only consider constant 2-Selmer parity. The following
theorem will be proved at the end of this section.

Theorem 9.5. If E/K has constant 2-Selmer parity, then K is totally imaginary
and E has additive reduction at all primes.

Definition 9.6. Suppose E is an elliptic curve defined over a local field K. If F
is a quadratic extension of K (or F = K), define

δ(E,F/K) = dimF2
E(K)/NF/KE(F ).
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We will say that E/K has constant local parity if δ(E,F/K) is even for every
quadratic extension F/K.

If D ∈ K×/(K×)2, we will say that E/K has D-parity if

δ(E,F/K) is even ⇐⇒ D ∈ NF/KF×.

Note that if D is a square in K×, then E/K has D-parity if and only if it has
constant local parity.

Lemma 9.7. Suppose E is an elliptic curve defined over a local field K, and
∆E ∈ K×/(K×)2 is its discriminant.

(i) If v is nonarchimedean with residue characteristic different from 2, and E
has good reduction, then E has ∆E-parity.

(ii) If K is nonarchimedean and E has multiplicative reduction, then E does
not have ∆E-parity.

(iii) If K = R, then E does not have ∆E-parity.

Proof. Assertions (i), (ii), and (iii) are [Maz, Corollary 4.4] and [Kr, Proposition
3],[Kr, Propositions 1 and 2], and [Kr, Proposition 6], respectively. �

For the rest of this section, fix an elliptic curve E defined over a number field
K, and let ∆E be the discriminant of some model of E.

Theorem 9.8. (i) If E/Kv has constant local parity for every place v of K,
then E/K has constant 2-Selmer parity.

(ii) E/K has constant 2-Selmer parity if and only if E/Kv has ∆E-parity for
every v.

Proof. Suppose F is a quadratic extension of K. Kramer’s congruence (Theorem
2.7) says

(16) d2(E
F /K) ≡ d2(E/K) +

∑

v

δ(E,Fv/Kv) (mod 2)

where Fv is the completion of F at some place above v. Assertion (i) follows directly
from this.

Now suppose E/Kv has ∆E -parity for every v. Then, if τ is the nontrivial
automorphism of Gal(F/K),

τδ(E,Fv/Kv) = [∆E , Fv/Kv]

where [ · , Fv/Kv] is the local Artin symbol. The global reciprocity law shows that
∏

v[∆E , Fv/Kv] = 1, so
∑

v δ(E,Fv/Kv) is even and it follows from (16) that E/K
has constant 2-Selmer parity.

Finally, suppose that for some v0, E/Kv0 does not have ∆E -parity. By Lemma
9.7(i), E/Kv has ∆E-parity for almost all v. Fix a quadratic extension F/K such
that

• τδ(E,Fv0
/Kv0

) = τ · [∆E , Fv0/Kv0],
• every v 6= v0 where E/Kv does not have ∆E -parity splits in F/K.

Then τδ(E,Fv/Kv) = [∆E , Fv/Kv] for every v 6= v0, so

τ
∑

v
δ(E,Fv/Kv) = τ ·

∏

v

[∆E , Fv/Kv] = τ,

so by (16), d2(E/K) and d2(E
F /K) have opposite parity. �
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Proof of Theorem 9.5. Theorem 9.5 follows directly from Theorem 9.8(ii) and Lem-
ma 9.7(ii,iii). �

Corollary 9.9. If ∆E is a square, then E/K has constant 2-Selmer parity if and
only if E/Kv has constant local parity for every v.

Proof. This is immediate from Theorem 9.8(ii). �
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