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A SYMMETRY OF FIXATION TIMES IN EVOULTIONARY DYNAMICS

CHRISTINE TAYLOR1, YOH IWASA2, AND MARTIN A. NOWAK3

Abstract. In this paper, we show that for evolutionary dynamics between two types that

can be described by a Moran process, the conditional fixation time of either type is the

same irrespective of the selective scenario. With frequency dependent selection between two

strategies A and B of an evolutionary game, regardless of whether A dominates B, A and

B are best replies to themselves, or A and B are best replies to each other, the conditional

fixation times of a single A and a single B mutant are identical. This does not hold for

Wright-Fisher models, nor when the mutants start from multiple copies.

1. Introduction

A key aspect of evolutionary dynamics concerns the process where a new mutant is in-

troduced in a population. Through selection and random drift, the frequency of the mutant

changes, and sometimes the mutant can reach fixation in the population (Fisher, 1922; Hal-

dane, 1927; Fisher, 1930; Wright, 1931, 1942; Kimura, 1957; Robertson, 1960; Kimura, 1994;

Bürger, 2000). The probability of fixation and the mean time to fixation of a single mutant

are important quantities. There is an extensive literature on this topic using diffusion theory

to calculate both the fixation probability and the conditional mean time to fixation (Kimura,

1994; Ewens, 2004).
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In particular, the conditional fixation time of a single mutant is often a more relevant

measure of the evolutionary success of a mutant. Since the loss of a mutant gene is much

more frequent, the conditional fixation time is much longer than the unconditional absorption

time until either fixation or loss. (Nei & Roychoudhury, 1973; Maruyama, 1974, 1977)

noted, using diffusion theory, that under weak constant selection the mean fixation time for

a favorable mutant is the same as that for the corresponding deleterious mutant in a Wright-

Fisher process. Diffusion methods can similarly show that in the setting of weak frequency

dependent selection involving two phenotypes engaged in a game, the mean fixation time of

a single mutant of either phenotype is the same.

However, we show in this paper that, even under strong frequency dependent (including

constant) selection, the conditional fixation time of a single mutant of either phenotype has

the same distribution, hence same mean, variance, etc, for a Moran process, though not for

a Wright-Fisher process. Our method is much simpler algebraically than the diffusion calcu-

lations of (Nei & Roychoudhury, 1973; Maruyama, 1974, 1977; Ewens, 2004); furthermore,

it requires no limiting assumption on population size or selection factor.

In Section 2, we focus on the the frequency dependent game dynamics of a Moran process

for finite populations proposed in (Nowak et al., 2004; Nowak & Sigmund, 2004; Taylor et al.,

2004). We state the surprising result that the time to fixation of a single mutant, under weak

and strong selection, in a finite population, is independent of the strategies of the mutant

and the resident population. In other words, a single A mutant fixates in a population of

B players as quickly as a single B mutant in a population of A players, regardless of the

strength of selection, or the fact that a single A mutant might be more likely to fixate than a

single B mutant, or vice versa. Surprisingly this symmetry holds not only for the mean but

also for variance and all higher moments. We have learned that (Antal & Scheuring, 2006)

independently obtained the result that the two conditonal mean fixation times are the same

in a particular game model of Moran process. The symmetry does not hold when the initial

number of mutants is greater than 1.

In Section 3, we note that this symmetry does not hold for models based on the Wright-

Fisher process.
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In Section 4, we generalize the symmetry of conditional fixation times to a class of Markov

processes, where only states 1 and N − 1 can transition into absorbing states 0 and N

respectively. If the transition matrix further satisfies the detailed balance condition, then

the conditional fixation time from state 1 to state N has the same distribution as that from

state N − 1 to state 0. In particular, the two conditional fixation times have the same mean

and the same variance and also all the moments.

Our result holds for games on cycles (Nakamaru et al., 1997, 1998; Nakamaru & Iwasa,

2005). Furthermore, our result also applies to a wide range of imitation processes of interest

to economists (Ellison, 1993; Binmore & Samuelson, 1997; Maruta, 2002), when the detailed

balance condition holds.

2. Fixation times in a Moran process

To illustrate the idea, we start with a frequency dependent Moran process as described in

(Nowak et al., 2004; Taylor et al., 2004). The payoff matrix for a game with two strategies

A and B is given by Table 1.

We have a population of N individuals, each individual uses strategy either A or B. The

number of individuals using strategy A is given by i, and the fitness of individuals using

strategy A and B are respectively fi and gi, where

(1) fi = 1 −w + w
a(i− 1) + b(N − i)

N − 1
, gi = 1 − w + w

ci+ d(N − i− 1)

N − 1
.

w measures the strength of selection. The bigger w is, the stronger the selection.

The selection dynamics of this two strategy game with N players can be formulated as

a Moran process (Moran, 1962) with frequency dependent fitness. At each time step, an

individual is chosen for reproduction proportional to its fitness. One identical offspring is

being produced which replaces another randomly chosen individual. Thus the population

size, N , is strictly constant. The probability of adding an A-offspring is ifi/(ifi +(N − i)gi).

At each time step, the number of A individuals can either increase by one, stay the same,

or fall by one. Therefore, the transition matrix of the Markov process is tri-diagonal and

defines a birth-death process. The transition matrix is given by
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Pi,i+1 = λi =
ifi

ifi + (N − i)gi

N − i

N

Pi,i−1 = µi =
(N − i)gi

ifi + (N − i)gi

i

N
(2)

Pi,i = 1 − Pi,i+1 − Pi,i−1,

for 0 ≤ i ≤ N . All other entries of the transition matrix are 0.

The probabilities, ρA, of a singleA player to reach fixation in a population of B players, and

ρB, of a single B player to reach fixation in a population of A players are given respectively

by (Karlin & Taylor, 1975)

(3) ρA = π1 =
1

1 +
∑N−1

j=1

∏j
k=1

gk

fk

, ρB = φN−1 =
1

1 +
∑N−1

j=1

∏N−1
k=j

fk

gk

.

In general, we have ρA 6= ρB. However, we have

Proposition 1. The conditional mean fixation time of a single A mutant, tA, is the same

as that of a single B mutant, tB, for all levels of selection and for all games.

In other words, even if an A player is more likely to fixate in a population of B players,

than a B player in a population of A players, the conditional mean time for a single A player

to take over the whole population is the same as that for a single B player. The conditional

mean time to fixation for a single mutant is the same irrespective of the direction of flow or

the strength of selection, w.

In Figure 1(a), the x-axis measures w which ranges from 0 to 1, and the y-axis measures

the conditional mean fixation time of a single mutant. We see that the conditional mean

fixation times for a single A mutant and and a single B mutant are identical for all w and

for four different games: a neutral game, a constant fitness game where A is dominant, a

bi-stable game, and a Hawk-Dove game.

In fact, we shall show in Appendix A that the probability distributions of the conditional

time to fixation for a single mutant of either type A or B are the same. Therefore, the mean,

variance, and all other moments of the two conditional fixation times are the same.
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On the other hand, simulation shows that in general the conditional fixation time of i A

mutants is not the same as that of i B mutants for weak or strong selection when i > 1 as

explained later.

We calculate in Appendix B tA = tB for a Moran process under weak constant and

frequency dependent selection.

3. Fixation time in a Wright-Fisher process

In a Wright-Fisher process, at each time step, the entire population is replaced by a new

generation of the same size, its composition is determined by sampling with replacement

from the previous generation. If there are i A players before reprodution, the number of

A players after reproduction is a binomial random variable with index N and parameter

ifi/(ifi + (N − i)gi). The probability of having j A players afte reproduction is

(4) Pij =


 N

j




(
ifi

ifi + (N − i)gi

)j (
(N − i)gi

ifi + (N − i)gi

)N−j

.

Under strong selection, the conditional fixation time of a single A mutant is not the same

as that of a single B mutant. Figure 1(b) plots the conditional mean fixation time of a single

mutant using strategy A or B for the same four games as in Figure 1(a). Again, the x-axis

measure the strength of selection w, and the y-axis measures the conditional mean fixation

time. The solid lines plot the times for A mutant, and dashed lines for B mutant. For each

of the three non-neutral games, as w increases, the two conditional fixation times for A and

B, and the corresponding solid and dashed lines, diverge further apart.

Under weak and constant selection, using diffusion theory (Nei & Roychoudhury, 1973;

Maruyama, 1974, 1977; Ewens, 2004) showed that a selectively disadvantageous mutant, if

destined for fixation, spends as much time, on average, in any frequency range as a corre-

spondingly advantageous mutant destined for fixation. In particular, the conditional mean

fixation time of a single advantageous mutant is the same as that of a corresponding deleteri-

ous mutant. We can even generalize this symmetry result under weak selection to frequency
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depedent selection for Wright-Fisher model. Figure 1(b) shows that when w is small, the con-

ditional mean fixation times of a single A mutant and a single B mutant are approximately

identical for four different games.

4. Generalization

Moran and Wright-Fisher processes are two examples of a general Markov process on

states 0, 1, 2, . . . , N , with 0 and N being absorbing states. We have seen in Sections 2 and

3 that a single A mutant can reach fixation equally fast as a single B mutant in a Moran

process irrespective of selection strength and game, while in a Wright-Fisher process, this

only holds when selection is weak.

We prove in Appendix A that

Proposition 2. For a Markov process P on 0, 1, 2, . . . , N state, where 0 and N are absorbing

states, suppose Pi0 = 0 for all i ≥ 2, and PjN = 0 for all j ≤ N − 2; furthermore P satisfies

the detailed balanced condition, i.e. there exist a vector ~ψ = (ψ1, . . . , ψN−1), where all entries

are positive, such that

(5) Pijψi = Pjiψj

for 1 ≤ i, j ≤ N − 1, then the distribution functions of the conditional fixation time from

state 1 to N and from state N − 1 to 0 are the same. In particular, the conditional fixation

time from state 1 to N and from state N − 1 to 0 have the same mean and variance.

It shall be clear from the proof in Appendix A that there is only one state that can lead

to each of the absorbing states.

The principle of detailed balance is important in describing equilibrium properties. When

the detailed balance condition is satisfied, the equilibrium can be achieved in the sense

that around any closed circuit, the netflow is zero. In terms of the transition probabilities

of a Markov process, the detailed balance condition dictates that around any circulation,

the product of all the transition probabilities along the loop is the same and non-zero going

counterclockwise and clockwise. The detailed balance condition is also known as Kolmogorov

cycle condition, or Kolomogorov consistency condition.
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Obviously, if P is symmetric, it satisfies the detailed balance condition.

An important class of Markov processes which satisfy detailed balance condition is the

birth-death process, whose transition matrix P is a continuant, satisfying the condition that

Pij = 0 if |i− j| > 1. In particular, for a Moran process discussed in Section 2, Proposition

1 follows immediately.

The principle of detailed balance is equivalent to the time reversal property for Markov

processes. For a Markov process M admitting a stationary distribution ~Ψ = (ψ0, ψ1, . . . , ψN),

where the ψi’s are positive, M is reversible if and only if it satisfies the detailed balance

condition ψiMij = ψjMji for all i, j.

The Moran process, with selection as well as mutation is reversible, since there exists

a stationary distribution and it satisfies the detailed balance condition. In contrast, the

Wright-Fisher process with selection and mutation is not reversible, because it does not

satisfy the detailed balance condition. However, in diffusion approximation for a Wright-

Fisher process, Proposition 2 holds. Diffusion approximation is in effect assuming weak

selection and a large population size. Proposition 2 does not hold for Wright-Fisher process

in general because it does not satisfy the detailed balance condition, nor does it satisfy the

property that only one state can transition into each of the two absorbing states.

It is important to note that for a Markov process satisfying the conditions of Propositoin

2, when i 6= 1, N − 1, the distribution of conditional time to absorption from state i to N

is in general different from the corresponding distribution from state N − i to state 0. This

will be illustrated by the proof of Proposition 2 in Appendix A.

5. Discussions

We have shown in this paper that in a Moran process describing evolutionary dynamics

of two types, the conditional time to absorption for a single mutant of either type has the

same probability distribution, hence the same mean, variance and all other moments. This

is a consequence of the fact that the Moran process satisfies the detailed balance condition

on the intermediate states, whereby equilibrium is achieved. Our symmetry result does not
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hold for a Wright-Fisher process, except in the diffusion limit of weak selection and large

population.

Under the setting of a generalized Moran process, a single deleterious mutant succeeds

in taking over the population of more favorable wild-type individiduals as fast as a single

corresponding favorable mutant can take over a population of weaker wild-type individuals.

A deleterious mutant goes into extinction most of the time, but if it does succeed in

replacing the population, it spreads as fast as the corresponding single favorable mutant. In

contrast, while a single favorable mutant rarely goes to extinction, under strong selection, it

does not succeed any faster.

Our symmetry result of conditional mean fixation time does not hold if the mutant starts

from multiple copies in both Moran and Wright-Fisher models. If a group of mutants is

introduced, then it is in general faster for the favorable mutants to succeed than for the cor-

responding deleterious mutants to succeed. Figure 2(a) shows the conditional mean fixation

times of 2 A mutants and 2 B mutants for four different games in a Moran process. The

two times are different. The solid lines plot the time for A, and dashed lines for B. We see

that upon fixation, the advantageous mutants fixate faster than corresponding deleterious

mutants; both fixate faster than 2 neutral mutants, except when the game is Hawk-Dove.

Figure 2(b) shows the conditional mean fixation times of 2 A mutants and 2 B mutants for

four different games in a Wright-Fisher process. Again the two fixation times are different,

and for very weak selection, the two fixation times are close.

In fact, our results can also be applied to the study of evolutionary game dynamics on

graphs, of which there is a great deal of current interest (Nakamaru et al., 1997, 1998;

Nakamaru & Iwasa, 2005; Lieberman et al., 2005; Ohtsuki et al., 2006). In the case of a

cycle graph with N nodes, the game dynamics starting from a single mutant can be described

by the Moran process. State 0 is all B, and state N is all A; while state 1 corresponds to

the set of configurations where exactly one node plays A and the rest play B; and similarly

for state N − 1. Since the number of mutants can increase or decrease by at most 1 at

each time step, the corresponding Markov process is a birth-death process satisfying the

detailed balance condition. Hence, our result that the fixation time of a single mutant of
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either strategy is the same holds for games on a cycle. For higher dimesional torus type

graphs or lattices, where symmetric conditions guarantee that there is only a single state

that can transition into either of the two absorption states, we still need to make sure that

the detailed balance condition satifies, in order to apply our result.

Since our results on the equality of fixation time apply to the class of Markov processes

where the transition probabilities on the immediate states satisfy the detailed balance con-

dition, it would be interesting to find examples of such Markov processes, other than the

Moran process, (e.g. lattices and higher dimensional torus with approproriate transition

matrix,) which satisfy this equilibrium condition.
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Appendix A. General results

Consider a general Markov process on states 0, 1, 2, . . . , N , where 0 and N are absorbing

states, and P is its transition matrix. Further, we add the constraint that Pi0 = 0 for all

i ≥ 2, and PjN = 0 for all j ≤ N −2. Hence, there is only one way in to the absorbing states

0 and N .

Notations:

• πi: the probability of reaching state N starting from state i.

• φi: the probability of reaching state 0 starting from state i.

• ui(t) = Prob{reaching state N starting from state i at time = t}.

• vi(t) = Prob{reaching state 0 starting from state i at time = t}.

• u∗i (t) = Prob{reaching state N starting from state i at time = t

conditional upon fixation} = ui(t)/πi.

• v∗i (t) = Prob{reaching state 0 starting from state i at time = t

conditonal upon fixation} = vi(t)/φi.

• ti: the unconditional mean time to reach either state 0 or N from state i.

• t∗i : the mean time to reach state N from state i conditional upon fixation at state N .

• s∗i : the mean time to reach state 0 from state i conditional upon fixation at state 0.

• tij: the mean sojourn time in state j before absorption into state 0 or N starting

from state i.
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• t∗ij: the mean sojourn time in state j before absorption into state N starting from

state i conditional upon reaching state N .

• s∗ij : the mean sojourn time in state j before absorption into state 0 starting from

state i conditional upon reaching state 0.

Let Tr denote transposition, define

~π = (π1, · · · , πN−1)
Tr, ~φ = (φ1, · · · , φN−1)

Tr,

~u(t) = (u1(t), · · ·uN−1(t))
Tr, ~v(t) = (v1(t), · · · , vN−1(t))

Tr.

Clearly,

π0 = 0, πN = 1, φ0 = 1, φN = 0

t∗0 = ∞, t∗N = 0, s∗0 = 0, s∗N = ∞

From now on, we will work with the (N − 1) × (N − 1) submatrix of the original Markov

matrix P with its first and last rows and columns removed, i.e. P is just the transition

matrix on states 1 through N − 1.

First, we find that

(A.1) ~π = (I − P )−1PN−1,NeN−1, ~φ = (I − P )−1P10e1,

where I is the (N − 1) × (N − 1) identity matrix.

It is important that P0i = 0 for i > 1 and PN,j = 0 for j < N − 1 here and in the proof of

Proposition 2.

The matrix (I − P )−1 =
∑∞

n=0 P
n is called the fundamental matrix of the matrix P . The

mean waiting time, tij, in state j before absoprtion into state 0 or N starting from state i is

given by (I − P )−1
ij and ti =

∑N−1
j=1 tij.

The conditional waiting time in state j before absorption into state N starting from state

i, t∗ij, is given by tijπj/πi.

We have

(A.2) u∗i (t) =
P t−1

i,N−1

ti,N−1
, v∗i (t) =

P t−1
i,1

ti,1
.



A SYMMETRY OF FIXATION TIMES IN EVOULTIONARY DYNAMICS 13

Proof of Proposition 2: Let Ψ be the diagonal matrix whose diagonal entries are given

by ψ1, ψ2, . . . , ψN−1. The detailed balanced condition is just

Ψ−1PΨ = P Tr

u∗1(t) =
P t−1

1,N−1

t1,N−1
=

(P Tr)t−1
N−1,1

(I − P Tr)−1
N−1,1

=
(Ψ−1PΨ)t−1

N−1,1

(I − Ψ−1PΨ)−1
N−1,1

=
(Ψ−1P t−1Ψ)N−1,1

(Ψ−1(I − P )−1Ψ)N−1,1
=
P t−1

N−1,1ψ
−1
N−1ψ1

tN−1,1ψ
−1
N−1ψ1

=
P t−1

N−1,1

tN−1,1

= v∗N−1(t)

�

Since

(A.3) t∗ij =
ti,jtj,N−1

ti,N−1
, s∗ij =

ti,jtj,1
ti,1

,

we can similarly show that

(A.4) t∗1j = s∗N−1,j

for all 1 ≤ j ≤ N − 1, namely, the conditional mean sojourn time at state j starting from

state 1 and starting from state N − 1 are the same.

Since the distributions of conditional fixation time are the same, i.e. u∗1(t) = v∗N−1(t), we

have that the conditional mean times to absorption from state 1 to N and from state N − 1

to 0 are the same:

(A.5) t∗1 = s∗N−1 =
(I − P )−2

1,N−1

t1,N−1
.

For a continuant matrix P , where Pij = 0 if |i− j| > 1. Let Pi,i+1 = λi, and Pi,i−1 = µi,

λ0 = µN = 0. We can write down the expressions for t∗1, s
∗
N−1, t

∗
1j, and s∗N−1,j explicitly

[Karlin & Taylor, 1975; Ewens, 2004]. Let

ρj =

j∏

k=1

µk

λk

, ρ0 = 1

then

(A.6) t∗1j =
πj(1 − πj)

π1ρjλj
, s∗N−1,j =

πj(1 − πj)

π1ρj−1µj
.
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Using these formulae, we can calculate tA, tB in Appendix B.

It is important to note that for transition matrices satisfying the detailed balance condi-

tion,

(A.7) u∗i (t) 6= v∗N−i(t), 2 ≤ i ≤ N − 2.

in general. In particular, since

(A.8) t∗i =
(I − P )−2

i,N−1

ti,N−1
, s∗N−i =

(I − P )−2
N−i,1

tN−i,1
,

the conditional mean fixation times

(A.9) t∗i 6= s∗N−i

in general.

Appendix B. Conditional mean fixation times for Moran process under

weak selection

In the special case of constant selection, where A has constant fitness r = 1 + w > 1, and

B has constant fitness 1, we have ρA > ρB. For weak selection (w << 1/N), we calculate

that

(B.1) tA = tB = N(N − 1)

(
1 − (N + 3)(N − 2)

72
w2 + o(w2)

)
.

In particular, for large N , we have

tA = tB ' N2

(
1 − N2w2

72

)
.

Therefore, the fixation time of a single mutant of either strategy is reduced by (N+3)(N−

2)w2/72 compared to the fixation time of a neutral mutant. For r > 1, one A player is more

likely to fixate among B players than vice versa. We certainly expect that it would take

shorter time for A to fixate than a neutral mutant. Moreover, a single B player also takes

the same shorter time span than a neutral mutant to fixate in a population of A players,

although the relative fitness of B is smaller than that of A.
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Under weak frequency dependent selection, we find that

(B.2) tA = tB = N(N − 1)

(
1 + w

γN(N − 2)

36(N − 1)
+ o(w)

)
,

where γ = b+ c− a− d and δ = a− d+ (d − b)N . For large N , we have

tA = tB ' N2

(
1 +

γwN

36

)
.

Hence even when strategy A dominates B, B fixates in a population of A players equally

fast as A fixates among B players. For bi-stable games, a > c and b < d, the fixation time

for a single A or B player is shorter than that of a neutral mutant. For Hawk-Dove games,

a < c and b > d, the fixation time is longer than that of a neutral mutant.
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Table 1. Payoff matrix for a game with two strategies A and B

A B

A a b

B c d
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Figure 1. Conditional mean fixation time of a single mutant of strategy

A and B as a function of selection strenght w for different payoff matrices.

N = 5. Top figure: Moran process; the conditional mean fixation times of a

single A mutant is the same as that of a single B mutant for all w. Bottom

figure: Wright-Fisher process; the conditional mean fixation time of a single A

mutant (solid line) and that of a single B mutant (dashed line) are the same

for small w and different for large w.
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Fisher Process

Figure 2. Conditional mean fixation time of 2 mutants of strategy A and B

as a function of selection strenght w for different payoff matrices. N = 5. Top

figure: Moran process; the conditional mean fixation times of 2 A mutants

(solid line) and that of 2 B mutants (dashed line) are different for all w 6= 0.

Bottom figure: Wright-Fisher process; the conditional mean fixation time of

2 A mutants (solid line) and that of 2 B mutants (dashed line) are different,

however they are very close for small w.


