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The Generalization
in the Generalized Event Count Model,
with Comments on Achen, Amato, and Londregan

Gary King and Curtis S. Signorino

Abstract

We use an analogy with the normal distribution and linear regression to
demonstrate the need for the Generalized Event Count (GEC) model.
We then show how the GEC provides a unified framework within which
to understand a diversity of distributions used to model event counts,
and how to express the model in one simple equation. Finally, we address
the points made by Christopher Achen, Timothy Amato, and John Lon-
dregan. Amato’s and Londregan’s arguments are consistent with ours
and provide additional interesting information and explanations. Un-
fortunately, the foundation on which Achen built his paper turns out to
be incorrect, rendering all his novel claims about the GEC false (or in
some cases irrelevant).

Introduction

We are grateful to our discussants for their interest in our work on sta-
tistical models for event counts, especially their extensive inquiries into
the generalized event count (GEC) model. This symposium is especially

Littauer Center North Yard, Harvard University; E-mail: gking@harvard.edu,
curt@latte.harvard.edu. Our thanks to Chris Achen, Jim Alt, Tim Amato, Neal
Beck, John Londregan, and Walter Mebane for many helpful discussions. The com-
puter program COUNT, which implements the event count models discussed in this
symposium and several others, is available in two versions. The more flexible version
is available as part of the maximum likelihood modules in Gauss (a2 commercial sta-
tistical package available from Aptech Systems, Inc., 23804 South East Kent-Kangley
Road, Maple Valley WA 98038; E-mail: sales@aptech.com). An easy to use, stand-
alone, public domain version is available from http://GKing.Harvard.Edu.
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timely given the increasing number of political science applications of
these models! and methodological studies of them in other disciplines.2
The data in many fields of political science are often coded as counts of
discrete events in fixed periods, a data type with some unusual statis-
tical properties. As all symposium participants and increasing numbers
of applied political scientists recognize, methods tailored especially for
event count data can easily outperform those developed for continuous
unbounded data, such as regression analysis. And, more importantly,
these new methods have the potential to extract significant new infor-
mation from event count data sets.

The participants of this symposium have made a number of valu-
able contributions. Timothy Amato explores the derivation of the GEC
distribution in more detail than previously attempted in the political
methodology literature. John Londregan elegantly proves several im-
portant properties of the GEC. And Christopher Achen encourages po-
litical scientists to examine the data generation processes underlying our
probability models.

In order to address our discussants’ points most clearly, we begin by
elaborating the GEC’s unified framework for analyzing event counts and
by explaining how its advantages over existing techniques work. We also
demonstrate that the GEC model can be expressed in a single equation,
in a format parallel to other related models. Because Amato and Lon-
dregan present the mathematical structure of the GEC, and Londregan
so clearly proves its statistical properties, we do not repeat these neces-
sary, but complex, mathematical arguments. Instead, we demonstrate
most of our points conceptually, wherever possible discussing statisti-
cal models for event counts using an analogy with the linear regression
model—the model with which political scientists seem to be most famil-
iar. Of course, because other unifying frameworks could exist, and other
methods of analyzing event counts do exist, we also emphasize the types
of data sets to which the GEC is best applied.

One of the distinguishing features of political methodology is that
many claims in this field are verifiably true or false. In the case of this
symposium, all factual claims by Timothy Amato and John Londregan
are true. Timothy Amato also Poses a variety of interesting queries
about the GEC model and its interpretation, many of which John Lon-
dregan conclusively answers and the remainder of which we also address.
Unfortunately, the foundation on which Christopher Achen built his pa-
per turns out to be incorrect, rendering all his novel claims about the

1See, most recently, Canon 1993, Krause 1994, Martin 1992, Nixon 1991, and
Wang et al. 1993.
2See Winkelmann 1994 and the citations therein.
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GEC false (or in some cases irrelevant). We also explain these points
here.

By way of a roadmap, we start by defining the types of data gener-
ation processes discussed in this symposium. We next demonstrate the
need for a GEC model, using a linear regression analogy. The probabil-
ity structure of the GEC and its asymptotic and finite sample properties
are then presented. Finally, we discuss alternative approaches and offer
suggestions for future research. An appendix provides technical details.

Data Types

We begin by summarizing the well-known definitions of event count data
(the subject of this symposium), grouped binary data (a related data
type sometimes confused with event counts), and the data type for which
regression analysis is appropriate, since we will frequently use it as an
analogy. The definitions we give in this section are identjcal to those
used throughout the statistics and social science literatures (see King
1989a, sec. 3.2, 5.5-5.9; Maddala 1983, 51; Tuma and Hannan 1984;
and McCullagh and Nelder 1989, 102, 193). Each of these three classes
of data generation processes forms outcome variables in regression-type
analyses. We save discussion of particular members of each of these
classes until later sections.

Event Counts. These data are nonnegative integers (0,1,2, .. .) that
represent the number of times a specified event occurs within a fixed
observation period. Events occur with a (possibly varying) unobserved
ezpecled rate of event occurrence defined from the beginning to the end
of each observation period, only at the end of which is the number of
events observed, counted, and recorded. Examples include the number
of coups d’état attempts per country and the number nonviolent protests
per year.3

One of the most fundamental features of event count data is that
the variance of the count increases with the expected number of events.
Since counts are bounded from below by zero, event count observations
with low rates of event occurrence must have relatively small variances.
Count data with high rates of event occurrence have no such restrictions
and, as a result, in virtually all real data sets, have higher variance. As

3More detailed observation of the frequency of events during each observation
period could also be coded in some examples for which specific models have been
derived (see Tuma and Hannon 1984). In many applications, analysts often decide
not to record this more detailed information as “event histories” because the greater
likelihood of measurement error and the frequent absence of covariates at this level
of analysis often make the extra information not worth the effort.



228 Political Analysis

we will explain, one of the mistakes in Achen’s analysis results from his
ignoring this key feature of event count data.

The maximum possible number of events in a count is unlimited,
although all real examples have some practical limits on how large the
counts will get. For example, although it is possible in principle for
Rhode Island to experience 200,000 suicides in a single year, counts this
large are so unlikely that the possibility can be effectively ignored.

The fixed period in which events are counted need not be identical
for each observation in the data set. For example, the number of coups
d’état can be counted for each country for 1995 or for all the years since
each became an independent nation. (If the observation period varies,
this information should be recorded, as it can be a valuable part of most
statistical models, about which more below.)

Grouped Binary Data. Data of this type begin with a fixed and
known number of unobserved trials during each observation period.
Fach trial has two (mutually exclusive and exhaustive) possible out-
comes, conventionally labeled “success” and “failure,” but they could
be called “Fred” and “Barney” or anything else as long as the binary
nature of the unobserved variable is maintained. The ultimate observed
variable is an aggregate summary of these unobserved individual binary
variables—the fraction of all trials that are “successes” (0,1,...,n where
n is known). For the trials within each observation, the probability of
success may be the same or variable and the outcomes may be indepen-
dent or related. Examples include the number of elections out of the last
five in which a survey respondent reports having voted or the fraction of
presidential nominations rejected by the Senate. The number of trials
may vary over observations as long as this number is known.

Grouped binary data are similar to event count data in that both can
be coded as nonnegative integers, but they result from fundamentally
different data generation processes and should not be confused. The
key is that grouped binary data are generated by the outcomes of a
series of known, but unobserved, binary trials. In contrast, event counts
are generated without any trials but instead by an unobserved rate of
event occurrence. One result is that the maximum number of successful
trials in grouped binary data is equal to the observed number of trials
(or binary variables), whereas event count data usually have no explicit
maximum count ex ante. For example, the number of phone calls you
received last week is an event count because it is a nonnegative integer
generated by some unobserved rate of phone calling. In contrast, the
fraction of those phone calls from students is grouped binary data, with

- each phone call representing one binary trial. As with event count data,
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statistical models have also been designed especially for grouped binary
data (see King 1989a, sec. 5.5, 5.6).

In practice, grouped binary data with large numbers of trials and
very small probabilities of “success” are statistically indistinguishable
from event counts. Because, in this special case, the maximum count is
uninformative, and because the formal statistical models used become
mathematically indistinguishable, most methodologists prefer to analyze
this special case of grouped binary data as event counts.

Normal data. The data category we have in mind here includes out-
come variables that are approximately normally distributed. They are
continuous, unbounded, interval-level variables that (conditional on some
explanatory variables) are unimodal and approximately symmetric but
do not have especially “fat tails.”

Generally, variables in the social sciences do not fit in this category
exactly. In practice, however, numerous variables are close enough that
analysts choose to model them with techniques that are best suited to
normal data, such as linear regression. For example, although district-
level vote proportions (in contested elections and conditional on incum-
bency) are limited to the interval [0,1], they fit this data type well (Gel-
man and King 1994).

Why a Generalized Event Count Model?

The GEC model adds a feature to statistical models of event counts that
has always been a crucial component of linear-normal regression models
for continuous data. Indeed, it has been such an integral part of linear-
normal models that it is virtually never mentioned in that more familiar
context. In order to understand this aspect of the GEC for event counts,
we first describe this feature in the linear-normal model.

An Analogy from Linear Regression

Define the linear-normal model as usual by letting the continuous vari-
able Y;, conditional on covariates X;, be modeled as a normal distribu-
tion with mean E(Y;) = g; = X;B and constant variance V(Y;) = o?
(we use bold for 8 and o2, since 8 and o2 have have different meanings
in event count models):

Yi ~ N(wi|pi, 0?)

= N(u|X:B,0?)
— 1 e—(ya—X.'ﬁ)’/?a" (1)
270
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The parameters to be estimated (the unknowns in this equation) are the
vector of effect parameters 8 and the variance a2, both of which are
constant over the observations.

For pedagogical purposes, King (1989a, 60) defined a special case
of the normal model, which he called the stylized normal. The only
difference is that the variance of this linear regression model is always
one (0% = 1):

= STN(y:|XiB)

1 2
— —(yi-XiB)*/2
= — . 2
V2T @)

That is, this distribution has only one unknown, 3. It also has a variance
that is constant over all observations, as usual with linear regression
models, but with its variance fixed at one instead of left to estimation.

The stylized normal is obviously a restricted version of the normal,
and it will be correct only in the sense that a stopped clock is sometimes
right when you happen to consult it—Dby coincidence. But suppose the
only model we were aware of for continuous data was the stylized normal.

Leaving aside heteroskedastic cases, which are ruled out by both
the normal and stylized normal regression models, applying the stylized
normal model can result in three possible outcomes: the true variance
a2 can be too low, which we denote as understylized; exactly one, which
we have already labeled stylized; and too high, which we call overstylized.
Figure 1 demonstrates the consequences of applying the stylized normal
model to over-, under-, and stylized normal data. For each panel, we
defined X; as including a constant term and a single explanatory variable
set to 500 evenly spaced values between zero and one. Then values of
Y; were created by drawing random numbers from a normal distribution
with mean X; (i.e., By = 0 and B; = 1) and variance o2 = 0.1 for
the understylized case, 02 = 1 for the stylized, and o2 = 10 for the
overstylized data set.

We fit the same stylized normal model separately to each data set.
Each figure represents the resulting estimate of the effect parameters
as a solid line. As can be seen, point estimates of the slopes and in-
tercepts of these lines are very similar, indicating that estimates of 8
under the stylized normal model are robust to the degree of over- or
understylization.

Also represented in the figure are dashed lines drawn at twice the
stylized normal’s variance above and below the solid line. Because the
stylized normal distribution assumes that the variance is one, the lines in
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Fig. 1.  Fitting a stylized normal model to different data types. The three data sets
were drawn randomly from a normal model with (a) o2 = 0.1 (understylized), (b)
o2 = 1 (stylized), and (c) o = 10 (overstylized). Note how the 95 percent
confidence intervals, represented as dashed lines, are too large for understylized data
and too small for overstylized data. Using a normal model instead, in order to
estimate rather than assume o2, would have given the correct confidence intervals
and would have fit each of the three cases. The purpose of this figure is to provide a
simple analogy, under the more familiar normal model, to the consequences of
applying the restrictive Poisson model to different data types. The analogous figure
for event count data appears as figure 2.

the three graphs are each at the same fixed distance from the solid line.*
The dashed lines are appropriately placed when about 5 percent of the
points fall outside these lines, as occurs only for the stylized case. These
results indicate that the stylized normal probability model is insensitive
to the variance in the data and that the validity of the model will be
greatly dependent on the degree of over- or understylization. Simply
put, if &2 is not very close to one, the model will be wrong, For exam-
ple, uncertainty estimates—such as standard errors of the coefficients or
forecast confidence intervals—can be very far from the mark (way too
large for understylized data and much too small for overstylized data).

4For simplicity, we ignore estimation variability in drawing these confidence in-
tervals, which would make them look like parabolas with a dip in the middle when
more data are nearby. With 500 observations drawn from the model, this effect is
relatively minor in this situation.
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In addition, many probability calculations from the model, such as the
probability that ¥; > 0.5, will be wrong.

These problems with the stylized normal model are far from trivial.
Even if one could rig together an alternative method of computing stan-
dard errors to evaluate its coefficient estimates, the model will always
be wrong except for the rare case when 02 = 1. Ag such, even simple
model checking procedures that involve evaluating any of a variety of the
observable implications from the model become uninterpretable. In the
end, there is usually little reason to choose a model that is so obviously
rejected by the data.

The Advantage of the Generalized Event Count Model

The discussion of the linear normal regression model in the previous
section provides a close analogy to a key problem in analyzing event
count data under more restrictive models than the GEC. To summarige:
the restrictive stylized normal for continuous data is to the restrictive
Poisson model for event count data as the normal model for continuous
data is to the GEC for event count data.

We begin by defining the GEC model. The GEC is a single proba-
bility distribution that includes a variety of other distributions as special
cases, including every event count model discussed in this symposium.
Some confusion on this point may have been caused by the original pre-
sentation of the GEC as a set of equations (King 1989b). Thus, we
present the same distribution here in a more traditional format as a sin-
gle equation (see the appendix for a derivation). Let the event count
variable Y;, conditional on explanatory variables Xi, be modeled as a
generalized event count distribution with mean E(Y;) = ); = ¢X:8 and
variance V(Y;) = );02.5

Y: ~ GEC(ui) X, o?)
= GEC (y;|eX+8, o?)
1 eXiﬁ) (3’"1'#) vt (eXeﬂ) (j,l—:’;) -

T w2 !
Yi i=o J:

)

o2

where " = o0 for 02 > | and, letting n; = 1;/(1-02), ymax = [ni+1)
for0<o?2< 1.8

5Winke1.mann, Signorine, and King (1995) provide a small correction to these
moments for the underdispersed case. Also, the z{"+%) notation is Signorino’s (1995)
S-factorial; see the appendix.

8{x) equals z ~ 1 for integer z and floor(z) for noninteger z.
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"The exponentiation function in the expected count keeps it greater
than zero, which must be the case, given that the number of events
can never drop below zero. This is unnecessary in the linear-normal
model because continuous data are unbounded. Similarly, the variance is
increasing with the mean, as with all reasonable models of event counts,
by requiring a positive dispersion parameter o2 > 0. That is, o2 is not
a variance term in this model but rather a positive factor that indicates
how much the variance increases with the mean. Thus, this distribution
has two unknowns, ); and o2, or, if explanatory variables are included,
B8 and o2.

Just as we defined the stylized normal distribution by setting the
normal distribution variance to one, we now define the Poisson distribu-
tion by setting the GEC distribution’s dispersion parameter to one.

Y; ~ GEC (y;|eX*?, 1)

1 xioy @0 [x= L x50 G,0)
a(ﬁ ) EJ—'(e )
J=0

eexiﬂ (exiﬁ)y-‘
!
= Poisson (y;|e*:#) . (4)

-1

As will become apparent, the restrictive nature of the Poisson for event
count data causes the same problems as the restrictive nature of the
stylized normal does for continuous data.’

We now consider what happens when the Poisson model is applied
to event count data other than generated by the Poisson. In our exam-
ination, we exclude data generation processes that have no reasonable
analogies in real event count data. Thus, we do not examine homosked-
astic cases or those for which the variance changes but does not increase
with the mean. Of the range of remaining possibilities, we consider three:
the true dispersion parameter o2 is smaller than the Poisson (and thus
less than one), which is known as underdispersed; exactly one, which
we have already labeled Poisson; and too high, which is called overdis-
persed. Poisson dispersed data arise when the rate of event occurrence
is constant or otherwise unrelated to the number of events occurring
during an observation. Overdispersed processes under the GEC occur

"Unlike the stylized normal, which we defined as a special case of the normal
distribution, the Poisson distribution existed long before the more general GEC that
includes it as a special case. However, although the history differs, the mathematical
logic of the analogy does not.



234 Political Analysis
35 35 35
30 30 30
25 2 25
20 0 20
Y Y Y
15 15 15
10 10 10 N
5] ccemmm = " i demmm =T
P LT e ———— e
0 25 5 35 0 25 5 35 0 25 5 35
X X X

(a) ()] (c)

Fig. 2.  Fitting a Poisson model to different data types. The data sets were drawn
randomly from a GEC model with (a) o2 = 0.1 (underdispsersed), (b) 02 =1
(Poisson dispersed), and (c) o2 = 10 (overdispersed). Note how the 95 percent
confidence intervals, represented as dashed lines, are too large for underdispersed
data and too small for overdispersed data. As we demonstrate in figure 3, applying a
GEC model to these data instead, in order to estimate rather than assume o2, gives
the correct confidence intervals and fits each of the three cases.

when the rate of event occurrence s positively correlated with the num-
ber of events (contagion) or varies randomly over time (heterogeneity).
When increases in the rate of event occurrence depress the likelihood of
future events (i.e., negative contagion), underdispersed count data re.
sult. Figure 2 completes the analogy to linear regression. For the three
panels in this figure, we randomly generated data from the GEC model
with the same mean but different dispersion parameters and fit the same
restrictive Poisson regression model to it. In all three cases, we defined
Xi as including a constant term and a single explanatory variable with
values evenly spaced between zero and one and we set the mean to eX:
(i.e., with By = 0 and B1 = 1). In panel (a), we drew data from the GEC
with 02 = 0.1 as an example of the underdispersed case. Panel (b) data
were drawn with 02 = 1, which is the Poisson; and panel (c) has data
from the GEC with ¢2 = 10, which is our example of overdispersion.
The results of applying the restrictive Poisson model should by now
be easy to anticipate: the point estimate of the mean function (and
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thus f) is reasonably well estimated in all three cases, but the model’s
variances, and thus uncertainty estimates, are not even close. In fact,
most observable implications of the Poisson model are rejected in over-
and underdispersed data. Just as with the stylized normal, there is little
reason to choose a model like the Poisson when it is so clearly rejected
by the data.

One possible saving grace for the Poisson would be if most data
happened to be Poisson-dispersed in practice. Unfortunately, this is
both rare in individual examples and, given the practice of most users,
essentially impossible. The reason is that the “degree of dispersion”
is always defined as conditional on the explanatory variables. As more
explanatory variables are included, the true value of o2 (usually) declines
from overdispersed, to the region of the Poisson, to underdispersed.

The result is that, if relatively few variables are included, and the
data are (conditionally) overdispersed, the standard errors will be much
too small and will cause the analyst to be wildly overconfident. It is
not difficult to find examples in which standard errors are too small by
a factor of 10 or even 100 or to generate artificial examples with much
larger errors. In this situation, unknowing researchers will think they
have discovered numerous new facts about the world, but few will be
real. At the other end of the continuum, suppose the data are condi-
tionally underdispersed, as occurs in practice if many control variables
are included. If the Poisson regression model is applied in this situation,
the standard errors will be much too large. In this case, the result will
be that unwitting researchers will think no patterns exist in the data,
potentially missing numerous important facts about the world.

The generalized event count model provides one possible solution to
these problems, and it does so in the same way, at least conceptually, that
the normal distribution solves the restrictive problems of the stylized
normal. Rather than being forced to choose a value for 02 on the basis
of little information prior to data analysis (or on the basis of some kind
of more reasonable pre-test estimator), the GEC allows one to estimate
B and o2 simultaneously. If data happen to be generated by a Poisson
distribution, GEC estimates will indicate that 02 & 1 and the estimates
and standard errors will be approximately the same as if you ran a
Poisson in the first place. If instead the data are overdispersed, GEC
estimates will indicate that o2 > 1, and other results will be identical
to the results that would have come if a negative binomial model were
run in the first place. Finally, if the data are underdispersed, the GEC
extends the relationship between the Poisson and negative binomial to
the region of the parameter space where 0 < 02 < 1 and gives the same
estimates as if the “continuous parameter binomial” distribution were
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chosen. Because of this essential additional flexibility, the GEC model
will fit the data better than the Poisson in the presence of under- or
overdispersed data and essentially as well as the Poisson in the presence
of Poisson dispersed data.8

The solution provided by the GEC can be seen in practice by fol-
lowing the usual practice of model fitting. With the GEC, including
additional control variables (usually) makes the estimated value of the
dispersion parameter o2 drop. In experiments of this sort, it is easy to
get o2 to go from overdispersed, to approximately Poisson dispersed,
to underdispersed, and the corresponding standard errors to similarly
change, merely by including sufficient additional variables, The changes
in o2 that occur for different sets of control variables provide powerful
evidence in individual applications of the need for a generalized model
like the GEC over a restrictive model like the Poisson. Indeed, since
the Poisson nests within the GEC, the advantage of the GEC can be
measured directly as the distance of o2 from one. If desired, one could
also compute a hypothesis test to see whether 02 = 1, although since
the GEC works as well as the Poisson In this situation there is little
motivation for this test. An example of the superior fit of the GEC is
provided in figure 3. For this figure, we use the three identical data sets
presented in figure 2 and now substitute the Poisson regression model
with the GEC regression model to estimate the coefficients, represented
by the solid lines, and the 95 percent confidence interval as dashed lines
around the solid line. As is obvious, the GEC fits all three types of
event count data, both in mean and in variance around the mean. Note
how the estimates of variability correctly and substantially drop from
figure 2 to 3 in the underdispersed case and substantially increase in the
overdispersed case.

Achen examines results in the literature that compare Poisson and
GEC estimates for underdispersed and overdispersed data and, as ex-
pected, finds that the standard errors under the two models are “often
strikingly different.” He describes this difference as “worrisome,” but
instead of being correctly worried about researchers applying the re-
strictive Poisson model to over- or underdispersed data to which it does
not fit, he incorrectly interprets this as a problem with the GEC. This
mistake is logically equivalent to preferring the number 12 to the sample
mean when estimating the average age in a population: although the
sample mean is never worse than the number 12 as an estimator of the

8In theory, using the GEC when the Poisson is known to be the true model could

add extra variability to estimates of 02, In practice, this possibly minor problem

does not seem to arise. Of course, we are almost never in the position of knowing in
- advance that data are Poisson.
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Fig. 3.  Fitting the GEC model to different data types. The data sets represented
in the three panels were drawn randomly from a GEC model with (a) o2 =0.1
(underdispsersed), (b) o = 1 (Poisson dispersed), and (c) 0% = 10 (overdispersed).
The solid line is the expected value, and the dashed lnes are the 95 percent
confidence intervals. These are the same data as those generated in figure 2, for
which a Poisson model was estimated, but did not fit well for the under- and
overdispersed cases. In contrast, the GEC easily fits all three data sets very well.

unknown quantity of interest, this error implies that we should be more
suspicious about the sample mean as it gives estimates farther from 12.

This misunderstanding is exacerbated by Achen’s discussion of an
example in which, with underdispersed data, GEC standard errors hap-
pen to be half of the (incorrect) Poisson standard errors. He writes
that “cutting standard errors in half is like quadrupling the size of one’s
data set ....” The mistake here is the implied claim that the Poisson
standard errors to which he is comparing the GEC’s are correct in the
presence of underdispersed data and that the drop when moving to the
GEC is only due to the supposed superior statistical efficiency of the
GEC. However, as panel (a) in figure 2 demonstrates, his presumption
that the Poisson model standard errors are correct in the presence of
underdispersion is false. In addition, a comparison of figures 2 and 3
confirms that the advantage of the GEC in this case is not efficiency
but rather that it, and not the Poisson, correctly fits the data. It would
also be easy to see that this claim about the Poisson model is false by
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using any of a variety of “robust” estimators of standard errors under
the Poisson model such as White’s “heteroskedasticity-consistent stan-
dard errors” provided as an option in COUNT.® Thus, moving to the
GEC with underdispersed data will make your standard errors smaller,
as they should be. Moving to the GEC with overdispersed data will
increase your standard errors, as should also be the case.

Probability Models of Event Counts and Grouped Binary Trials

"The rigorous proofs given by Londregan and definitions from Amato are
sufficient to invalidate most of Achen’s claims about probability distri-
butions, including those about which distributions are special cases of
others, those about the probabilistic structure of the GEC, and most of
his table 2. But, even if his specific arguments were right, they would
not be relevant empirically given the extremely special case to which his
article is exclusively devoted. We discuss these points here.

Event Counts

We first list the probability distributions that are special cases of the
GEC(y:]Xi,0?) and the conditions, as indexed by ranges of o2, that
produce them:

1. Negative Binomial, 02 > 1, the overdispersed case.

2. Poisson, 62 =1,

3. Continuous Parameter Binomial, 0 < 02 < 1, the underdispersed
case. This special case itself reduces to an even more special case,
the Binomial, when n; = \;/ (1-0?) is an integer.

In the GEC, and therefore in each of these special cases, \; and o2 are
unknown parameters to be estimated, with n; having no substantive in-

9 Achen missed this point in part because he is under the mistaken impression that
“heteroskedasticity-consistent” standard errors should not be used except in the pres-
ence of heteroskedasticity. He was perhaps mislead by the term heteroskedasticity-
consistent, which seems to imply that it only corrects standard errors for het-
eroskedasticity when none is assumed, as we might want to do for the linear-normal
model. In fact, this alternative method of computing standard errors is robust to the
hessian not being equal to the outer product of the gradients. Heteroskedasticity can
produce this in a linear model, as can assuming the wrong functional form for the
heteroskedasticity that exists in the data. This includes situations such as applying
the Poisson model to under- or overdispersed data, even though both data types and
the Poisson model are all heteroskedastic in different ways. In fact, using Poisson es-
timates and these or other “robust” standard errors is a reasonable alternative to the
GEC in the special case in which a researcher is only interested in inferences about
the coefficients. This procedure should be treated with caution, of course, since with
over- or underdispersion the Poisson model is not the data generation process.
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terpretation separate from A; and 2. Although the GEC distribution
was derived from a single difference equation as its first principle (see
the appendix, and King 1989b), and can itself be expressed in a single
equation (see eq. 3), its more familiar special cases cause Amato to
Interpret it as a “‘splicing’ or ‘joining’ together of three separate dis-
tributions.” Indeed, these distributions are joined, but they are joined
under a more general common framework that encompass all of these
familiar distributions as special cases. The GEC provides a single, con-
sistent framework with which to understand this diversity of processes
(and distributions) used to model event counts.

Thus, Achen’s claim that the “GEC is a special case” of the bino-
mial distribution is false. Exactly the reverse is true, as the binomial is
a special case of the GEC.1? To see this, start with the GEC and restrict
o? to the (0, 1) interval and fix n; to an integer: the result is precisely
the formula for the binomial distribution. In contrast, if we begin with
the binomial, no specialization can produce the entire range of the GEC.
Specializing the binomial cannot generate the full continuous parameter
binomial (i.e., when 0? < 1 even if n; is not an integer), the Poisson
(02 = 1), or the negative binomial (62 > 1) ranges of the GEC. He also
claims that the “GEC is a special case” of the negative binomial distri-
bution (see his table 2), but this, too, is precisely backward: start with
the GEC and restrict o > 1. The result is exactly the formula for the
negative binomial. In contrast, no specialization of the negative bino-
mial can produce the entire GEC, or its special cases of the continuous
parameter binomial (for 62 < 1), or the Poisson (o2 = 1) distributions.

As a result, his claim that “The general rule is that the underdis-
persed GEC will produce the same fit as the conventional ... binomial
model only when, apart from the intercept, none of the independent
variables matter” is also false. The GEC will equal the binomial when-
ever n; = A;/(1 — 0?) is an integer and ¢2 < 1, no matter how much or
little the independent variables matter.

Achen makes his broadest (incorrect) claim by quoting from an out-
dated version of Amato’s paper, where Amato had hypothesized that
the GEC was not a probability distribution because, he originally had
thought, it did not meet the axioms of probability. If this were true,
the GEC would indeed have been “fundamentally flawed.” However,
Amato has since concluded that his hypothesis was incorrect and he has
corrected the statement in the final version of his paper, which appears
as an article in this volume. Amato now writes: “The upshot of this

1074 is also not true that the GEC parameterization {when n; is an integer and 02 <
1) is a special case of the binomial parameterization, as the two parameterizations
are mathematically equivalent.
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mathematical and probabilistic analysis is that one can write down a
‘GEC’ distribution from the difference equation ... that obeys the ax-
iom constraining probabilities to the unit interval.” Londregan ties up
any potentially loose ends by providing a formal mathematical proof
that the GEC meets the axioms of probability. (If the mathematics are
confusing, it is easy to convince oneself of this point by searching for a
counterexample: merely try to find a single value of both ); > 0 and
02 > 0 such that the computed probability falls outside the unit interval
or for which the sum of the probabilities does not equal one.)

Event Counts versus Grouped Binary Data

Beyond this general incorrect claim, the remainder of Achen’s paper is
limited to the underdispersed case, which is by far the least common
empirically. In fact, he limits this analysis considerably further to the
knife-edged situation in which n; = ), /(1-0?) is exactly an integer, the
binomial distribution. This is a remarkably narrow focus since the prob-
ability of it occurring in practice (given any continuous prior distribution
on the parameters) is zero. This means that, even if all of his remaining
claims were true, they would be irrelevant in practice. Although a zero
probability event is not of much interest, it is a piece of the parame-
ter space.!! As such, it is reasonable to suppose that it might provide
insight into some more general feature of the GEC. Unfortunately, as
we now describe, he specializes even further than the binomial to a case
that cannot occur in practice and has no bearing on models for event
counts.

In its general mathematical form, the binomial distribution has the
same two parameters as does the more general GEC, ); and o2, but
where 0 < 02 < 1 and n; = Aif/(1 - 6?) is an integer. Achen’s paper
18 devoted to a further specialization of this distribution where n; is
known ex ante for each and every observation (# =1,...,N)—what
Amato calls the “known-n binomial.” Unfortunately, n; is never known
in real event count data. To see this, we reformulate n; into the mean
and variance of the event count Y; (a formulation Amato shows to be
especially helpful):

E(Y;)
N = ————t
] 1 V Y, (5)
E(Y;
11t sounds counterintuitive, but a zero probability event can occur in practice.
For example, suppose you randomly draw a number from the uniform distribution

on the ix:nterval between zero and two. Drawing a value of exactly one is possible even
though it has zero probability of ever occurring,
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Now try to think of an example of real event count data for which n;, the
ratio of the expected value to one minus the ratio of the variance to the
expected value of the event count, is known and is exactly an integer.
We think no examples of real event counts of this type exist and cannot
imagine anything but the most contrived examples where n; might be
known. As a result, Achen’s numerous comments about the known-n
binomial, his numerical examples based on it, and his estimation proce-
dures contain no relevant content for understanding or evaluating event
count models. This is not a matter of definition or interpretation: all of
his discussions based on these procedures are either false or irrelevant.

The known-n binomial model is sometimes used for grouped bi-
nary data, and this appears to be the root of Achen’s confusion. In
the context of the known-n binomial for grouped binary data, n; is the
number of trials parameter, which is known ex ante. In the context of
the (unknown-n) binomial used as part of the GEC, n; has no such in-
terpretation. (Amato emphasizes this point explicitly by putting quotes
around the phrase “number of trials” when labeling n; in his discus-
sions of event counts.) In fact, event count data are not constructed
Jrom trials, so there exists no unobserved binary variables or numbers of
trials. For example, what would the unobserved binary variables be in
analyzing the number of coup attempts per nation? Perhaps we might
imagine that there existed a series of separate (independent) thoughts
about coups, say all such thoughts among all senior officers in the armed
forces, and that only some of these thoughts turned into actual coup at-
tempts. More importantly, we would need to know a priori the number
of such thoughts and that all the thoughts were independent of each
other and had identical probabilities of turning into real coup attempts.
For many (if not most) instances of event count data, making these types
of assumptions seems specious at best.

In contrast, in order to conceptualize these data as event counts, we
only need to imagine an underlying ezpected rate of occurrence of coup
attempts. This expected rate may be variable over the nation’s existence
(it might be very high at first and during periods of hyperinflation).
If the expected rate is constant, or conditionally independent of the
observed count during an observation, this leads to the Poisson portion
of the GEC. If the expected rate is heterogeneous or is correlated with
the observed count, we have contagion, and thus overdispersion, leading
to a model like the negative binomial part of the GEC. Finally, if a
higher expected rate during an observation leads to fewer events, we have
negative contagion and models like the continuous parameter binomial
portion of the GEC.

If one’s data are grouped binary rather than event counts, then the
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models developed explicitly for these data should be chosen (such as
those in King 1989a, sec. 5.5, 5.6) instead of those for event counts
(such as those in King 1989a, sec. 5.7-5.9).12

As a result of these misunderstandings, a variety of Achen’s other
statements also turn out to be false. These include his claim that the
known-n binomial “serves as the baseline for comparison with the GEC.”
In fact, the two are models of different data generation processes for
completely different data types. Indeed, even if n; were known, the
binomial does not allow for Poisson or overdispersion, which are far more
common empirically. He also writes: “the GEC depends on the implicit
assumption that every binomial trial has the same probability of success
across all observations and that the exogenous variables influence only
the number of trials.” In fact, event count data have no underlying trials
and no corresponding “probability of success” for each one; they require
no such assumption. To see that the probabilities of events computed
from the GEC depend on the values of the explanatory variables, just
compute

Pr(Y; = w8, 0'2) = GEC(y: |, 0’2) (6)
= GEC (w]e¥#, 0?) (M

for any values of y;, X;, 8, and 02. Note that if X; has any effect (so
that 8 # 0), the probability of any event always moves as X; moves.

12In grouped binary data with n; so large that event count models are indistin-
guishable from models for grouped binary data, the maximum count is known but
provides little useful conditional probabilistic information. In almost all real data
sets like this, although there is a theoretical maximum number of events per period,
there sometimes exists a much smaller but unobserved practical maximum number of
events that can realistically occur. In these situations, n; is virtually always used to
model the unobserved practical maximum; this makes these data essentially equiva-
lent to event count data. Of course, even if you start with the known-n binomial in
these cases, you need to decide what to do with the unknown n;. If you guess n;, but
guess wrong, the same problems as those described in figure 2 will occur, since the
known-n binomial includes no dispersion parameter. Of course, if you don’t know
ni, the best procedure is to estimate it in some way, a logic that will quickly lead
back to an approach like the GEC. In these situations, the theoretical maximum
value of n; may still be included in models of event counts, especially if it varies over
the observations, by taking advantage of the form of all event count distributions
that explicitly include a variable for the duration of each unit’s observation period
(instead of the usual procedure, which restricts them to being all the same). King
(1989a, sec. 5.8) shows that you can achieve an equivalent effect by including the log
of the maximum as an additional control variable,
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Properties of the GEC
Asymptotic

The original claim was that the GEC is continuous in o2 and A, con-
sistent, and asymptotically normal except, when 02 < 1, in the zero
probability event that n; is an integer (King 1989b, 771, n. 7; 774; 776,
n. 12). However, given the absence of a formal proof, Amato reasonably
believes that this “warrants further investigation.” Fortunately, Lon-
dregan provides exceptionally clear formal proofs that pin down some of
these and other points.

Finite Sample

Because analytical results are often not available, finite sample proper-
ties of likelihood estimators are sometimes evaluated via simulated data
sets, the advantage of which is that the true values of the quantities of
interest are known. The usual procedure is that the data are randomly
generated from the model, the estimator is applied, and the computed
estimates are compared to the true values. Amato especially believes
that more of these Monte Carlo experiments need to be conducted in
this case. Figure 3 is an example of this type of analysis used for evalu-
ating the GEC.

Achen studies the GEC with one 20-observation simulated data set,
a simulation that forms the core of his article. Unfortunately, his claim
that “all the explicit GEC assumptions are met” in these simulated data
is false. This and other problems are easy to see by reexpressing his
parameterization in the more common event count format13 Under his
model, 10 observations are chosen so that A1 = 0.5 and 02 = 0.95, and
the other 10 observations are chosen to match Ay = 9.5 and o2 = 0.05.
It is easy to see that this data generation process does not meet the GEC
assumptions since o2 is constant over observations in the GEC but varies
between the two halves of this artificial data set. To correctly apply the
GEC to data from this data generation process, we would merely apply
the model twice, once to each data set. When this is done, the GEC
assumptions are met, and the GEC model reproduces the true parameter
values exactly. Alternatively, letting 02 vary between the two parts of

13To translate from Achen’s parameterization to that more commonly used for
event count models and used in the text, let di=npandoe? =1 - p, but note
that p and n do not have the interpretations he assigned to them for event count
models. Under his interpretation, a known n; and Poisson dispersion, which he refers
to as “the canonical starting point for the study of event counts,” would imply that,
regardless of the expected count or rate of event occurrence, no events would ever
occur!



244 Political Analysis

the data set, as suggested by King (1989b, 766), would also exactly
reproduce the true parameter values. As such, Achen’s claim that “the
distinction [between fixed and varying 0] is irrelevant” is incorrect.

Unfortunately, the problems with this artificial data set are more
serious than merely being irrelevant for evaluating the GEC. They are
also irrelevant for evaluating any reasonable event count model, since
this data generation process omits one of the most distinctive features
of virtually all real event count data—that they are heavily heterosked-
astic, with variance increasing with the mean. Specifically, the mean
increases substantially between the two parts of this data generation
process, from E(Y;) = 0.5 to E(Y;) = 9.5, but the variance remains
constant at V(Y;) = 0.475. In Monte Carlo studies, data are sometimes
generated from a probability model different from the one used for es-
timation; this is useful to test robustness to model assumptions in the
face of data problems that are likely to arise in practice. (An example
of this procedure appears in figure 2.) Because this homoskedastic event
count data generation process generally does not occur in practice, it is
of little relevance.!4

Given the value of having correctly generated Monte Carlo results,
we provide some here. In order to implement these, we modified the
COUNT program. As written, COUNT had very occasionally taken an
inordinately long time to converge. The reason is that COUNT uses an
easy-to-implement maximization procedure based on numerical deriva-
tives even though some (zero probability) points in the likelihood are
undifferentiable. This is a minor problem in practice since, although the
GEC is not globally concave, it appears to have no local minima. Thus,
whenever iterations proceed without reaching convergence, a slightly
less precise convergence criteria gives an answer sufficiently close to the
global maximum (equivalent to, say, four rather than five digits of preci-
sion). Nevertheless, even a few simulations that do not converge quickly
can make Monte Carlo studies take an inordinately long time to con-
duct. In order to avoid these problems, we implement a version of John
Londregan’s suggestion about an alternative maximization procedure.

4Even under Achen’s misspecified version in his table 1, all of the relevant com-
parisons of coefficients under his alternative models differ by less than the standard
error of their difference (where the standard error of the difference is computed as the
square root of the sum of the two squared standard errors). Moreover, even if we did
not know the data generation process, ample information in these data and reported
results demonstrate that the model does not match the data generation process. For
example, the differences in the variance matrix estimators Achen wonders about in
footnote 12 is a valid test (and in this case confirmation) of misspecification and
should have been used to correct the data generation process chosen or the model
applied.
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Fig. 4.  Overdispersed data: Distributions of GEC parameter estimates from Monte
Carlo runs. The figures show the true parameter values from which these
overdispersed data were drawn (as dashed vertical lines) and the distribution of GEC

- estimates (as histograms) for (3) Bo, (b) By, and (c) ¥ =In(s2). Note the

approximately normal distribution of each set of estimates around its average, which
is approximately the true value.

We use the usual derivative-based numerical optimization procedure un-
til the search is fairly close to the maximum. We then use a grid search,
when necessary, to pick out the parameter values that uniquely maxi-
mize the log-likelihood.1® With this new procedure, we first drew 1,000
random data sets of 1, 000 observations each from an overdispersed GEC
model, with E'(Y,) =)A= exp(ﬂo + ﬂlX,'), By = 1504, b= 0636, and
0% = 2. We then estimated the parameters from each data set using
the GEC model. Figure 4 presents these results. The true value of Gy,
B1, and v = In(o?) are indicated in the three panels with dashed verti-
cal lines. The histograms plot the 1,000 estimated values. As is clear,
the histograms are equal to the true values on average, with the spread
distributed roughly normally around the true value.

We also randomly generated 1,000 underdispersed data sets, with

15 Achen correctly points out that COUNT drops terms that do not depend on the
parameters when reporting the value of the log-likelihood at the maximum. How-
ever, he also writes that this log-likelihood “is not the true value.” In fact, because
likelihood is a relative and not an absolute concept (King 1989a), there is no single
“true” value of the log-likelihood. Add 75,261, or any other constant, to the log-
likelihood and inferences do not change. Because dropping constant terms can save
substantial computational time without any substantive consequence, COUNT, and
most other programs that maximize likelihoods, drop these terms. The only thing
to pay attention to is comparing different models that nest within one another but
drop different constant terms.
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Fig. 5.  Underdispersed data: Distributions of GEC parameter estimates from
Monte Carlo runs. The figures show the true parameter values from which these
underdispsersed data were drawn (as dashed vertical lines) and the distribution of
GEC estimates (as histograms) for (a) 3, (b) 81, and (c) v = In(o?). Note the
approximately normal distribution of each set of estimates around its average, which
is approximately the true value.

Ai = exp(Bo + 1 X;), Bo = 1.399, 81 = 0.636, and 02 = 0.1. In order
that these correspond to the expected value and variance, we applied
the correction in Winkelmann, Signorino, and King (1995) to the true
and estimated values, giving true values of E(Y:) = exp(8; + B X;),
B = 1.443, B = 0.605, and o = 0.132. We then ran the GEC model
on the 1000 simulated data sets and recorded the estimates. Figure 5
presents these results in a parallel fashion to figure 4: the dashed vertical
lines denote the true values, and the histograms summarize the results
from the 1,000 simulations. As with the overdispersed case, the GEC
model gives the right answer on average, with estimates approximately
normally distributed around that estimate. The advantage of Monte
Carlo analyses is that finite sample results can be obtained that often
cannot be obtained via purely analytical means. The disadvantage is
that they are necessarily limited to the specific set of parameter values
chosen for the simulations. Thus, the Monte Carlo results presented here
could be supplemented with many others, which we encourage future
researchers to try. Analyses could be included for different parameter
values, to evaluate the confidence intervals (as was done in figure 3), for
different sample sizes, or for other reasonable data generation processes.
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Alternative Approaches and Suggestions for Future Research

The GEC model allows for all ranges of dispersion, but as programmed
1t restricts the variance to be a positive scalar multiple of the mean,
V(¥ = a'ZE(Y,-), so that the dispersion parameter o2, and thus the
degree of under-, Poisson, or overdispersion, is constant for all observa-
tions. Amato is interested in the consequences of choosing alternative
Parameterizations of the variance function. Our view, consistent with
that of McCullagh and Nelder (1989, 199-200), is that “even relatively
substantial errors in the assumed functional form of Var(Y) generally
have only a small effect on the conclusions,” and so it is far more im-
portant to allow some kind of flexibility in deviating from the Poisson
in the over- and underdispersed directions than to choose any particular
form.1% In all data sets we have studied, and all others with which we
are familiar, the data do not contain sufficient information with which
to distinguish among the various possible alternative variance functions,
but obviously there is no guarantee that this will always be the case.
We therefore briefly consider two possibilities here.

First, the constant o2 can be changed by allowing it to vary as a
function of additional measured covariates Z; in a parallel manner to A;.
For example,

A = eXib (8)
o} = 7o (9)

the strategy proposed in King (1989a, sec. 9.4; 1989c) and programmed
in COUNT for the negative binomial case.

Another possibility is to change the basic form of the mean-variance
relationship. For example, Winkelmann and Zimmermann (1991) pro-
pose generalizing the GEC variance function as

V(Y3) = (0 - )EX:)* + B(Y;) (10)

16 Achen quotes twice from this same sentence in McCullagh and Nelder (1989),
but he omits the piece that contains their central conclusion, which is quoted here.
He also mentions the procedure suggested by McCullagh and Nelder to correct stan-
dard errors in the presence of overdispersed data when using the Poisson model.
Unfortunately, although this procedure often pushes the standard errors in the right
direction, even relatively simple Monte Carlo studies show that the procedure is far
from optimal and usually does not solve the problem. Moreover, because the pro-
cedure is only intended to fix part of the problem, instead of providing a complete
model, even when the procedure works, it does not result in a model that fits the
data.
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where k is estimated along with the other parameters. Special cases of
this specification include k = 0, which gives the original scalar multiple
relation; £ = 1, which implies that the variance is a quadratic function
of the mean; and a continuous range of other possibilities. Numerous
other possibilities also exist that may be more appropriate in the context
of specific data sets, and much future research awaits creative method-
ologists willing to explore them or develop new ones.

More generally, Amato “doubts that theories of politics are suffi-
ciently well restricted to provide the requisite distributional assumptions
to allow new distributions to be derived from first principles along the
lines of the Greenwood Yule compounding result.” Amato is obviously
correct about theories of politics, and his point should make us espe-
cially aware of statistical models that are based on theories without a
firm basis in reality or practical experience in real data. However, with-
out methods derived especially for our data, political scientists are left
using methods developed for studying insect longevity, chicken viruses,
astronomical occurrences, and other nonpolitical applications. Some of
these are applicable to our problems; others are not. Indeed, in many
cases, we believe Amato’s conclusion should be reversed. For example,
without some approach like the GEC, or a pre-test estimation proce-
dure, the only available models for event counts would require a theory
of politics so restrictive that it would tell us in advance whether our
data are over-, under-, or Poisson dispersed. With the GEC, or simi-
lar models, no such restrictive theories of politics are required. Political
methodology is likely to make the most progress by understanding exist-
ing models and using them whenever appropriate and possible, but also
by supplementing them with models better designed to meet the chal-
lenges of our field. Amato’s warning is best answered by requiring new
models to be developed for, applied to, and evaluated in real political
data.

Finally, although improving the estimation of existing models is im-
portant, a much more interesting reason to develop new models espe-
cially for political data is to extract new information from these data so
that we can learn more about the political and social world. In event
count data, many such opportunities exist. For example, in the normal
model, a2 is just the variance, whereas in the GEC o2 has the specific
substantive interpretation of either heterogeneity, contagion, negative
contagion, or Markov independence, each of which may have interesting
substantive interpretations. Other models proposed for different types
of event counts include hurdle models, seemingly unrelated count esti-
mators, and multiple equation models (Mullahy 1986; King 1989c¢).

“Many other opportunities for methodologists also exist in this field
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by focusing on precisely how their data are generated. For example, one
of the largest supplies of event count data is in international relations.
These data have special features that have not yet been included in any
existing models. For example, international events data appear to have
large amounts of systematic measurement error. In particular, the data
include many observations for which no events were recorded but for
which some probably did occur—as happens when, for example, coders
are not available for some languages. In contrast, larger counts probably
have less measurement error, or at least error that is more random. A
model for this type of data, and other such processes, could make an
important contribution to the analysis of international events data.

APPENDIX A. DERIVATION OF THE GENERALIZED EVENT COUNT
PROBABILITY DISTRIBUTION

In this appendix, we provide an alternative derivation of the GEC,
leading to the single-equation expression in equation 3 or the equivalent
expression given originally in King 1989b. To simplify this result, we
parameterize the distribution in terms of § = A/o? and v = 1 — 1/02.
This causes no loss of generality because translating back to A and o2
is straightforward.

We derive the GEC distribution starting from the Katz (1965) dif-
ference equation,

p(416,7) = [f’ﬂ%‘i)] p(y ~ 116, 7). (1)

In order for equation 11 to generate probability values, a constraint must
be levied on y. Note that when v < 0, we must have f4+v(y—1) > 0for
p(y16,7) > 0. For v > 0, there is no constraint on ¥’s maximum value.
Therefore, define y’s maximum value as

1-%) +<o0
max _ ¥
S LN (12)

where [z) equals z — 1 for integer z and floor(z) for noninteger z.
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Given p(0), the values of P(¥]6,7) can be stated as

P(116,7) = 6p(0)
Pl = (22) o)

Py = (1£2) (52) or0

y—1
pl6,7) = ;17 [H(o +7i)] 2(0). (13)

i=0

Here, v is the dispersion parameter and § can be thought of as the
arrival rate under Poisson dispersion. Examining equation 13, we see
that when 4 = 0, it has no effect on 6; when v < 0, it subtracts from
8, yielding underdispersion; and, when 0 < v < 1, it adds to 6, yielding
overdispersion.

We rewrite equation 13 as!?

6(v:7)
p(yl8,7) = ” p(0). (14)

Next, we derive an expression for p(0) that allows equation 14 to
generate probability values. Since the sum of the probabilities must

17Equation 14 uses the S-factorial notation of Signorino (1995). For real z, non-
negative integer m, and real §, the 8-factorial, z(+9)  jg given by

x<m,a>={ M5 e+ 8) =2+ o)+ 20) ot 6m-1)] m 21

Signorino shows that the §-factorial subsumes falling factorials, rising factorials, and
exponentials. Moreover, certain expressions commonly written using I'(-) notation
can contain singularitiesin the I'(-) expressions, while the equivalent expression writ-
t&n using §-factorial notation remains well defined.
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equal one for any given combination of § > 0 and y < 1, we have

max

Y
p(0)=1- " p(yl,7)
y=1
y!lllx
L 9w)
=1-p(0) Z y!
y=1
[ v ]
=|1+Y "
| y=1

max -1
[42% gwm)

= (15)
_y:O y!
Substituting this into equation 14, we get
wm [97 gim ]
0w [ % gl
p(ylf,7) = 7 g A (16)

It is straightforward to show that when 0 <7 < 1, equation 15 simpli-
fies to (1 — 4)/" and that equation 16 reduces to a negative binomial
distribution. Similarly, when 7 = 0, equation 15 simplifies to ¢=? and
Equation 16 reduces to a Poisson distribution. Finally, it can be shown
that for ¥ < 0 and integer 8/7, equation 16 simplifies to a binomial
distribution.
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