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Binary, count, and duration data all code discrete events occurring at points in time. Al-
though a single data generation process can produce all of these three data types, the
statistical literature is not very helpful in providing methods to estimate parameters of the
same process from each. In fact, only a single theoretical process exists for which known
statistical methods can estimate the same parameters—and it is generally used only for
count and duration data. The result is that seemingly trivial decisions about which level
of data to use can have important consequences for substantive interpretations. We de-
scribe the theoretical event process for which results exist, based on time independence.
We also derive a set of models for a time-dependent process and compare their predic-
tions to those of a commonly used model. Any hope of understanding and avoiding the
more serious problems of aggregation bias in events data is contingent on first deriving
a much wider arsenal of statistical models and theoretical processes that are not con-
strained by the particular forms of data that happen to be available. We discuss these
issues and suggest an agenda for political methodologists interested in this very large
class of aggregation problems.
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1 Introduction

Data in many disciplines are often coded from specific events, and a well-developed
methodological literature has emerged to deal with such data. In political science, and
other fields, three important coding schemes have been used. The first, durations, measures
the interval between events. The second, counts, measures the number of events that have
occurred within “slices” of time. Finally, binary data are often the finest-grained, resulting
either when count time slices are reduced to such an extent that at most one event occurs in
any observation or when count data is “censored” to zero and one.

Suppose we wish to explain the occurrence of some type of event. We could choose any
level at which to measure the process if we collected the data ourselves, but one level is often
the most convenient to code. Alternatively, as is so often the case, we might have obtained
the data from someone else. Of course, it is not the arbitrary unit of analysis or form of
aggregation which forms the focus of our inquiry; rather, we wish to explain what generates
the events under study. We do not want the form in which the data happen to be collected to
determine the substantive ideas which we can explore. Instead, we should identify what we
believe the underlying data generating process to be and then use the appropriate statistical
model for that process and for the given data to evaluate our substantive ideas. In one very
special case, methodologists have shown that it is possible to specify a single theoretical
model of what generates the events and to estimate its parameters regardless of the level at
which the data are aggregated. But the events process literature does not include even one
other set of models for which this is possible. If the one special case does not happen to
be substantively plausible in a specific application, the researcher is stuck using incompar-
able models and may have to settle for substantive conclusions that depend heavily on how
the data happened to be collected.

Unfortunately, although perhaps reasonably from the perspective of individual resear-
chers, the analysis of each type of data has proceeded without attention to how other
researchers set up their models. For example, when confronted with binary data, most
researchers automatically use a logit or probit model. Duration data are usually analyzed
with models based on complications of the exponential (e.g., weibull, gamma, compound,
competing risks, etc.). Scholars usually model count data with a poisson or compound-
poisson model. Individually, these are each reasonable choices.

However, the statistical literature does not generally provide ways of comparing results
across these different models. This should be quite frustrating to scholars, since binary,
count, and duration data are all coded from precisely the same underlying events.1 Applied
researchers need not disagree over results that depend incorrectly on the unit of analysis
chosen, especially if these disagreements could be resolved, or at least reduced, if these
researchers could estimate models at any level of analysis. Our primary goal in this paper
is to demonstrate how to compare the results obtained from binary, count, and duration
models of the same underlying data generation process.

Relating techniques for modeling each sort of data requires understanding the roles of
aggregation or disaggregation in statistical models for events processes. Different methods
of data collection lead to testing different models, and some different sorts of information
may be lost at each stage of aggregation. The statistical literatures bearing on events data
have their own unique notation and specialized mathematical concepts—both of which do
not exist in other areas of statistics that may be more familiar to political scientists. Thus,

1A similar point is made by Petersen (1991) about events data and by Freeman (1989) in the context of aggregation
at different levels of continuous variables in time series analysis.
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in the sections below, we begin by introducing a notational scheme for the three types of
data—binary, count, and duration.

We also examine two types of processes that might generate the various forms of data.
The first, and the simpler, assumes independence of events and results in the familiar
exponential model of event durations, the poisson model of counts, and a model for binary
data that we develop here. The second data generation process applies to events that are
time dependent. We derive statistical models for analyzing them. A key point throughout
is that the theoretical data generation process is separate from the unit of analysis in which
the data happen to be recorded. In theory, one can estimate the same parameters in all three
types of data, although some forms of data provide more information about the quantities
of interest.

This is more than just a theological point. We view this paper as part of a larger agenda to
which we hope political methodologists will devote some of their attention. For simple linear
models and continuous individual-level variables, scholars have identified the assumptions
necessary to infer from aggregate data to individual-level relationships (for a review see
Stoker 1993). Progress has also been made with the ecological inference problem, which
involves filling in the cells of a set of cross-tabulations from the observed marginals in each
(King 1997). Unfortunately, very little work has been done attempting to resolve aggregation
problems for event processes and other types of sophisticated statistical models. A handful
of articles have addressed components of the larger problem.2 However, the broader subject
does not appear to have been addressed more generally.

To deal with aggregation bias appropriately in these models, two steps are necessary.
First should come models, such as those provided in this paper, which at least under certain
specific assumptions are able to estimate the same parameters no matter what level of
analysis or type of aggregation produced the available data. Only by having at our disposal
a set of models such as these for each theoretical process of interest will the field be able
to move forward to the ultimate goal of resolving aggregation bias problems wherever they
may occur. Developing models that can avoid aggregation bias in events process models, and
in other areas, will require a second difficult set of developments. But these developments
can only occur after, or at least concommitant with, the first. Thus, this paper is only directed
toward the first step in this research program. To be successful, to produce truly practical
results, political methodologists will need to work on each of these issues, and much remains
to be done.

This paper does not review the extensive statistical literature on event models. This
literature is quite rich and we touch on but a small portion of the parametric models for
these data.3 We illustrate our theoretical results with simulated data by appeal to a spe-
cific empirical literature which motivated our substantive and methodological research
in this area. The use of simulated data allows us to isolate the various types of error
that might appear in real data—thus allowing us to focus solely on the theoretical is-
sues presented in this paper. Most of the models introduced here aid our methodological
purposes; more research will be necessary to determine to what data they would best be
applied.

2For example, D’Agostino et al. (1990) analyze the relationship between pooled logistic regression and dependent
cox regression. Aalen (1992) studies the application of a compound poisson model to survival analysis. Dean
and Balshaw (1997) examine efficiency issues in analyzing event counts versus event times.

3See Box-Steffensmeier and Jones (1997) for a very nice review of event history models in political science;
see Allison (1984), Tuma and Hannan (1984), Gertsbakh (1989), Lancaster (1990), and Cameron and Trivedi
(1998) for additional summaries of the literature, analyses, and guidance in model selection.
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Section 2 introduces a general notational scheme and a running example used throughout
this paper. In Section 3, we show how results may be compared across time-independent
models, proceeding then in Section 4 to do the same for a set of time-dependent models.
Section 5 concludes.

2 Transfers of Governmental Power as a Renewal Process

The general class of “counting” processes addressed in this paper fall under the rubric of
renewal processes. A renewal process is simply an event process where the arrival times (or
durations) between events are independent and identically distributed, according to some
arbitrary distribution (see, e.g., Ross 1993, p. 303). Many examples of renewal processes
exist in the literature in political science, such as the occurrence of war or a coup. We
use transfers of governmental power as our running example since this is one of the most
active areas of substantive research in political science with all three types of data and the
methodological questions presently at issue.4

We begin by describing the data which constitute our information about transfers of
governmental power. Figure 1 portrays the basic events and defines some symbols that
will be helpful in discussing various models of these processes. A time line is the key part
of this figure, with countries separated by double vertical lines and the five transfers of
governmental power indicated by dots on the line. The time line is indexed by c for country

Fig. 1 Units of analysis and types of dependent variables for transitions of power. Indices corre-
sponding to time, government, and country units of analysis are denoted t , g, and c, respectively.
Binary, duration, and count dependent variables are denoted ycgt , ycg , and yc, respectively.

4The transfers—whether constitutional or nonconstitutional, democratic or nondemocratic, or electoral or
personal—are the basic events of interest. Earlier controversies are reviewed and synthesized by King et al.
(1990) and Alt and King (1994), both of whom estimate models of the survival times of governments. Warwick
(1994) adds further explanatory variables (ideological diversity, economic change) and argues for a different
functional form. Lupia and Strom (1995) provide theoretical arguments for the latter, and Diermeier and Steven-
son (1998) derive a stochastic estimator and test the theory empirically, supporting many of the earlier results.
Gasiorowski (1995), Feng and Zak (1999), and Swaminathan (1999) apply similar methods to the occurrence
of a regime change.
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(c = 1, . . . , C), g for a government within country c (g = 1, . . . , Gc), and t for a time unit
(such as a month or year) within a government g and country c (t = 1, . . . , Tcg). Thus, the
time unit index t is incremented within governments and is restarted with each transfer of
power.

This basic setup may be coded as binary, duration, or count data. We label a variable
representing binary data as ycgt , where

ycgt =
{

1 if a transfer of power occurs during t
0 otherwise

(1)

This coding was used by Londregan and Poole (1990), for example. It is the most disaggre-
gated form of data usually used and enables one to model explicitly both the cross-national
and time series processes underlying the data. The former is useful for comparative pur-
poses, and the latter provides multiple instances to study within each country. However,
some information is nevertheless lost in the coding process. In particular, in going from a
representation like that in Fig. 1 to ycgt , one loses the information about when a transfer of
power occurs during the time unit t . If t is a year or longer, this information loss can be
substantial, adding considerable measurement error to the variable. On the other hand, if t
is as short as a day, the information lost may be nonexistent or irrelevant.

A list of all the durations between transfers of governmental power is a different way
of coding these events. Duration data may be coded as a discrete or continuous variable.
As a discrete variable, one merely counts the number of time units (e.g., months) between
events. We denote this variable ycg and calculate it as a deterministic function of the binary
representation, simply summing over time within durations:5

ycg =
Tcg∑
t=1

1 = Tcg (2)

The only information lost by this coding of the transfers is the precision of when within
each time unit a transition occurs. Thus, at worst, discrete durations include some grouping
error.

One can also code a continuous version of this variable, which is the exact length of time
that passes between transfers of governmental power. Virtually all durations used in social
science data analyses are really discrete, since we never code more precisely than days and
rarely finer than months. In practice, the difference in the models designed especially for
the discrete and continuous versions of these variables does not produce empirical results
that differ sufficiently to justify presenting both versions. We therefore focus on the discrete
versions.

Finally, these data are sometimes coded as counts—the number of government transfers
that occur in each country or in each country during some fixed period of time. Counts are
deterministic versions of the binary and duration data. We denote counts of transfers yc and

5While the individual binary-level time period may be of any length—as long as only one event may occur in
each period—it is usually assumed that the binary period can be represented as a single unit of time—e.g., 1 min,
1 day, 1 month, or 1 year. We use this unitary conception of the binary period throughout this paper.
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calculate them as follows:

yc =
Gc∑

g=1

Tcg∑
t=1

ycgt =
Gc∑

g=1

1 = Gc (3)

This format may be useful for the study of variation across countries in the stability of their
governments. Considerable information is lost in the count version of these data, including
any variation in the duration of governments over time and any time series process in that
variation. However, aggregating to the country level in this way also cancels out a lot of
measurement error.

To get an intuitive sense of this problem, suppose we make one mistake by omitting one
transfer of governmental power. The binary variable will have a mistake in one observation
(where the zero in that cell should be a one). The duration coding will have one fewer
observation, and the observation just before the transfer that was omitted will be longer
than it should be. Each of these can cause problems with any statistical analysis. However,
in the count variable, missing only one transfer may not have much of an effect, especially
if a country has a large number of transfers. Of course, the critical point here is only that
coding errors affect the different levels of aggregation in different ways; depending on
the exact process generating the underlying events, measurement error can have different
effects at the different levels of statistical models.

We have addressed the dependent variables for all three types of data, but what of the
independent variables? For example, it is plausible that a theory of governmental transition
of power would relate government transition to specific characteristics of each state, of
each government, and of other factors that vary more frequently over time (e.g., inflation
or unemployment). Here, we denote the resolution of the explanatory variables using the
same notation as for the dependent variables: xcgt for time-varying data, xcg for data that
varies between governments but not over the binary-level time periods, and xc for data that
varies between countries but not over governments or binary-level time periods.6 It is the
parameter estimates for these explanatory variables that we seek to compare across the
three models. In the rest of this paper, we show how to estimate the same parameters using
the three forms of the transfer of power data.

3 Analyzing Time-Independent Renewal Processes

The simplest and most commonly known renewal process is the poisson process—where the
interarrival times are independent and identically exponentially distributed. Here, after one
takes into account the explanatory variables, transfers of governmental power are “Markov
independent” or “memoryless”—i.e., the probability of a transition of power in any period
after time t is always the same, conditional on everything that happens up to time t , but not
on t itself. (We also call this “conditional independence” to emphasize that this statement
is only true after taking into account the effects of the explanatory variables.)

Violations of Markov independence would occur if, after taking into account the ex-
planatory variables, the probability of a transfer of power increased over time. For example,
Bienen and van de Walle (1991) propose a model inconsistent with this assumption since

6By definition, xcgt may include government and country-varying data and xcg may include country-varying data.
However, a higher level of data may not include a finer resolution of data, except insofar as the finer data have
been aggregated over the higher level’s periods.
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they believe that after a leader has been in office for several years, the probability that he or
she will be removed drops. Markov independence is therefore a key substantive assumption
that should not be taken lightly. We use it as a starting point here because it is so transparent
and because it is the basis for (or a special case of) a number of other more complicated
models. Section 4 provides a generalization that allows us to drop the assumption of Markov
independence.

3.1 Duration Data

We start with the duration model for two reasons. First and foremost, renewal processes are
often defined in terms of (or derived from) the assumed distribution of interarrival times.
Second, discussion of the hazard rate highlights the time-independent nature of the renewal
process.

To begin, we define the expected duration of a government as E(Ycg) = 1/λ. This ex-
pected duration is also related to the hazard rate, h(·), which is the rate of event occurrence—
e.g., the rate at which governments fall (or transfers of power occur).7 If we are modeling
discrete durations, then the hazard rate is just the probability of an event occurring in a
period, conditional on it not having occurred earlier. For continuous durations, the hazard
rate is a conditional probability density. Once one specifies the hazard rate, the probability
density may be derived directly from it by this straightforward rule from probability theory
(see, e.g., Kalbfleisch and Prentice 1980):

f (y | λ) = h(y) exp

[
−

∫ y

0
h(u) du

]
(4)

The expected duration and the hazard rate are related by the following simple formula
in the case of conditional time independence:

h(ycg) = 1/E(Ycg) = λ (5)

The constant hazard rate implies that the probability density for the duration of governments
is

f (ycg | λ) = λe−λycg (6)

which is the well-known exponential probability distribution. Since the hazard of a transfer
occurring does not vary with the time since the government formed in Eq. (5), we have
precisely the condition of Markov independence. This is, therefore, also the assumption
required to derive the exponential distribution.

To include explanatory variables in this exponential duration model, one merely lets
the expected duration vary as a function of some explanatory variables.8 As is common
practice, we specify λ using an exponential link function to keep the expected duration (and

7The terms “hazard rate,” “failure rate,” and “arrival rate” are generally used interchangeably.
8Although time-varying covariates are increasingly used in duration analyses, for mathematical convenience we
do not consider them here. Incorporating time-varying covariates would certainly be an interesting extension.
For more on the subject and related analyses, see Box-Steffensmeier and Jones (1997), and Bennett and Stam
(1996).
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thus the hazard rate) positive:

λ = excgβ (7)

Thus, each observation is described by an exponential distribution, and the parameter λ

is then assumed to vary across the different governments and countries as an exponential
function of a vector of explanatory variables, xcg , and a vector of effect parameters, β.

To form the likelihood function, we assume that the durations of successive governments
in the same and in different countries are independent:

L(β | ycg) =
∏

c

∏
g

λe−λycg

=
∏

c

∏
g

excgβe−exp(xcgβ)ycg (8)

which, except for a slight change in notation, is precisely what was used by King et al.
(1990).

3.2 Count Data

So far, we have stated a general renewal process model for transfers of power and provided
a way of estimating the effect parameters β with duration (ycg) data, assuming that the
durations are exponentially distributed. We now aggregate to the level of a count of the
number of transfers in a country, yc, and show how the same effect parameters may be
estimated using a count model.

It is well known that the renewal process with exponentially distributed arrival times
yields a poisson distribution for the counts (see Ross, 1993, p. 214; Feller, 1968, Chap. 17;
King, 1989, p. 50). The poisson distribution is given by

f (yc | λ, Tc) = e−λTc (λTc)yc

yc!
(9)

where λ is the rate of event occurrence—just as in the exponential distribution—and Tc

is the length of time over which we are counting events in country c (e.g., the number of
years since independence). The expected number of events (i.e., government transitions)
for country c is then E[Yc] = λTc.

The fact that the rate of event occurrence for the poisson is the same as that for the
exponential allows us to estimate the same parameters with the count model that we did
with the duration model. As with the duration model, we allow the rate of event occurrence,
λ, to vary as a function of explanatory variables. We set λ = exp(xcβ), where xc is a vector
of explanatory variables that vary only between countries. The likelihood function for the
count model is constructed by taking the product of Eq. (9) over countries:

L(β | yc) =
∏

c

e−λTc (λTc)yc

yc!

=
∏

c

e−exp(xcβ)Tc (excβ Tc)yc

yc!
(10)
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3.3 Disaggregated and “Binary” Data

Suppose we wished to disaggregate count or duration data into a finer-grained data—for
example, by dividing the count intervals or durations into smaller time slices—or suppose
such data were made available to us. Disaggregated data can take three forms:

1. data where counts greater than one still exist for some observations,

2. data where counts of no more than one exist for any observation, and

3. data where the counts are censored at one for any observation.

The first is simply a refined version of count data. Therefore, it would be estimated using
the same count model given in the previous section. The second and third types of data are
generally referred to as binary data, since the data take on only values of zero and one—
i.e., an event occurs or an event does not occur. However, they have different substantive
interpretations. Data of the second type still represent counts where the disaggregation just
happens to result in binary data. Here again, the count model presented above is appropriate
even though this data takes a binary form. In contrast, the third type of data is transformed
by censoring it—the data now indicate not the true number of governments that have fallen
in that period but whether no governments have fallen or at least one government has fallen.
Therefore, to obtain effects parameters that have the same interpretation as the duration and
count models, our binary model must account for the effects of this censoring.

However, we would not want to use a logit or probit model, without regard to the time-
independent renewal process above. At the very least, when we created the disaggregated
data set from the duration data, a good first step would be to try to estimate the same β

parameters in the new data set. To do that, we first need to derive a disaggregated-level model
in which the effect parameters have the same interpretation as in the duration and count
models. The appropriate model for ycgt , given the above assumption of time independence
and the censoring, is a binary-censored poisson model, which we now derive.

Let y∗
cgt be the true number of governments that have fallen in period t . The binary-

censored data are then obtained by transforming y∗
cgt into

ycgt =
{

0 if y∗
cgt = 0

1 if y∗
cgt > 0

The distribution of the data ycgt is then given by

Pr[Ycgt = ycgt ] =
{

Pr[Y ∗
cgt = 0] if ycgt = 0

Pr[Y ∗
cgt > 0] if ycgt = 1

Since y∗
cgt is distributed poisson with mean λ, this becomes, for some interval �t ,

Pr[Ycgt = 0] = e−λ�t

Pr[Ycgt = 1] = 1 − e−λ�t (11)

or

f (ycgt | λ) = (
1 − e−λ�t

)ycgt
(
e−λ�t

)1−ycgt (12)
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Equation (12) provides the relationship between the probability of an event occurring and
the rate of event occurrence λ. It, therefore, allows us to estimate the same effects parameters
that we can with the duration and count models.

As in the duration and count models, we allow the rate of event occurrence to vary
with a set of explanatory variables, setting λ = exp(xcgtβ). Assuming independence over
countries, over governments, and now also over time, we form the binary likelihood function
by taking the product of Eq. (12) over countries c, governments g, and time t :9

L(β | ycgt ) =
∏

c

∏
g

∏
t

(
1 − e−λ�t

)ycgt
(
e−λ�t

)1−ycgt

=
∏

c

∏
g

∏
t

(
1 − e− exp(xcgt β)�t

)ycgt
(
e− exp(xcgt β)�t

)1−ycgt (13)

3.4 An Example Using Simulated Time-Independent Data

To demonstrate that the exponential, poisson, and binary-censored poisson models estimate
the same effect parameters from the duration, count, and binary-censored data, respectively,
we conducted a Monte Carlo analysis, letting the arrival rate λ vary with a country-level
covariate, or λ = exp(β0 + β1 Xc). The true values of the effect parameters were set to
β0 = −3 and β1 = 2.

A total of 200 simulations was run to obtain distributions of the estimated effects pa-
rameters. Each simulation consisted of two parts: generating the data and running the
maximum-likelihood regressions using the above models. In generating the data, for each
of 200 countries, Xc was randomly distributed N (1, 0.5) and durations of governments
generated by exponentially distributed random draws, given λ, up to a total of 10 time units.
Counts were obtained for each country and the durations of each country were divided into
unit lengths and the counts censored to obtain the binary data. The duration, count, and
binary data were saved to data sets and the regressions were run to obtain the estimated
parameters β̂0 and β̂1.

Figures 2a and b show the resulting distributions of the Monte Carlo runs. Figure 2a
shows that the exponential, poisson, and binary-censored poisson models all have similar
distributions for the estimate of the constant term β̂0—in fact, the distributions of the ex-
ponential and poisson estimates appear to be identical when there is only a country-level
covariate. Note also that the distributions are approximately normally distributed and cen-
tered around the true value β0 = −3.

Figure 2b shows much the same thing with respect to β̂1. The exponential, poisson, and
binary-censored poisson models all have similar distributions for the estimate of the country-
level covariate’s coefficient β̂1. Again, the distributions of the exponential and poisson
estimates appear to be identical when there is only a country-level covariate. Similarly the
distributions are approximately normally distributed and centered around the true value
β1 = 2.

Finally, since the logit model is so commonly used in the analysis of binary data, we
compare it to the binary-censored poisson model. Unfortunately, the effect parameters of

9This model, as far as we know, is new. However, King (1989, pp. 225–226) uses similar notation in developing
a hurdle poisson model, and Cameron and Trivedi (1998, pp. 121–122) address censored count models more
generally.
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(a) β̂0 (b) β̂1

Fig. 2 Time-independent data: densities of β̂0 and β̂1 from the Monte Carlo analysis. The figures
show the densities of β̂0 and β̂1 from regressions using the (a) exponential duration model (dotted
line), (b) poisson model (dashed line), and (c) binary censored-poisson model (solid line). The true
values are β0 = −3 and β1 = 2. All three models yield similar, approximately normal, distributions
for the parameter estimates, centered around the true value. In fact, the exponential and poisson
densities are identical. N = 200 for each density.

the logit are not comparable to those of the binary-censored poisson or, by extension, to
those of the duration or poisson models. However, we can compare the two models in their
predictions that at least one event will occur.

To do this, we generated data as before, letting λ = exp(−3 + 2Xc), and ran a binary-
censored poisson regression and a logit regression. Using the estimates obtained from these,
we then plotted for each model the predicted probability of at least one event occurring
over a sample of the simulated data. Figure 3 shows that the logit model predicts nearly
identically to the binary-censored poisson model.10 However, although political scientists
may obtain nearly correct estimates using a logit model, we nevertheless believe that it is
more appropriate to use a model derived from first principles. Doing so forces us to think
theoretically about the data generating process. It also allows us to relate the parameter
estimates directly (substantively and quantitatively) to the duration and count models of the
same underlying data generation process.

4 Analyzing Time-Dependent Renewal Processes

The poisson process of Section 3 is a particular type of renewal process. It assumes not only
that the durations of governments are independent and identically distributed, conditional
on the explanatory variables, but that they are distributed exponentially. That is, after taking
into account the explanatory variables and all events that have occurred up to time t , the
probability of a new transfer of power remains the same in every period—i.e., the hazard
rate is constant. Not surprisingly, there is considerable reason to believe that conditional
time independence is not a reasonable assumption in many cases (e.g., Box-Steffensmeier

10Comparing plots of the logit and hurdle probabilities, King notes that the models are, for the most part, similar,
with the exceptions that the logit is symmetric, while the hurdle probability [equivalent to Eq. (11)] is not, and
the two diverge near the top—i.e., as the probability approaches one (King, 1989, p. 227).
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Fig. 3 Time-independent data (β0 = −3, β1 = 2): probability of event occurrence for the censored-
poisson and logit models. The figure shows the predicted censored-poisson and logit probabilities
of an event occurring for a sample of six countries over 10 time subintervals in each country. Each
country is denoted by the number on the x axis, with its 10 time subintervals following. The probability
of an event occurrence is calculated for each subinterval using the country-varying data Xc and the
censored-poisson and logit regression estimates obtained from the larger data set. The figure shows
that for time-independent data, the logit model predicts similarly to the censored-poisson model.
Note, however, that, unlike the censored-poisson estimates, the logit estimates will not be directly
comparable to the exponential and poisson estimates.

and Jones 1997; Beck et al. 1998). For example, Bienen and van de Walle (1991) argue that
the durability of world leaders seem to follow a declining hazard rate. If a leader makes it
past the first few years, the probability of losing power actually declines with time. Perhaps
leaders that are more skillful are still in power later on, or, perhaps, only those countries with
a custom of long leadership durations have leaders in power after 5 or 6 years. Whatever
the explanation, a model that allows for increasing or decreasing hazard rates is essential,
a task to which we now turn.11

Ideally, we would like a duration distribution that not only incorporates an increasing,
decreasing, or nonmonotonic hazard rate, but also contains the exponential distribution
as a special case. There are actually a number of duration distributions from which one
might choose—e.g., the gamma, weibull, and normal distributions to name a few. The

11It is important to note, however, that temporal dependence in data can occur for one of two reasons: unobserved
heterogeneity or explicit dependence in the renewal process itself. Moreover, the theorized source of the temporal
dependence may lead one to select a particular duration model over another. In this paper, we assume that the
temporal dependence enters through the renewal process. We do not consider unobserved heterogeneity or frailty
models.
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purpose of this paper is not to identify one distribution that researchers should use over
others—which should be problem-specific and guided by theory—but rather to show how a
time-dependent renewal process can be modeled and how the same effect parameters may
be estimated from duration, count, and disaggregated data. For guidance concerning which
distribution to choose—or whether to use a parameteric vs nonparametric method—we
refer the reader to the references cited in the Introduction.

4.1 Duration Data

Suppose we believed that the durations between transfers of power were a result of one
or more “shocks” to the governments, as, for example, in the “coalition of minorities”
hypothesis. That is, a leader offends someone in the coalition every so often, and the coalition
falls when say k coalition members have been offended. Or suppose that a government can
withstand only k “scandals” before it falls. If we assume that the underlying shocks to the
government are independent and exponentially distributed, then the total duration between
transfers of power is gamma distributed.

As the above implies, the gamma and exponential distributions are closely related. A
duration random variable Ycg which is the sum of k independent exponentially distributed
random variables (e.g., durations) with arrival rate λ is gamma distributed with parameters
λ and k, where λ > 0 and k ≥ 1. The gamma probability density is given by

f (ycg | λcg, k) = yk−1
cg

	(k)
λke−λycg (14)

For k > 1, the failure rate is time dependent—in fact, it is an increasing failure rate. It is
straightforward to see that if k = 1, then the gamma distribution reduces to the exponential
distribution and the assumption of time independence, making this assumption a testable
hypothesis.

Under this model, the expected duration is E(Ycg) = k/λ. We again let λ = exp(βxcg)
vary as a function of explanatory variables. To estimate this model, we assume that the
duration of successive governments are independent. This enables us to form the likelihood
by taking the product of the densities over the countries and governments:

L(λ, k | ycg) =
∏

c

∏
g

yk−1
cg

	(k)
λke−λycg

=
∏

c

∏
g

yk−1
cg

	(k)
e(xcgβ)ke−exp(xcgβ)ycg (15)

Although k is usually considered an integer, the duration model allows for noninteger k and
for testing whether the process has a constant failure rate (k = 1) or an increasing failure rate
(k > 1). However, it does not allow one to distinguish whether the failure rate is constant
versus decreasing.

4.2 Count Data

We now aggregate to the level of counts of transfers within countries, yc, and demonstrate
how to estimate the same effect parameters—in terms of both β and k—as in the duration
model. The goal is to derive a count model that is consistent with a renewal process based
on gamma-distributed durations. We refer to such a model as a “gamma count” model (see
also Winkelmann 1995).
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In deriving the gamma count model, we are interested in the number of gamma-distributed
events that occur within a country’s observation period Tc. Recall that a gamma-distributed
random variable with parameter λ is equivalent to the sum of k exponentially distribu-
ted random variables with arrival rate λ. It simplifies matters if we consider the gamma
events as sequences of independent poisson events: for every kth poisson event (e.g., offense
against a coalition member or appearance of a government scandal), a gamma event occurs
(e.g., transition of power). For example, assuming k = 3, zero gamma events implies that
zero, one, or two poisson events occurred. Therefore, when we ask, What is the probability
of zero gamma events in period Tc (given k = 3)? we can equivalently ask, What is the
probability of zero, one, or two poisson events in Tc? Letting f p(·) be the poisson density,
we would more generally write (see also Ross 1993, p. 340; Winkelmann 1995, p. 469).

fγ c(yc | λ, k, Tc) = f p(yck | λ, Tc) + · · · + f p[(yc + 1)k − 1 | λ, Tc]

=
(yc+1)k−1∑

i=yck

f p(i | λ, Tc)

=
(yc+1)k−1∑

i=yck

e−λTc
(λTc)i

i!
(16)

For nonnegative integer a, we can write the complement of the incomplete gamma
function as

Q(a, x) =
a−1∑
i=0

e−x xi

i!
= 	(a, x)

	(a)
(17)

where 	(a) = ∫ ∞
0 e−t ta−1 dt is the standard gamma function and 	(a, x) = ∫ ∞

x e−t ta−1 dt.
Using the incomplete gamma function, Eq. (16) becomes

fγ c(yc | λ, k, Tc) = Q[(y + 1)k, λTc] − Q[yk, λTc] (18)

The fact that we can express the gamma count density in terms of the same parameters
as the gamma (duration) density allows us to estimate the same parameters from the count
data that we can from duration data (with the exception, of course, of government-level
covariates). As with the duration model, we allow λ to vary as an exponential function of
explanatory variables xc. The likelihood function for the count model is constructed by
taking the product of Eq. (18) over all countries:

L(β, k | yc) =
∏

c

{
Q[(y + 1)k, λTc] − Q[yk, λTc]

}
=

∏
c

{
Q[(y + 1)k, excβ Tc] − Q[yk, excβ Tc]

}
(19)

4.3 Disaggregated Data

We now come to the final task of this section—that of developing a time-dependent model for
disaggregated (or less aggregated) data that allows us to estimate the same effect parameters
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as in the duration and country-level “aggregate” count models. To do this, we must provide
a model for ycgt derived from the gamma model of ycg above. However, where in Section 3
we derived a binary model, here we instead derive a refined count model—one that is
disaggregated over a country’s time series. We refer to this model as the disaggregated
gamma count model.

Modeling the disaggregated count data deserve a special section because of the problems
induced by aggregation—or, rather disaggregation—in time-dependent data. Recall that for
the poisson model, the arrival rate remains constant over time slices of equal size, no matter
where those slices are sampled from on the time line. In contrast, for time-dependent data,
where the time slice starts (and ends) matters, because the failure rate will be larger later
in the life of a government. This was actually not a problem for the count model of our
previous section, since we looked at the number of government transfers that occurred in
the period (0, Tc), implying that we knew when the start of the first renewal was and that
we did not have to take into account the disaggregation effects of dividing the (0, Tc) period
into some number of artificial time slices.

Before proceeding, we first define some additional notation, which corresponds to the
time line in Fig. 4. Let T be the total time of a country up to the current observation, t
the duration of a government within that country up to the current observation, and s the
length of the time “slices.” We sometimes want to refer to time intervals in a more general
way—i.e., allowing for time slices s 
= 1—so let ycg(t−s,t) be the number of gamma counts
in period (t − s, t) of government g for country c. The number of events in time intervals
starting at t = 0 can equivalently be written as ycg(0,t) or ycgt . However, we tend to use the
latter. Also, let N be the cumulative number of gamma counts for a country up to the prior
nonzero count relative to the current observation. Finally, let r be the unobserved length
into the previous nonzero count interval, where the last gamma event actually occurred.

To derive the disaggregated gamma count distribution, we must account for two issues
that arise due to the artificial divisions. First, we now have to deal with time slices that may
exist in the “middle” of a government’s duration. Not only does the time dependence of
the failure rate come into play here, but also we must condition on past ycgt . For example,
if no gamma events occurs in two time periods and then ycg3 gamma events occur in the
third period, then in calculating ycg3, we must condition on the fact that not enough poisson
events occurred during periods 1 and 2 to have caused a gamma event in either, but that
there may have been poisson events in periods 1 and 2 which contributed to a gamma event
in period three.

Fig. 4 Time line and notation for disaggregated gamma count model. The following notation is
relative to the last period denoted by the down-arrow. t is the total time of a country up to the current
observation. t is the duration of a government within that country up to the current observation. s is
the length of the time “slices.” ycgt−1 represents the last nonzero gamma count prior to the government
of the current observation. N is the cumulative number of gamma counts for a country up to the prior
nonzero count relative to the current observation. Finally, r is the unobserved length into the previous
nonzero count interval, where the last gamma event actually occurred.



P1: FIC

WV005A-02 October 12, 2000 17:57

36 James E. Alt et al.

The second issue is that in any period where one or more renewal occurs, we do not
know where exactly the last renewal occurred in that period. Therefore, in calculating the
probability of ycgt events over some period of length t , we must average over the probabilities
that the last renewal actually started r back into the previous interval.

We leave the derivation of the disaggregated gamma count distribution for the Appendix
and simply state it as

f ∗
dγ c[ycg(t−s,t) | ycg(t−s) = 0, λ, k] =

∫ s

0




λe−λ(T −t−r ) [λ(T − t − r )]Nk−1

(Nk − 1)!
Q[Nk, λ(T − t − s)] − Q[Nk, λ(T − t)]

×
∑k−1

i=0 e−λ(t−s+r ) [λ(t − s +r )]i

i!
{Q[(ycgt +1)k − i, λs]− Q[ycgt k − i, λs] }

Q[k, λ(t − s + r )]


 dr (20)

Note that all of the variables required to calculate f ∗
dγ c are observable from the count data.

Moreover, we now have an expression in the same terms as our duration and country-
aggregated count model.

To form the likelihood, assume independence between gamma events having conditioned
on the past, let λ = exp(xcβ), and take the product of the probabilities for each observation.
In general, maximum-likelihood estimates for β and k would be obtained by maximizing
the log of the likelihood equation with respect to β and k. However, one small problem
remains. Traditional numerical search methods depend on continuous parameters. Here,
k can only take on integer values since it is in the limit of the summation. We suggest a
modified approach, where the user runs multiple maximum-likelihood regressions using
Eq. (27) but holds k constant at a different integer each time. The regression that yields
the highest log-likelihood value determines the maximum-likelihood estimates of k and
β. If, using this method, the maximum-likelihood estimate of k is 1, then the user must
examine whether the process is really time independent or if it actually has a decreasing
failure rate—which would need to be modeled using a renewal model based on a different
duration distribution.

4.4 An Example Using Simulated Time-Dependent Data

The log-likelihood equations for the gamma renewal models (especially the count models)
are not trivial. In this section, we demonstrate (1) that the gamma, (country-aggregated)
gamma count, and disaggregated gamma count models can actually be used to estimate
effect parameters and (2) that they estimate the same effect parameters from the duration,
count, and time-series disaggregated data, respectively. As in Section 3, we have conducted
a Monte Carlo analysis, letting the arrival rate λ vary with a country-level covariate, or
λ = exp(β0 + β1 Xc). The true values of the parameters were set to β0 = −3, β1 = 2, and
k = 3. The basic procedure for simulating the data and running the regressions is identical
to that outlined in Section 3, except that we generate gamma-distributed durations and the
regressions use the gamma-based models just derived. Additionally, instead of unit length
time periods for the binary model, we used s = 1

2 .
Figures 5a and b show the resulting distributions of the Monte Carlo runs. Figure 5a

shows that the gamma duration, gamma count, and disaggregated gamma count models
all have similar distributions for the estimate of the constant term β̂0. Note also that the
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(a) β̂0 (b) β̂1

Fig. 5 Time-dependent data: densities of β̂0 and β̂1 from Monte Carlo analysis. The figures show
the densities of β̂0 and β̂1 from regressions using the (a) gamma duration model (dotted line), (b)
aggregate gamma count model (dashed line), and (c) disaggregated gamma count model (solid line).
All three models yield similar, approximately normal, distributions for β̂0 and β̂, centered around the
true values β0 = −3 and β1 = 2. N = 200 for each density.

distributions are approximately normally distributed and centered around the true value
β0 = −3.

Figure 5b shows much the same thing with respect to β̂1. The gamma duration, gamma
count, and disaggregated gamma count models all have similar distributions for the estimate
of the country-level covariate’s coefficient β̂1. The distributions are approximately normally
distributed and centered around the true value β1 = 2.

Finally, as in the time-independent case, we now compare the disaggregated gamma
count model to commonly used specifications of logit. The analyst who believes that the
data reflect some form of temporal dependence is unlikely to choose a time-independent
logit model, like that in Section 3, where the probability of an event remains constant over
time. An early suggestion of Beck (1998) is to use logit, but with time as a regressor,

y∗ = β0 + β1 Xc + βt t + ε (21)

where t is operationalized as the duration up to the current observation. This allows the
probability of an event occurrence to be an increasing or decreasing function of the time since
the last event. We refer to this simply as “logit with time.” A specification recommended
by Beck et al. (1998) is to include time dummies in the logit regression

y∗ = β0 + β1 Xc + δ2 D2 + δ3 D3 + · · · + ε (22)

Here, the dummies Dt are constructed for each of the discrete duration values realized in
the data and then included as regressors in the logit model. This is a more flexible approach
than “logit with time,” as it allows for the way in which time affects the probability of event
occurrence to change over time. In general, however, it requires that many more parameters
be estimated. We refer to this model as “logit with time dummies.”12

12Beck et al. (1998) propose that a cubic spline approach may be a better method than the time dummies, although
more difficult to implement. We do not consider the cubic spline method here.



P1: FIC

WV005A-02 October 12, 2000 17:57

38 James E. Alt et al.

Fig. 6 Time-dependent data (β0 = −3, β1 = 2): probability of event occurrence for the disaggregated
gamma count and logit models. The graph shows the predicted disaggregated gamma count and logit
probabilities of at least one event occurring for a sample of six countries over 20 time intervals in each
country. Each country is denoted by the number on the x axis, with its 20 time subintervals following.
As the graph displays, both logit models do fairly well in capturing the temporal effects, although
there are cases where they over-or underpredict by a wide margin.

As we noted in Section 3, the effect parameters of logit models are not comparable to
those of the disaggregated gamma count model or, by extension, to those of the gamma
or gamma count models. However, we can compare the logit and gamma models in their
predictions that at least one event will occur. Following a similar procedure to the one
outlined in Section 3.4, we assumed λ = exp(−3 + 2Xc) and k = 3, generated data, ran
disaggregated gamma count and logit regressions, and used the estimates to plot for each
model the predicted probability of at least one event occurring over a sample of the simulated
data. Figure 6 displays the predicted probabilities for each model for six countries over 20
time periods of s = 1

2 .
Logit with time and logit with time dummies both allow for increasing failure rates. As

Fig. 6 indicates, each tracks the gamma probabilities fairly well for the examples displayed
here. However, there are cases where they diverge from the gamma probabilities. For ex-
ample, logit with time greatly overpredicts for the first country by 0.5 and for the third
country by 0.3. It also appears that logit with time dummies generally tracks the gamma
probabilities closer than does logit with time. Still, Fig. 6 shows that in the first country
logit with time dummies is off by over 0.3 by the end of the first government. Moreover,
because the predicted probabilities depend on the dummy estimates, inaccurate estimates
of the dummies lead to inaccurate predicted probabilities. Take the first government of the
first country as an example. Logit with time dummies would lead us to believe that, after
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Fig. 7 Extent to which logit will diverge from the gamma process. The graph displays the predicted
probabilities for the disaggregated gamma count (solid line), logit with time (dashed line), and logit
with time dummies (dotted line) models. As the graph shows, the logit models do not always predict
the probabilities accurately. In general, they err the most in predicting large durations when Xc is
small. Logit with time dummies errs less than logit with time.

climbing in probability, the probability of government failure suddenly falls.13 A natural
question raised by this concerns when we should expect the logit with time and logit with
time dummies models to diverge from the gamma data generating process.

To examine this question, we used Monte Carlo simulations (based on the data generation
process described above) to estimate the average values of the parameter estimates in the
logit with time and in the logit with time dummies models.14 For each of these, we then
plotted the gamma and logit probabilities of at least one event occurring. Figure 7 displays
the predicted probabilities. Four hypothetical governments are shown, and each of the
governments has 20 time intervals. The governments differ only in the values of Xc.

In general, Fig. 7 indicates (1) that both the logit with time and the logit with time
dummies models are better at predicting shorter durations rather than longer durations and

13Beck et al. (1998) note that accurate estimation of the dummies requires a large sample size. In the Monte Carlo
analysis here, the sample size was N = 4000. Most political scientists would consider this a fairly large sample.
Unfortunately, the literature is not yet clear on just how large a sample is needed for accurate dummy estimation.

14For the logit with time model, N = 1200 iterations resulted in mean parameter estimates of β̂0 = −9.73,
β̂1 = 4.38, and β̂ t = .63, where β̂ t is the coefficient associated with the time regressor. For the logit with
time dummies model, N = 700 iterations resulted in mean parameter estimates of β̂0 = −10.27, β̂1 = 4.69,
δ̂2 = .83, δ̂3 = 1.22, δ̂4 = 1.48, δ̂5 = 1.65, δ̂6 = 1.79, δ̂7 = 1.94, δ̂8 = 1.97, δ̂9 = 2.07, δ̂10 = 1.98,
δ̂11 = 1.93, δ̂12 = 1.92, δ̂13 = 2.18, δ̂14 = 2.33, δ̂15 = 2.59, δ̂16 = 2.84, δ̂17 = 2.53, δ̂18 = 4.81, δ̂19 = 4.41,
and δ̂20 = 5.76, where δ̂t is the estimate associated with the dummy for period t .
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(2) that the logit with time dummies model is closer to the gamma than is logit with time.
For example, note in the first government (Xc = 1.5) that logit with time dummies is very
close to the gamma model in periods 15 and 16, but logit with time errs by almost 0.6.
However, in the last few periods, logit with time dummies errs by almost as much. The
difference between the logit with time and the logit with time dummies models is not quite
as stark for the other values of Xc.

The implications of these results are somewhat mixed concerning the recommendations
of Beck (1998) and Beck et al. (1998). On the one hand, the results could be viewed as
lending some theoretical support for these methods. By “theoretical support” we mean that
including the time regressor or dummies produces predicted probabilities that are often
fairly close in practice to those of the model that was derived from first principles and
consistent with the data generating process. Because of the simplicity of these methods,
they are obviously very attractive options. However, practitioners should understand that
the predicted probabilities are not always accurate—and, in fact, can diverge greatly from
the true probabilities. In particular, researchers should be careful in their predictions about
longer durations. Whether our data provide enough information to distinguish between the
models is of course another issue that needs further study in any real application.

Finally, although the logit with time and time dummies methods may be simple tools for
addressing temporal dependence in practice, they were not designed to avoid aggregation
bias. To do that, we need to understand the implications of a data generating process on
different codings of the data. Only once we have a set of consistent models can we assess
the impact of inappropriately aggregating data or of making incorrect assumptions in our
analysis of aggregate data.

5 Concluding Remarks

We have derived models of binary, duration, and count data to represent identical underlying
data generation processes—one requiring conditional independence among the events and
one more general that allows a form of dependence. This analysis should help to show
researchers the connections among the models applied to these various types of data. It
should free them from the constraints the particular form of the data puts on their choice of
models, encourage them to focus on the theory of what generated the data, and allow them
to derive statistical models that are both consistent with the theory and appropriate for the
data at hand. In doing so, we believe that this will facilitate comparisons of results across
studies as the data is updated and perhaps changes formats.

We encourage future researchers to work out other consistent models of data at these, or
other, levels of aggregation. This task will certainly be difficult at times. We have made a
number of simplifications in this paper and, even with those, the resulting time-dependent
disaggregated count model was not trivial to derive.

There are a number of limitations to the present analysis, which we view as exciting
avenues of future research. First, the issue of time-varying covariates must be addressed.
What are the consistent binary, duration, and count models when the underlying renewal
process involves variation in regressors within countries and within governments? Second,
the gamma distribution was employed in part because the multiple shock story has an
intuitive aspect to it, but also because it was mathematically convenient. However, it does
not allow for a decreasing failure rate. More importantly, most practitioners use a weibull
distribution. Deriving consistent models for a weibull renewal process—or some other
process that allows for both increasing and decreasing failure rates—would be in order.
Third, deriving practical count models from time-dependent duration models will require
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methods to weaken the present assumptions regarding independence of the parameters and
regressors; this is particularly true since the dependence will usually also occur across
the (often artificial) grouping categories. Fourth, the whole process of deriving consistent
models forces us to pay more attention to our theories of what generated the data. If we
political scientists are essentially studying the choices of individuals, then we need to
think about the renewal processes that are consistent with individuals making choices. As
Signorino (1999) and Signorino and Yilmaz (2000) show, failure to do so will guarantee
misspecification and incorrect inferences.

These are but a few areas of the research agenda that stem directly from this paper. Other
types of models will add even further complications. For example, Londregan and Poole
(1990) use a simultaneous probit model to analyze binary data, Bienen and van de Walle
(1991) use a proportional hazards model to study leadership duration, and Diermeier and
Stevenson (1999) study these data with competing risks approaches. Further work needs to
be done to determine precisely how these models aggregate so that they can be estimated
from different forms of data and, especially, so that they can be compared with other studies
which use these different forms of data. Finally, we hope that this agenda will eventually
include results that help us understand and avoid aggregation bias as well.

Appendix: Disaggregated Gamma Count Model

To derive the disaggregated gamma count distribution f ∗
dγ c, we start by addressing the issue

of time dependence, ignoring for the moment any problems related to the issue of where
the renewal process actually restarted. If the interval we are examining is preceded by an
interval in which a gamma event occurs, then there is no problem of dependence between
the current interval and the past lifetime of the government, since there is no additional past
to the life of the government beyond the unobservable r into the previous period, which is
the subject of the second issue. However, if we are examining the second or higher period
into the lifetime of a government, then the probability of a gamma event occurring in the
current period is conditional on the poisson events that may have occurred in the previous
periods for that government. Ignoring where the renewal process restarted, the disaggregated
gamma count distribution is

fdγ c[ycg(t−s,t) | ycg(t−s) = 0] = fdγ c[ycg(t−s) = 0, ycg(t−s,t)]

fdγ c[ycg(t−s) = 0]
(23)

where we have dropped the conditional notation for λ and k for the time being. Since the
period for fdγ c[ycg(t−s)] is (0, t − s), we can calculate this using Eq. (18).

To derive fdγ c[ycg(t−s) = 0, ycg(t−s,t)], we again frame it in terms of the underlying
poisson events. For example, assume k = 3 and let f p(y1, y2) be the joint poisson probability
that y1 poisson events occur in (0, t − s) and y2 events occur in (t − s, t). Then

fdγ c[ycg(t−s) = 0, ycg(t−s,t) = 0]

= f p(0, 0) + f p(0, 1) + f p(0, 2) + f p(1, 0) + f p(1, 1) + f p(2, 0)

and

fdγ c[ycg(t−s) = 0, ycg(t−s,t) = 1]

= f p(0, 3) + f p(0, 4) + f p(0, 5) + f p(1, 2) + f p(1, 3)

+ f p(1, 4) + f p(2, 1) + f p(2, 2) + f p(2, 3)
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Generalizing (and recognizing that the joint poisson probabilities can be written as the
product of their marginals), we get

fdγ c[ycg(t−s) = 0, ycg(t−s,t)]

=
k−1∑
i=0

(ycg(t−s,t)+1)k−i−1∑
j=ycg(t−s)k−i

e−λ(t−s) [λ(t − s)]i

i!
e−λs (λs) j

j!
(24)

Substituting this and the appropriate form of Eq. (18) into Eq. (23) yields

fdγ c[ycg(t−s,t) | ycg(t−s) = 0, λ, k]

=
∑k−1

i=0

∑(ycg(t−s,t)+1)k−i−1
j=ycg(t−s)k−i e−λ(t−s) [λ(t − s)]i

i!
e−λs (λs) j

j!∑k−1
i=0 e−λ(t−s)

[λ(t − s)]i

i!

=
∑k−1

i=0 e−λ(t−s) [λ(t − s)]i

i!
{Q[(ycg(t−s) + 1)k − i, λs] − Q[ycg(t−s)k − i, λs]}

Q[k, λ(t − s)]
(25)

Equation (25) assumes that we can observe the start of a renewal and, therefore, specify
it as t = 0. However, when the durations (or country-aggregated counts) are divided into
intervals, we often cannot observe where a renewal starts within an interval in which a gamma
event occurs. Fortunately, we have probabilistic information about where the renewals start.
What we want to know is the conditional probability that the renewal started r back into
the last nonzero gamma count period. If we let SNk be the sum of the exponential durations
from the country’s start to the previous nonzero count period, then the probability that the
renewal starts r into the previous nonzero count period, conditional on the fact that we know
that the current renewal started in that period, is given by

f [SNk = T − t − r | T − t − s ≤ SNk ≤ T − t]

= f [SNk = T − t − r, T − t − s ≤ SNk ≤ T − t]

f [T − t − s ≤ SNk ≤ T − t]

= f [SNk = T − t − r ]

f [T − t − s ≤ SNk ≤ T − t]

= fγ [T − t − r | λ, Nk]

Fγ [T − t | λ, Nk] − Fγ [T − t − s | λ, Nk]
(26)

where fγ (t | λ, k) and Fγ (t | λ, k) are the pdf and cdf of the gamma distribution.
To obtain the full distribution, we take the conditional probability Eq. (25), where we

assume that the renewal start time is known and “average” it over the range of probable
start times from Eq. (26), or

f ∗
dγ c[ycg(t−s,t) | ycg(t−s) = 0, λ, k]

=
∫ s

0
f [SNk = T − t − r | T − t − s ≤ SNk ≤ T − t]

× fdγ c[ycg(T − s,T ) | ycg(T − t − r,T − s) = 0] dr
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=
∫ s

0

fγ [T − t − r | λ, Nk]

Fγ [T − t | λ, Nk] − Fγ [T − t − s | λ, Nk]

× fdγ c[ycg(T −s,T ) | ycg(T −t−r,T −s) = 0] dr

=
∫ s

0




λe−λ(T −t−r ) [λ(T − t − r )]Nk−1

(Nk − 1)!

e−λ(T −t−s)
∑Nk−1

i=0

[λ(T − t − s)]i

i!
− e−λ(T −t)

∑Nk−1
i=0

[λ(T − t)]i

i!

×
∑k−1

i=0

∑(ycgt +1)k−i−1
j=ycgt k−i e−λ(t−s+r ) [λ(t − s + r )]i

i!
e−λs (λs) j

j!∑k−1
i=0 e−λ(t−s+r )

[λ(t − s + r )]i

i!


 dr

=
∫ s

0




λe−λ(T −t−r ) [λ(T − t − r )]Nk−1

(Nk − 1)!
Q [Nk, λ(T − t − s)] − Q [Nk, λ(T − t)]

×
∑k−1

i=0 e−λ(t−s+r ) [λ(t − s + r )]i

i!

{
Q

[
(ycgt + 1)k − i, λs

] − Q
[
ycgt k − i, λs

]}
Q[k, λ(t − s + r )]


 dr

(27)
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