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The authors develop binomial-beta hierarchical models for ecological inference using
insights from the literature on hierarchical models based on Markov chain Monte Carlo
algorithms and King’s ecological inference model. The new approach reveals some
features of the data that King’s approach does not, can be easily generalized to more
complicated problems such as generalR × C tables, allows the data analyst to adjust
for covariates, and provides a formal evaluation of the significance of the covariates. It
may also be better suited to cases in which the observed aggregate cells are estimated
from very few observations or have some forms of measurement error. This article also
provides an example of a hierarchical model in which the statistical idea of “borrowing
strength” is used not merely to increase the efficiency of the estimates but to enable the
data analyst to obtain estimates.
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1. INTRODUCTION

Ecological inference is the process of learning about discrete
individual-level behavior by analyzing data on groups. In this ar-
ticle, we develop binomial-beta hierarchical models for this problem
using insights from King’s (1997) ecological inference model and the
literature on hierarchical models based on Markov chain Monte Carlo
(MCMC) algorithms (Tanner 1996). For many of the applications
we have studied, our approach provides empirical results similar to
King’s. However, as illustrated in our first example, the present model
can reveal some features of the data that King’s model does not—at
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the price of increased computation. Because some individual-level
information is lost in the aggregation process, any single approach
to the ecological inference problem will by necessity require a set
of modeling assumptions, and the success of the endeavor will de-
pend on these assumptions. It is therefore of value to the data analyst
to have a variety of models with which to explore the data. In one
scenario, different models will yield qualitatively similar conclusions
and the results will be robust to the different sets of assumptions. In
another scenario, the models will yield different conclusions, prompt-
ing the data analyst to examine the impact of the various assumptions
on these conclusions. Thus, the hierarchical models presented in this
article provide helpful data analytic checks on King’s model. In ad-
dition, this MCMC-based approach has several other advantages: It
can be easily generalized to more complicated ecological inference
problems such asR×C tables (see King, Rosen, and Tanner 1999), it
enables the data analyst to adjust for a covariate and provides a formal
evaluation of the significance of this covariate, and it is better suited
to data in which the observed aggregate variables are estimated from
very few observations or have some form of measurement error. This
article also provides an example of a hierarchical model in which the
statistical idea of “borrowing strength” is used not merely to increase
the efficiency of the estimates but to enable the data analyst to obtain
estimates.

We introduce the ecological inference problem and our notation
in Section 2 and summarize King’s model in Section3. Section 4
gives a brief introduction to the concept of hierarchical models. We
then introduce our binomial-beta hierarchical model for the situation
with no covariates in Section 5 and the corresponding model for the
case with covariates in Section 6. All methods are illustrated with
examples. Section 7 concludes by outlining future work in this field,
some of which is currently under investigation.

2. THE PROBLEM

We introduce the ecological inference problem in this section with
the notation and an example from King (1997, chap. 2). For expos-
itory purposes, we discuss only a special case of the problem and
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save discussion of the more general case for the concluding section.
The basic problem has two observed variables (Ti andXi) and two
unobserved quantities of interest (βb

i andβw
i ) for each ofp obser-

vations. Observations represent aggregate units, such as geographic
areas, and the unobserved individual- level variables being aggregated
are dichotomous.

To be more specific, in Table 1, we observe for each electoral
precincti (i = 1, . . . , p) the fraction of voting-age people who turn
out to vote (Ti) and who are black (Xi), along with the number of
voting-age people (Ni). The quantities of interest, which remain un-
observed because of the secret ballot, are the fractions of blacks who
vote (βb

i ) and whites who vote (βw
i ). The proportionsβb

i andβw
i are

not observed becauseTi andXi are from different data sources (elec-
toral results and census data, respectively), and so the cross tabulation
cannot be computed.

3. A SUMMARY OF KING’S MODEL

The ecological inference literature before King (1997) was bifur-
cated between supporters of the method of bounds, originally pro-
posed by Duncan and Davis (1953), and supporters of statistical ap-
proaches, proposed by Ogburn and Goltra (1919) but first formalized
into a coherent statistical model by Goodman (1953, 1959).1 Although
these authors moved on to other interests following their seminal con-
tributions, most of the ecological inference literature since 1953 has
been an ongoing, and not always polite, war between these two key
approaches.
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The purpose of the method of bounds and its generalizations is
to extract deterministic information about the problem. For example,
if a precinct contained 150 African Americans and 87 people in the
precinct voted, then the number of African American voters must
lie between 0 and 87. The statistical approach examines variation
in the marginals (Xi andTi) over the precincts to attempt to reason
back to the district-wide fractions of blacks and whites who vote (the
average overi of βb

i and ofβw
i weighted by the number of blacks

and whites per precinct, respectively). The problem with the method
of bounds approach used in isolation is that it yields only a range of
possible answers. The problem with the statistical approach is that (as
Goodman made clear) if the assumptions are wrong, the answers can
be far off. For example, ifTi is low whenXi is high, one might infer
that blacks vote less frequently than whites, but it could equally be
true that whites who happen to live in heavily black precincts are those
who vote less frequently, yielding the opposite ecological inference
to the individual-level truth.

A key point of King’s approach that we draw on is that the in-
sights from these two literatures do not conflict with each other; the
sources of information are largely distinct and can be combined to im-
prove inference overall. Thus, we too combine the information from
the bounds, applied to both quantities of interest for each and every
precinct, with a statistical approach for extracting information within
the bounds. The amount of information in the bounds depends on the
data set, but for many data sets, it can be considerable. For example,
if precincts are spread uniformly over a scatter plot ofXi by Ti , the
average bounds onβb

i andβw
i are narrowed from [0,1] to less than half

of that range (hence eliminating half of the problem with certainty).
This additional information also helps make the statistical portion of
the model far more robust than previous statistical methods, which
exclude the bounds.

To illustrate these points, we first present all the information avail-
able without making any assumptions, thus extending the bounds ap-
proach as far as possible. As a starting point, the left graph in Figure 1
provides a scatter plot of a sample data set as observed,Xi horizontally
by Ti vertically. Each point in this figure corresponds to one precinct,
for which we would like to estimate the unknowns. We display the
unknowns in the right-hand graph of the same figure; any point in
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Figure 1: Two Views of the Same Data
NOTE: The left-hand graph is a scatter plot of the observables,Xi by Ti . The right-hand
graph displays this same information as a tomography plot of the quantities of interest,βb

i
by

βw
i

. Each precincti that appears as a point in the left-hand graph is a line (rather than a point
because of information lost due to aggregation) in the right-hand graph. For example, precinct
52 appears as the dot with a little square around it in the left-hand graph and the dark line in
the right-hand graph. The data are from King (1997, Figs. 5.1, 5.5).

that graph portrays values of the two unknowns,βb
i , which is plotted

horizontally, andβw
i , which is plotted vertically. Ecological inference

involves locating, for each precinct, the one point in this unit square
corresponding to the true values ofβb

i andβw
i , since values outside

the square are logically impossible.
To map the knowns onto the unknowns, we begin with this ac-

counting identity:

Ti = Xiβ
b
i + (1 − Xi)β

w
i . (1)

This identity holds exactly; it is not a regression equation and has
no error term. From this equation, we solve for one unknown in terms
of the other:

βw
i =

(
Ti

1 − Xi

)
−
(

Xi

1 − Xi

)
βb

i . (2)
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Equation (2) shows thatβw
i is a linear function ofβb

i , where the
intercept and slope are known (since they are functions ofXi andTi).

We now map the knowns from the left-hand graph onto the right-
hand graph by using the linear relationship in equation (2). A key
point is that each dot on the left-hand graph can be expressed, without
assumptions or loss of information, as a (tomography) line within the
unit square in the right-hand graph.2 It is precisely the information
lost due to aggregation that causes us to have to plot an entire line (on
which the true point must fall) rather than the goal of one point on the
right-hand graph. In fact, the information lost can be thought of as
equivalent to having a graph of theβb

i byβw
i points but having the ink

smear, making the points into lines and partly obscuring the correct
positions of the (βb

i , βw
i ) points.

What does a tomography line tell us? Before we know anything,
we know that the true (βb

i , βw
i ) point must lie somewhere within the

unit square. AfterXi andTi are observed for a precinct, we also
know that the true point must fall on a specific line represented by
equation (2) and appearing in the tomography plot in Figure 1. In
many cases, narrowing the region to be searched for the true point
from the entire square to one line in the square can provide a signifi-
cant amount of information. To see this, consider the point enclosed
in a box in the left-hand graph and the corresponding dark line in the
right-hand graph. This precinct, number 52, has observed values of
X52 = 0.88 andT52 = 0.19. As a result, substituting into equation
(2) givesβw

i = 1.58− 7.33βb
i , which, when plotted, appears as the

dark line on the right-hand graph. This particular line tells us that in
our search for the trueβb

52, β
w
52 point on the right-hand graph, we can

eliminate with certainty all area in the unit square except that on the
line, which is clearly an advance over not having the data. Translated
into the quantities of interest, this line tells us (by projecting the line
downward to the horizontal axis) that wherever the true point falls on
the line,βb

52 must fall in the relatively narrow bounds of[0.07, 0.21].
Unfortunately, in this case,βw

i can be bounded (by projecting to the
left) only to somewhere within the entire unit interval. More gen-
erally, lines that are relatively steep like this one tell us a great deal
aboutβb

i and little aboutβw
i . Tomography lines that are relatively flat

give narrow bounds onβw
i and wide bounds onβb

i . Lines that cut off
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the bottom left (or top right) of the figure give narrow bounds on both
quantities of interest.

If the only information available to learn about the unknowns in
precincti is Xi andTi , a tomography line in Figure 1 exhausts all
this available information. This line immediately tells us the known
bounds on each of the parameters, along with the precise relationship
between the two unknowns, but it is not sufficient to narrow in on the
correct answer any further. Fortunately, additional information exists
in the other observations in the same data set (Xj andTj for all i 6= j )
that, under the right assumptions, can be used to learn more aboutβb

i

andβw
i in our precinct of interest.

In order to borrow statistical strength from all the precincts to learn
aboutβb

i andβw
i in precincti, some assumptions are necessary. The

simplest version (i.e., the one most useful for expository purposes)
of King’s model requires three assumptions, each of which can be
relaxed in different ways. First, the set of (βb

i , βw
i ) points must fall in

a single cluster within the unit square. The cluster can fall anywhere
within the square. The cluster can be widely or narrowly dispersed
or highly variable in one unknown and narrow in the other, and the
two unknowns can be positively, negatively, or not at all correlated
over i. An example that would violate this assumption would be
two or more distinct clusters of (βb

i , βw
i ) points, as might result from

subsets of observations with fundamentally different data generation
processes (such as from markedly different regions). The specific
mathematical version of this one-cluster assumption is thatβb

i and
βw

i follow a truncated bivariate normal distribution, although Monte
Carlo experiments indicate that the main assumption here is that of
a distribution with a single mode. The second assumption is the
absence of spatial autocorrelation: Conditional onXi , Ti andTj are
independent. The final assumption is thatXi is independent ofβb

i and
βw

i .
These three assumptions—one cluster, no spatial autocorrelation,

and no correlation between the regressor and the unknowns—enable
one to compute a posterior (or sampling) distribution of the two un-
knowns in each precinct. Extensive Monte Carlo evidence (King
1997) demonstrates that most features of the model are highly robust
to violations of the first two assumptions. In cases where the bounds
are sufficiently narrow for many of the precincts (an observation that
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can be made from the aggregate data), the model is also robust to
violations of the third assumption.

One key generalization of the model, which we will also con-
sider in Section 6, allows covariates to be included to control for the
correlation betweenXi and the unknowns, to allow for multiple clus-
ters, or to model spatial autocorrelation. Because the bounds, which
differ in width and information content for eachi, generally provide
substantial information, evenXi can be used as a covariate. In previ-
ous approaches, which do not include the information in the bounds,
includingXi leads to models that are unidentified.

The model assumptions are especially important given the loss
of information due to aggregation. In fact, this loss of information
can be expressed by noting that the joint distribution ofβb

i andβw
i

cannot be fully identified from the data without some untestable as-
sumptions. To be precise, distributions with positive mass overany
curve that connects the bottom left point (βb

i = 0, βw
i = 0) to the top

right point (βb
i = 1, βw

i = 1) of a tomography plot cannot be rejected
by the data (King 1997:191). Other features of the distribution are
estimable. This fundamental indeterminacy is of course a problem
because it prevents pinning down the quantities of interest with cer-
tainty, but it can also be something of an opportunity because different
distributional assumptions can lead to the same estimates, especially
since only those pieces of the distributions above the tomography lines
are used in the final analysis. Further details with regard to inference
for this model can be found in King (1997).

4. WHAT ARE HIERARCHICAL MODELS?

In the context of meta-analysis (Morris and Normand 1992), one
attempts to combine data from related, but statistically independent,
studies to summarize information about possible treatment effects. In
the context of small-area estimation (Ghosh, Natarajan, Stroud, and
Carlin 1998), one attempts to pool data across geographic regions or
local areas. In both of these cases, the expectation is that by “bor-
rowing strength” from the other cells, an efficiency is obtained by
reducing the standard error of the estimate of each particular study
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or region. By the early 1960s, it was known in simple situations
(James and Stein 1960) that this borrowing or “shrinkage” results in
an estimator that dominates the unpooled analogue. The basic tool
for facilitating this pooling has been the hierarchical model.

The fundamental idea behind hierarchical models is as follows.
In standard, nonhierarchical models, the procedure is to specify at
the outset the full distribution for an outcome variable; for example,
Yi ∼ p(y|θ). From this assumption, the likelihood (or, by adding
priors, the posterior) is formed and analyzed directly. This nonhier-
archical approach is of course time honored, enormously useful, and
indeed can even be thought of as encompassing hierarchical models
as a special case. The difficulty in nonhierarchical modeling is the
specification of the full distribution,p(y|θ), since it is difficult to
conceptualize complicated multidimensional densities, and since dis-
tribution theory has not given us models that are sufficiently flexible
for many types of data.

Hierarchical models construct the same required density in sep-
arate steps. For example, we might begin with an assumption that
Yi |β ∼ p1(y|β) and then recognize thatβ is not constant overi. We
would then add to this a second step in the hierarchy by assuming that
β has a distribution, such asβ ∼ p2(β|θ). The two distributions can
be combined by the usual rules of probability to give the same density
as could have been specified at the outset:

p(y|θ) =
∫ ∞

−∞
p1(y|β)p2(β|θ)dβ. (3)

In other words, the productp1(y|β)p2(β|θ) gives us the joint
distributionp3(y, β|θ). Then, the integral in equation (3) collapses
this joint distribution over the unknownβ parameter to yieldp(y|θ).
A third and also equivalent way to understand this equation is that by
averagingp1(y|β) over the uncertainty in the unit-specific effects—
that is,p2(β|θ)—we recover the distribution of interest. Thus, even
thoughp(y|θ) may have such a complicated form that a researcher
would not be able to intuit it directly, it can still be constructed from
simpler components.

The idea of building distributions hierarchically in this way has
been known almost as long as probability theory, but the difficulty of
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computing the integral in equation (3) has prevented many from car-
rying out the strategy in practice in most cases. However, although
integrals are often difficult or impossible to compute, drawing ran-
dom samples is often much easier. Thus, Monte Carlo simulation is a
practical solution to this problem, since it enables a researcher to ap-
proximatep(y|θ) to any degree of accuracy by substituting computing
cycles for analytical calculations that may not be possible. To solve
the problem in equation (3), we merely need to draw random samples
of β̃ from p2(β|θ) and then, conditional on these samples, drawy

randomly fromp1(y|β̃). A histogram of the draws ofy approximates
p(y|θ).

One unusual aspect of hierarchical modeling works is that the
ultimate distribution of the outcome variable,p(y|θ), is not typically
written down. In many cases, of course, it would not be possible to
do so. Fortunately, the hierarchical structure is typically much easier
to interpret and can be made to follow, in many cases, the hierarchical
structure of the data generation process.

The recent dramatic increases in computing speed have greatly fa-
cilitated simulation-based hierarchical modeling. Another important
development has been iterative simulation methods, such as MCMC
methods, which have made the technique of simulation much more
widely applicable (Tanner 1996).

In the present context, we also use hierarchical models—not sim-
ply to decrease variation of the parameter estimates but to obtain es-
timates of the unobserved quantitiesβb

i andβw
i . Like King’s model,

ours also includes the information in the bounds and the applica-
tion of distributional assumptions to borrow statistical strength across
precincts to model information within the bounds. In this article, we
consider an alternative distributional structure to provide a data ana-
lytic check on King’s model. In addition, in Section 6, we consider
the incorporation of covariates into the model and provide a means to
assess the significance of a given covariate.

5. THE BINOMIAL-BETA MODEL: NO COVARIATES

In this section, we present our first alternative hierarchical model
for ecological inference, with no covariates. In Section 6, we present
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a hierarchy to allow for the incorporation of covariates into the model.
Our hierarchical models use MCMC methods, specifically the Gibbs
sampler (see Tanner 1996).3

Following Section 2, suppose that there arep precincts. LetT ′
i

denote the number of voting-age people who turn out to vote. At
the top level of the hierarchy, we assume thatT ′

i follows a binomial
distribution with probability equal toθi = Xiβ

b
i + (1 − Xi)β

w
i and

countNi . Note that at this level, it is assumed that theexpectationof
Ti , rather thanTi , is equal toXiβ

b
i + (1−Xi)β

w
i . It therefore follows

that the contribution of the data of precincti to the likelihood is

(
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i
(
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i ) . (4)

By taking the logarithm of this contribution to the likelihood and
differentiating with respect to the parameters of interestβb

i andβw
i , it

can be shown that the maximum of (4) is not a unique point but rather
a line whose equation is given by the tomography line:

βw
i =

(
Ti

1 − Xi

)
−
(

Xi

1 − Xi

)
βb

i ,

whereTi is the fraction of voting-age people who turn out to vote.
Thus, the log likelihood for precincti looks like two playing cards
leaning against each other. Furthermore, the derivative in the direction
of steepest ascent at the point(βb

i , βw
i ) = (0.5, 0.5) is equal4 to 2Ni |1−

2Ti |
√

2X2
i − 2Xi + 1. As long asTi is fixed and bounded away from

0.5 (andXi is a fixed known value between 0 and 1), the derivative at
this point is seen to increase withNi ; that is, the pitch of the playing
cards increases with the sample size. In other words, for largeNi , the
log likelihood for precincti degenerates from a surface defined over
the unit square into a single playing card standing perpendicular to the
unit square and oriented along the corresponding tomography line.

At the second level of the hierarchical model, we assume thatβb
i

is sampled from a beta distribution with parameterscb anddb and that
βw

i is sampled independently from a beta distribution with parameters
cw anddw. The beta family of distributions, defined over the interval
[0,1], is quite a rich family, providing shapes ranging from flat, to U
shaped, to bell shaped, to skewed exponential (see Lee 1997:78-79).
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As we will see in an example later in this section, this flexibility allows
us to relax the single-cluster assumption of the truncated bivariate
normal. Althoughβb

i andβw
i are taken to be a priori independent, we

will see from the full conditionals of the Gibbs sampler that they are
a posteriori dependent.

At the third and final level of the hierarchical model, we assume
that the unknown parameterscb, db, cw, anddw follow an exponential
distribution with a large mean. In the examples in this article, we take
the mean to be 1/λ = 2 (i.e., a fairly noninformative distribution at
the final level).

By Bayes’ theorem, the posterior distribution is proportional to
the likelihood times the prior. Thus, given this three-stage model,
it then follows that the posterior distribution for the parameters is
proportional to

p(data|(βb
i , βw

i ), i = 1, . . . , p) × p((βb
i , βw

i ),

i = 1, . . . , p|cb, db, cw, dw) × p(cb, cw, db, dw)

=
p∏

i=1

(
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i
(
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i )

×
p∏

i=1

0(cb + db)

0(cb)0(db)
(βb

i )
cb−1

(1 − βb
i )db−1

p∏
i=1

0(cw + dw)

0(cw)0(dw)

(βw
i )

cw−1
(1 − βw

i )dw−1

× exp(−λcb) × exp(−λcw) × exp(−λdb) × exp(−λdw) .

Obtaining the marginals of this posterior distribution using high-
dimensional numerical integration is not feasible. Instead, we use the
Gibbs sampler (Tanner 1996). To implement the Gibbs sampler, we
need the following full conditional distributions; that is, we need the
distribution of each unknown parameter conditional on the full set of
the remaining parameters:

p(βb
i |βw

i , cb, db) ∝ (
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i

× (
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i )

× (βb
i )

cb−1
(1 − βb

i )db−1
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p(βw
i |βb

i , cw, dw) ∝ (
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i

× (
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i )

× (βw
i )

cw−1
(1 − βw

i )dw−1

p(cb|βb
i , i = 1, . . . , p, db) ∝

(
0(cb + db)

0(cb)

)p

exp[(
p∑

i=1

logβb
i − λ)cb]

p(db|βb
i , i = 1, . . . , p, cb) ∝

(
0(cb + db)

0(db)

)p

exp[(
p∑

i=1

log(1 − βb
i ) − λ)db]

p(cw|βw
i , i = 1, . . . , p, dw) ∝

(
0(cw + dw)

0(cw)

)p

exp[(
p∑

i=1

logβw
i − λ)cw]

p(dw|βw
i , i = 1, . . . , p, cw) ∝

(
0(cw + dw)

0(dw)

)p

exp[(
p∑

i=1

log(1 − βw
i ) − λ)dw],

where the a priori independence assumptions cause some of the con-
ditioning parameters to drop out of some equations.

To generate a Gibbs sampler (Markov) chain, one draws a ran-
dom deviate from each of these full conditionals, in turn updating the
value of the variable after each draw. Unfortunately, none of these
distributions are standard distributions (e.g., normal, gamma, etc.),
for which prewritten sampling subroutines are available. For this rea-
son, we use the Metropolis algorithm to sample from each of these
distributions. Thus, to sample a value forcb, db, cw, or dw, a candi-
date value for the next point in the Metropolis chain is drawn from the
univariate normal distribution with mean equal to the current sample
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value and variance sufficiently large to allow for variation around the
current sample value. To sample a value forβb

i or βw
i , a candidate

value for the next point in the Metropolis chain is drawn from the
uniform distribution. The candidate value is then accepted or rejected
according to the Metropolis scheme of evaluating the ratio of the full
conditional at the candidate value to the full conditional evaluated at
the current point in the chain. If this ratio is greater than or equal to
unity, the candidate value is accepted. If the ratio is less than unity,
the candidate value is accepted with probability given by this ratio
(see Tanner 1996). The Metropolis algorithm is iterated, and the final
value in this chain is treated as a deviate from the full conditional dis-
tribution. In the examples considered in this article, we iterated the
Metropolis algorithm 25 times to yield a deviate. A rigorous theory
for the convergence of the Gibbs sampler and other MCMC methods
is given in Tierney (1994).

A variety of methods are available for assessing convergence for
a given data set. A critical review of these methods is presented in
Cowles and Carlin (1996). A very popular method presented in Gel-
man and Rubin (1992) is based on comparing the between-chain vari-
ation (among multiple chains) to the within-chain variation. Clearly,
if the between-chain variation is much larger than the within-chain
variation, further iteration is required. Although this approach can
fail (see Tanner 1996), it generally works well in practice and is fairly
simple to implement. For the examples considered in this article,
the outputs of three chains were compared. Having considered suffi-
ciently long chains, there was very little difference across these three
runs given the different starting values. All examples in this article
were run on a Hewlett-Packard J210 workstation running FORTRAN,
with IMSL supplying the pseudorandom deviates.

5.1. EXAMPLE 1

The data considered in this example are taken from King (1997,
chap. 10). The data include voter registration and racial background
information of people in 275 counties in four U.S. states: Florida,
Louisiana, North Carolina, and South Carolina. The data from each
county include the total voting-age population (Ni), the proportion
who are black (Xi), and the total number registered (T ′

i ) in 1968. The
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goal of this analysis is to estimate the fraction of blacks registered
and the fraction of whites registered in each county. The data also
include information from public records on the true fraction of blacks
(βb

i ) and whites (βw
i ) who are registered in each county. We chose

these data in part because the (known) low correlation betweenXi and
(βb

i , βw
i ) simplifies the analysis. Although this relationship would not

generally be known in real applications, the simplification helps us
put aside one important problem while improving other features of
the statistical model.

The Gibbs sampler chains for this data set were run for 600,000
iterations. The results presented in the figures in this section are
based on the final 300,000 iterations. The reason for this run length
is discussed below.

Figure 2 presents the posterior distribution of the second-stage
mean for blacks (cb/(cb + db)) and the second-stage mean for whites
(cw/(cw+dw)). Using the final 300,000 iterates, we estimate the mean
of the posterior distribution for blacks to be 0.60, whereas the corre-
sponding value for whites is 0.85. These values compare favorably
with the corresponding true values for this data set (i.e., the fraction of
registered blacks and the fraction of registered whites in all counties)
of 0.56 and 0.85, as well as with the figures quoted by King (1997) of
0.62 and 0.83 based on the truncated bivariate normal. The posterior
standard deviations of the second-stage mean in the present context
are 0.04 (blacks) and 0.02 (whites) and are congruent with the values
quoted by King (1997) of 0.04 and 0.01.

Figure 3 presents the posterior distribution of the fraction of
whites registered and the fraction of blacks registered in county 50
(i.e., βb

50 andβw
50). The posterior distribution ofβw

50 indicates that
although the distribution is skewed, a high percentage of whites in
this county are registered. The posterior distribution ofβb

50, which is
defined over a much larger region, is also skewed and indicative of
a lower registration rate for blacks. The posterior means of 0.73 and
0.98 for blacks and whites, respectively, are similar to the true values
for this county of 0.63 and 1.00.Withincounty, the present approach
can detect possible bimodality of the distribution of the parameters.
For example, with regard to county 150 (Figure 4), we see that the pos-
terior distribution ofβb

150 not only has significant positive mass over
the entire interval [0.0,1.0] but actually appears to be bimodal—an
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Figure 2: Posterior Distribution of cb/(cb + db) and cw/(cw + dw)

NOTE: The mean of a beta(a, b) distribution isa/(a + b). These figures present the posterior
distribution of the second-stage means for blacks and for whites.
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Figure 3: Posterior Distribution of βb
50 and βw

50

observation that was not detected with the truncated bivariate normal
model.5 The corresponding distribution for whites is less diffuse. The
posterior means of 0.48 and 0.58 for blacks and whites, respectively,
are similar to the true values for this county of 0.42 and 0.60.

5.2. EXAMPLE 2

In the previous subsection, we noticed that the hierarchical model
can detect bimodality within precincts. It is important to note that both
the present hierarchical model and the model in King (1997) can detect
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Figure 4: Posterior Distribution of βb
150 and βw

150

bimodalityacrossprecincts, even without introducing covariates. To
illustrate this point, we generated data corresponding to 100 precincts
from a bimodal truncated normal distribution—50 precincts from a
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Figure 5: Ê(βw
i

) VersusÊ(βb
i
), i = 1, . . . , 100

truncated normal centered at(0.1, 0.1) and 50 precincts from a trun-
cated normal centered at(0.6, 0.6). The hierarchical model was then
applied to these data, with the Gibbs sampler run for 100,000 itera-
tions. The values from the final 40,000 iterations were then analyzed.
In particular, for each precinct we averaged the simulatedβb

i andβw
i

values to obtainÊ(βb
i ) andÊ(βw

i ). Figure 5 presents a scatter plot
of these 100 points. Clearly, this methodology was able to recover
the underlying bimodal structure of the data. (Parallel results, not
presented, were also obtained from King 1997.)

In this example, both the hierarchical model and the King (1997)
model are able to detect the bimodality due to the contribution of the
data to the likelihood (see equation (4)). Corresponding to each mode,
the tomography lines crisscross and bunch together. Heuristically,
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when we compute the mean of the “projection” of either the truncated
normal or the beta distributions along each line, we are able to detect
the underlying bimodal nature of the data.

6. THE BINOMIAL-BETA MODEL: WITH COVARIATES

A key point of King (1997) is the importance of bringing in and
representing formally the normally vast array of nonquantified knowl-
edge to which researchers generally have access, and which is not
represented inTi , Xi , andNi . Only by supplementing the formal data
set with this qualitative knowledge is it possible to begin to fill in the
missing information lost to aggregation and reach reliable ecologi-
cal inferences. This approach, which we capitalize on and advance
further, is to provide a rich family of models from which the data ana-
lyst can choose. Our model without covariates allows for a posteriori
dependence betweenXi andβb

i , βw
i , even though it assumes a priori

independence (King’s model has the same property). Nonetheless,
we expand the model presented in the previous section by allowing
the parameters to vary as a function of additional measured covari-
ates. Covariates allow the distribution to be more flexible, effectively
allowing more complicated shapes of densities. By conditioning on
Xi , or correlates of it, one can begin to model the relationship be-
tween this information andβb

i andβw
i rather than assume they are a

priori independent. Moreover, our Bayesian methodology provides a
formal approach for assessing the significance of a covariate.

Following the notation of Section 2, letZi denote a covariate
value associated with precincti. In this article, we assume thatZi is
a scalar for simplicity of presentation—the generalization to a vector
is straightforward.

As in the previous section, we will approach our analysis of this
problem using a hierarchical model. At the first stage of the hierarchy,
we again assume thatT ′

i follows a binomial distribution, although
in the present model the probability equalsθ

Zi

i = Xiβ
b(Zi)
i + (1 −

Xi)β
w(Zi)
i , with countNi . Note that in contrast to the model of Section

5, here bothβb(Zi)
i andβ

w(Zi)
i depend on the covariateZi , with the

dependency onZi to be specified at the second stage. To simplify
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notation, we will suppress the dependency onZi in the remainder of
this section.

At the second stage of the hierarchical model, we assume thatβb
i

is sampled from a beta distribution with parametersdb exp(α + βZi)

anddb, whereasβw
i is sampled from a beta distribution with param-

etersdw exp(γ + δZi) anddw. Recall that the mean of the beta dis-
tribution with parameters(a, b) is a/(a + b). Thus, the second-stage
mean ofβb

i = E(βb
i ) is

db exp(α + βZi)

db + db exp(α + βZi)
= exp(α + βZi)

1 + exp(α + βZi)
,

which implies that

log

(
E(βb

i )

1 − E(βb
i )

)
= α + βZi.

In other words, the log odds depend linearly on the covariateZi .
Similarly, the second stage of the hierarchical model implies that

log

(
E(βw

i )

1 − E(βw
i )

)
= γ + δZi.

At the third and final stage, we follow standard Bayesian practice
and treat the regression parameters to be a priori independent, putting
a flat prior on these regression parameters (α, β, γ , andδ). The pa-
rametersdb anddw are assumed to follow an exponential distribution
with meanλ. In the examples in this section, we take 1/λ = 2 (i.e.,
a fairly noninformative prior).

To implement the Gibbs sampler, we require the full conditionals,
which are given as

p(βb
i |βw

i , α, β, db) ∝ (
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i

× (
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i )

× (βb
i )

dbexp(α+βZi)−1
(1 − βb

i )db−1



82 SOCIOLOGICAL METHODS & RESEARCH

p(βw
i |βb

i , γ, δ, dw) ∝ (
Xiβ

b
i + (1 − Xi)β

w
i

)T ′
i

× (
1 − Xiβ

b
i − (1 − Xi)β

w
i

)(Ni−T ′
i )

× (βw
i )

dwexp(γ+δZi)−1
(1 − βw

i )dw−1

p(db|βb
i , i = 1, . . . , p, α, β)

∝
(

p∏
i=1

0(db(1 + exp(α + βZi)))

0(db)0(db exp(α + βZi))
(βb

i )db exp(α+βZi)(1 − βb
i )db

)

× exp(−λdb)

p(dw|βw
i , i = 1, . . . , p, γ, δ)

∝
(

p∏
i=1

0(dw(1 + exp(γ + δZi)))

0(dw)0(dwexp(γ + δZi))
(βw

i )dw exp(γ+δZi)(1 − βw
i )dw

)

× exp(−λdw)

p(α|βb
i , i = 1, . . . , p, β, db) ∝

p∏
i=1

0(db(1 + exp(α + βZi)))

0(db exp(α + βZi))

× (βb
i )db exp(α+βZi)

p(β|βb
i , i = 1, . . . , p, α, db) ∝

p∏
i=1

0(db(1 + exp(α + βZi)))

0(db exp(α + βZi))

× (βb
i )db exp(α+βZi)

p(γ |βw
i , i = 1, . . . , p, δ, dw) ∝

p∏
i=1

0(dw(1 + exp(γ + δZi)))

0(dw exp(γ + δZi))

× (βw
i )dw exp(γ+δZi)

p(δ|βw
i , i = 1, . . . , p, γ, dw) ∝

p∏
i=1

0(dw(1 + exp(γ + δZi)))

0(dw exp(γ + δZi))

× (βw
i )dw exp(γ+δZi).

As was the situation in Section 5, none of these distributions is a
standard distribution (e.g., normal, gamma, etc.), for which prewrit-
ten sampling subroutines are available. For this reason, we again use
the Metropolis algorithm to sample from each of these distributions.
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Thus, to sample a value fordb, dw, α, β, γ , or δ, a candidate value
for the next point in the Metropolis chain is drawn from the univariate
normal distribution with mean equal to the current sample value and
variance sufficiently large to allow for variation around the current
sample value. To sample a value forβb

i or βw
i , a candidate value for

the next point in the Metropolis chain is drawn from the uniform dis-
tribution. As in the example of Section 5.1, we iterated the Metropolis
algorithm 25 times. The candidate value is then accepted or rejected
according to the standard Metropolis scheme (Tanner 1996).

6.1. EXAMPLES

To illustrate the methodology of incorporating covariates into the
hierarchical framework, we consider two examples. In the first exam-
ple, data from 200 precincts were simulated assuming the truncated
normal distribution presented in King (1997). In addition, an in-
dependent normal random deviate was generated for each precinct
corresponding to white noise. Clearly, in such a situation, one would
expect the methodology to recognize that the covariate information is
irrelevant. In addition, one would expect this binomial-beta model to
give similar results to those of King’s truncated normal model, since
the data were generated according to this model.

Figure 6 presents the posterior distribution ofβ—the slope pa-
rameter for regressing the log odds for blacks on the independent nor-
mal deviates. In this example, the algorithm converged much quicker
than for the data in Section 5.1. Here, the chains were iterated 25,000
times, with the presented results based on the final 10,000 iterates.
For this marginal, the 90% credible interval (obtained by locating the
5th and 95th percentiles of the simulated values) is (−0.31,0.08). The
analogous 95% credible interval is given by (−0.35, 0.11). Because
zero is located in both these intervals, zero is a plausible value for
the regression parameter, and our analysis indicates (as expected) that
there is little evidence to suggest a regression effect.

Figure 7 presents the corresponding posterior distribution ofδ—
the slope parameter for regressing the log odds for whites on the inde-
pendent normal deviates. Here, the 90% credible interval is (−0.17,
0.15), whereas the 95% credible interval is (−0.20, 0.19). Again,
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Figure 6: Posterior Distribution of β—The Slope Parameter for Regressing the Log
Odds for Blacks on the Covariate

there is little evidence to suggest a regression effect, since zero is
located in both of these ranges of plausible values.

Figure 8 presents the posterior distribution ofβb
1 andβw

1 . The
mean of these distributions (0.14 and 0.07 for blacks and whites, re-
spectively), as well as the standard deviations of these distributions
(0.10 and 0.03 for blacks and whites, respectively), are congruent
with the results based on the truncated normal model of 0.14 and 0.07
for the means and 0.09 and 0.03 for the standard deviations. Similar
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Figure 7: Posterior Distribution of δ—The Slope Parameter for Regressing the Log
Odds for Whites on the Covariate

results are obtained for other precincts. In this context, where the true
model is the truncated normal, the binomial-beta hierarchical model
is capable of recovering that structure.

As a second example of the incorporation of covariates into the
hierarchical model, we consider a situation in which the covariate is
informative. For this example, theβb

i andβw
i are again generated

from a truncated bivariate normal distribution. However, in contrast
to the previous example,βb

i is then perturbed by adding a multiple of
Xi , whereasβw

i is then perturbed by subtracting a multiple ofXi . Can
the binomial-beta model recognize this dependency on the covariate?

Figure 9 presents the marginal posterior distribution ofδ (the slope
parameter for whites) based on iterations 20,000 through 40,000. The
90% and 95% credible intervals for this marginal are (−4.88, −1.22)
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Figure 8: Posterior Distribution of βb
1 and βw

1

and (−5.12, −1.00), respectively. Because zero is in neither range
of plausible values forδ, there does seem to be some evidence of a
dependency ofβw

i onXi . In fact, from the negative sign of the slope
parameter, one can conclude that the fraction of whites registered
decreases asXi increases.
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Figure 9: Posterior Distribution of δ—The Slope Parameter for Regressing the Log
Odds for Whites on the Covariate

Figure 10 presents the corresponding marginal posterior distribu-
tion of β (the slope parameter for blacks), also based on iterations
20,000 through 40,000. The 90% and 95% credible intervals for this
marginal are (0.68, 4.52) and (0.41, 4.74), respectively. Thus, as was
the case for whites, zero is not a plausible value providing evidence
to suggest a dependency ofβb

i on Xi . From the positive sign of the
slope parameter, one can conclude that the fraction of blacks regis-
tered increases asXi increases.

7. CONCLUDING REMARKS

Modeling uncertainty inTi andXi , as done here, has the potential
to expand significantly the range of applications of reliable models of
ecological inference. The model can be used to represent sampling
variability if the observed variables are estimated from sample surveys
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Figure 10: Posterior Distribution of β—The Slope Parameter for Regressing the Log
Odds for Blacks on the Covariate

instead of assumed known. One interesting application is using eco-
logical inference methods to study individual-level change between
two independent cross-sectional surveys broken into profiles defined
by demographic variables common to both surveys (as in Penubarti
and Schuessler 1998). Our model may also be useful for more tra-
ditional ecological inference applications whereNi is very small, as
in mortality data, and so the tomography line in Figure 1 becomes a
dotted line. The model is also useful ifTi andXi are directly observed
without sampling but with random measurement error.

The focus of this article has been on hierarchical models based
on the beta distribution. Alternative hierarchical models can be based
on bivariate extensions of the beta distribution (e.g., Gupta and Wong
1985), as well as by reparameterizing and placing a Dirichlet distri-
bution on the four (unobserved) cell probabilities of the 2× 2 table.
By casting the ecological inference problem in terms of a hierarchical
model, we have opened up a wealth of new tools for the analysis of
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ecological correlation data. One goal of future work will be to under-
stand the operating characteristics of these various hierarchical mod-
els, as well as compare and contrast their strengths and weaknesses.

NOTES

1. For the historians of science among us: Despite the fact that these two monumental
articles were written by two colleagues and friends in the same year and in the same department
and university (the Department of Sociology at the University of Chicago), the principals did
not discuss their work prior to completion. The Duncan and Goodman articles are each brilliant
contributions to social science methodology, and even judging by today’s standards, nearly a
half century after their publication, the articles still are models of clarity and creativity.

2. King (1997) also showed that the ecological inference problem is mathematically
equivalent to the tomography problem of many medical imaging procedures (such as CAT and
PET scans), where one attempts to reconstruct the inside of an object by passing X rays through
it and gathering information only from the outside. Because the line sketched out by an X
ray is closely analogous to equation (2), King labeled the latter atomography lineand the
corresponding graph atomography graph.

3. The goal of the Gibbs sampler is to draw random values from a joint distribution—for
example,p(x, y)—which may be difficult to accomplish directly. Instead, we analytically
compute the full conditionals and then drawx from p(x|y) given a starting value fory, y from
p(y|x) given the simulated value ofx, andx from p(x|y) given the simulated value ofy;
we then iterate until stochastic convergence. After convergence, subsequent draws from this
sequence are equivalent to drawing fromp(x, y) directly.

4. This result is obtained by computing the length of the gradient vector of the log
likelihood for precincti at the point (0.5, 0.5) (see Marsden and Hoffman 1993:350).

5. This bimodality explains to some degree the slow convergence of the chain in this
instance. Typically, when the underlying posterior has bimodality or multimodality, the corre-
sponding chain will tend to wander about a given mode, then migrate to the other mode and
visit that portion of the space, before migrating to another mode or returning to the first mode.
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