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Abstract

We present Cube-4, a special-purpose volume rendering archi-
tecture that is capable of rendering high-resolution (e.g.,10243)
datasets at 30 frames per second. The underlying algorithm, called
slice-parallel ray-casting, uses tri-linear interpolation of samples
between data slices for parallel and perspective projections. The
architecture uses a distributed interleaved memory, several parallel
processing pipelines, and an innovative parallel dataflow scheme
that requires no global communication, except at the pixel level.
This leads to local, fixed bandwidth interconnections and has the
benefits of high memory bandwidth, real-time data input, modular-
ity, and scalability. We have simulated the architecture and have
implemented a working prototype of the complete hardware on a
configurable custom hardware machine. Our results indicate true
real-time performance for high-resolution datasets and linear scal-
ability of performance with the number of processing pipelines.

1 Introduction

Volume rendering is a key technology for the interpretation of the
large amounts of 3D scalar data generated by acquisition devices
such as biomedical scanners, by supercomputer simulations, or by
voxelizing geometric models. Especially important for the explo-
ration and understanding of the data are sub-second display rates
and instantaneous visual feedback during the change of rendering
parameters. To create the illusion of smoothdynamics, the image
must be updated in true real-time. In this paper we describe Cube-4,
a scalable architecture for volume rendering that achieves 30 pro-
jections per second for up to10243 16-bit voxel datasets.

The high computational requirements of traditional computer
graphics led to the development of special-purpose graphics en-
gines, primarily for polygon rendering. Similarly, the special needs
of volume rendering, where an image must be computed rapidly and
repeatedly from a volume dataset, lends itself to the development
of special-purpose volume rendering architectures. A dedicated ac-
celerator, which separates volume rendering from general-purpose
computing, seems to be best suited to provide true real-time vol-
ume rendering on standard deskside or desktop computers. Volume
rendering hardware may also be used to directly view changes of
the 3D data over time for 4D (spatial-temporal) visualization, such
as in real-time 3D ultrasonography, micro-tomography, or confocal
microscopy. This may lead to the direct integration of volume visu-
alization hardware with real-time acquisition devices, in much the
same way as fast signal processing hardware became part of today’s
scanning devices.

Consequently, research has been conducted towards the devel-
opment of dedicated real-time volume rendering architectures (see
[6] Chapter 6). Among the more recent approaches is VIRIM [5].
However, even a large 16 board VIRIM system achieves only 10
frames per second for low-resolution256� 256� 128 datasets. A
more modular approach is taken by VOGUE [9]. A2563 dataset

can be rendered at high quality with 0.6 frames/sec using a single
board and at 4 frames/sec using 8 boards and a 640 MB/sec global
bus. Our earlier Cube-3 architecture has been estimated to render
a medium-resolution5123 dataset at 30 frames/sec [12]. However,
such an implementation would require 8 boards interconnected by
a 3 GB/sec global bus. At this time, no volume rendering architec-
ture is capable of achieving real-time frame rates at an acceptable
hardware cost, and none is modular and scalable in performance.

The Cube-4 architecture, presented in this paper, performs arbi-
trary parallel and perspective projections of high-resolution datasets
at true real-time frame rates. The performance is data and classifi-
cation independent and can be achieved at a fraction of the cost
of a multiprocessor computer. Cube-4 usesaccurate 3D interpola-
tion and high-quality surface normal estimation without any pre-
computation or data duplication. Consequently, Cube-4 is also
appropriate for 4D visualization as an embedded volume visual-
ization hardware system in emerging real-time acquisition devices.
The Cube-4 architecture performance grows proportionally with in-
creasing number of memory and processing units, ultimately lim-
ited by memory speeds.

In the following sections, we first present the underlying algo-
rithm of the Cube-4 system. In Section 5, we present the Cube-4
dataflow, a main contribution of this research. It leads to localized,
near-neighbor datapaths for the Cube-4 architecture, described in
Section 6. In Section 7, we show results from simulations and
a prototype implementation of Cube-4 on the Teramac, a config-
urable custom hardware machine developed by HP Labs. Finally,
in Section 8, we analyze the theoretical achievable performance.

2 Parallel Ray-Casting

Our research focuses on ray-casting of regular datasets. Ray-
casting offers room for algorithmic improvements while still allow-
ing for high image quality. We modified the original ray-casting al-
gorithm to make it better suited for a parallel hardware implemen-
tation. Figure 1 shows three possible approaches to parallelizing
ray-casting. According to the form of parallelism that is exploited,
we call these algorithmsray-, beam-, or slice-parallel.

b) Beam-Parallel c) Slice-Parallela) Ray-Parallel

Figure 1: Three different approaches to parallelizing ray-casting.
Shaded voxels are processed simultaneously. The thick arrows in-
dicate the direction in which the algorithm proceeds.
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a) Volume Traversal b) Tri-Linear Interpolation c) Gradient Estimation

d) Shading / Classificatione) Compositingf) 2D Image Warping
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Figure 2:Pipeline stages of the slice-parallel ray-casting algorithm.

In the ray-parallel approach, all voxels along a ray are processed
simultaneously (the shaded voxels in Figure 1a). The algorithm
proceeds ray by ray in scanline order (the thick arrow in Figure 1a).
Our earlier Cube-3 architecture [12] is a highly-parallel implemen-
tation of this approach. However, the simultaneous access to all
voxels along a ray requires global communication between the vol-
ume memory and the processing units. This ultimately limits the
performance and the scalability of the architecture because of the
very high bandwidth requirements.

An alternative to operating on all samples of a single ray is to si-
multaneously operate on samples of several neighboring rays. De-
pending on how the algorithm proceeds, we call these approaches
beam-parallel (see Figure 1b) or slice-parallel (see Figure 1c). A
beamis a scanline of voxels that is parallel to a principal axis of the
dataset. The beam-parallel ray-casting approach follows a group of
rays by fetching consecutive beams in the major viewing direction.
We presented a preliminary proposal towards a beam-parallel ray-
casting architecture in [13]. However, the stepping along slanted
planes of rays requires complicated addressing mechanisms and
leads to non-uniform processor communication.

The slice-parallel approach processesconsecutive data slices that
are parallel to a face of the volume dataset. This processing order
appears similar to multipass resampling [4] or object order com-
positing algorithms [16]. However, in addition to the object-order
data traversal we incorporate advantages of ray-casting into the al-
gorithm. Slice-parallel algorithms have been used in various forms
by other researchers. Reynolds et al. [14] and Lacroute and Levoy
[10] use a shear-warp factorization of the viewing transformation to
project the volume in a slice-parallel fashion onto the base-plane.
Cameron and Underill [3] and Schr¨oder and Stoll [15] have used
slice-parallel approaches on massively-parallel SIMD machines.

Our hardware implementation of the slice-parallel ray-casting al-
gorithm improves on these previous results in several ways. Shear-
warp algorithms use linear 2D resampling filters [10], while the
Cube-4 architecture implements accurate 3D resampling using tri-

linear interpolation between data slices. Furthermore, Cube-4 does
not use any pre-computations and stores only one copy of the
dataset, allowing for real-time data input. The focus and the pri-
mary contribution of this paper is the Cube-4 architecture, an ef-
ficient and scalable implementation of pipelined slice-parallel ray-
casting in hardware.

3 Slice-Parallel Ray-Casting

In this section we present a fully pipelined version of slice-parallel
ray-casting that accesses each voxel of the dataset exactly once
per projection. Figure 2 gives an overview of how the data flows
through a sequence of stages in a pipelined fashion.

The volumetric dataset is stored as a 3D regular grid of voxels
(Figure 2a). The face of the volume memory that is most perpen-
dicular to the major component of the viewing direction is called
the base-plane. Consecutive data slices parallel to the base-plane
are traversed in scanline order. Beams of two adjacent data slices
of voxels are processed simultaneously to compute a new slice of
interpolated sample values inbetween these two slices. In the fol-
lowing section we present a distributed memory system that allows
conflict-freeaccess to beams from all three principal axes.

The orthogonal voxel neighborhoods between data slices al-
low for accurate 3D resampling using tri-linear interpolation (Fig-
ure 2b). In order to reduce the computation of resampling weights,
we use a lookup-table based ray-casting technique that was first
introduced by Yagel and Kaufman [17] and that we used in the
Cube-3 architecture [12]. Correct 3D resampling along rays may
lead to multiple samples inbetween data slices. Consequently, we
may compute more than one interpolated data slice inbetween voxel
slices.

To approximate the surface normals necessary for shading and
classification (Figure 2c) and to avoid any further access to the vol-
ume memory after tri-linear interpolation we use the interpolated

2
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Figure 4: 3D skewed memory organization forn = 4. a) Assignment of voxel addresses[zyx] in volume space. b) Dataset stored in
n =m = 4 memory modules. c) Dataset stored inm = 2 memory modules. Thick lines indicate slice boundaries inside the memory.

sample values to estimate the gradients on each sample position
(cf. [13]). Figure 3 illustrates the technique for parallel projections
for major viewing directionZ. The interpolated data slices from

Additionally interpolated
samples

X Z

Z Y

Samples along rays 

Ahead

Current

Behind

Behind
Current

Ahead

Figure 3:Gradient estimation using interpolated samples from the
ahead, behind, and current (ABC) slices. The example shows par-
allel projection with major viewing directionZ.

the tri-linear interpolation stage are stored in the so-calledABC
buffers. The current buffer stores the samples that are currently
being shaded. The ahead and behind buffers store the samples one
slice ahead and one slice behind in major viewing direction, respec-
tively.

As Figure 3 shows, the gradients in non-major direction (X and
Y) can be computed by taking central differences of neighboring
samples (shown in black) inside the current buffer. In the major
directionZ, because of the possibly slanted rays, we need to inter-
polate two additional samples (shown in grey). These samples can
be computed using two additional bi-linear interpolations between
samples of the ahead and behind buffers. This method is called
the 12-neighborhood ABC gradient estimation because a total of
12 samples participate in the computation.

Using the gradient as a surface-normal approximation, each sam-
ple is shaded and classified by an opacity transfer function (Fig-
ure 2d). Compositing of samples along rays onto the base-plane

(Figure 2e) is performed using any of the well-known methods in
the literature [11]. The distorted intermediate base-plane image is
then 2D transformed (warped) onto the viewing plane to produce
the final image (Figure 2f).

Perspective projection is nearly identical to parallel projection,
except that the interpolation stage also needs to compute averages
of larger neighborhoods for slices further away from the base-plane
(cf. [10]). The first slice of data is uniformly sampled and scaled
by a factor of one, which corresponds to shooting one ray per pixel
of the base-plane. In all subsequent slices, the slices are scaled ac-
cording to the viewing transformation, and a larger portion of the
slice is sampled. This averaging of larger neighborhoods can be
implemented in hardware using additional interpolation stages that
perform a simple box-filtering of slices. The maximum extent of
this box filter, needed for the slice furthest away from the base-
plane, is 1 + 2 tan�, where� is half of the field-of-view angle.
For� < 450, or any field-of-view less than900, this corresponds to
a maximum extent of 3 voxels. Therefore, averaging of samples for
perspective projections can be implemented using three additional
interpolation stages. After samples from averaged slices have been
computed, the subsequent algorithm remains the same as for paral-
lel projections.

4 Memory Organization

In this section, we present a memory interleaving technique based
on a linear skewing of the address space that allows for conflict-free
access to beams of voxels from all three principal viewing axes.
Kaufman and Bakalash [7] have used a simplified version of this
memory organization. The volume dataset is stored only once with-
out data duplication.

Figure 4a shows a4�4�4 dataset in its local coordinate system.
Each voxel in the figure is represented by its address which isa =
[zyx], the tuple with the local coordinates of the voxel. We refer
to this standard arrangement of voxels asvolume space. A regular
volumetric dataset withn�n� n voxels in volume space is stored
in m physical memory modules, each containingw words of either
8 or 16 bits, using askewing function� : [z;y; x] ! [k; i], which

3
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maps a voxel with local coordinates[z;y; x] into memory module
numberk at indexi as follows:

k = (x + y + z) mod n 0 � k; x; y; z < n;

i= y + zn 0 � i < n2:
(1)

Adjacent voxels of beams inX direction are placed in the same
relative locations of adjacent memory modules (i.e., rows across
the memory). This choice of storage is arbitrary. If the number of
memory modulesm is smaller thann, we apply a re-mapping of
the skewed memory space by apartitioning function� : [k; i] !
[kp; ip], where:

kp = k mod m 0 � kp < m;

ip = i n
m

+ b k
m
c 0 � ip <

n
3

m
:

(2)

Figure 4b shows the resulting assignment of voxel addresses
[zyx] to memory modules, forn = m = 4. Notice that we can
access beams inX, Y, or Z direction conflict-free from the four
memory modules. Figure 4c shows the partitioned memory space
for n = 4 andm = 2. It is important to notice that this skew-
ing and partitioning of the memory space works for anyn andm
as long asn is a multiple ofm. In general, the computation of
(x+y+z) mod n or k mod m involves a division operation. If
n andm are powers of two, it degenerates to a masking operation
with the low order bits of the operand.

5 Slice-Parallel Dataflow

The skewing distances is the distance by which two beams have
been shifted (mod m) relative to each other. For example, Fig-
ure 4b shows that each beam of a slice (in volume space) has been
shifted bys = 1 (in memory space) with respect to the beam below
it. This means that, in general, beams can not be accessed from
memory in the same order they have in volume space.

One solution to the problem is to permute fetched beams by
an intermediate interconnection network between the memory and
the processing units. This permutation of beams is calledunskew-
ing, because it reduces the skewing distance between consecutively
fetched beams to zero. This approach has been used in the Cube-
3 architecture [12]. However, the hardware complexity of such a
global interconnection is high and becomes prohibitive for largem,
limiting the scalability. In Cube-4 we take a very different approach
that does not require any global communication except at the pixel
level.

We now explain the datapaths and the resulting dataflow in de-
tail using signal flow graphs (SFGs). A SFG is a directed graph
with non-negative edge and node weights. A node stands for an
arithmetic or logic function performed with zero delay and an edge
stands for data transport. The order of operations is represented
as directed edges emanating from the node that is to be executed
first. The weight of the edge indicates by how many clock cycles
the first operation must precede the second operation. We do not
show edge weights of 0. An edge may also be viewed as a datap-
ath from one operation to another and its weight as indicating the
number of registers included in that datapath. The width of all dat-
apaths is assumed to be constant. To simplify the discussion, we
first restrict our attention to the case ofm = n. Later, we discuss
the generalization of these results to the case ofm < n.

Tri-Linear Interpolation

Tri-linear interpolation requires 8 voxels arranged in a2�2�2 or-
thogonal voxel neighborhood. This is equivalent to two2� 2 voxel
neighborhoods from consecutive data slices. Figure 5 shows one
slice of a4� 4� 4 dataset in volume space and in skewed memory

D
C
B
A

A
D
C
B

D
C

B
A

C
B
A
D

A B C D
A B C D
A B C D
A B C D

a) b)

Figure 5:Bi-linear neighborhoods.

space. For simplicity we have indicated increasing voxel addresses
along rows with consecutive letters. The neighborhoods required
for the bi-linear interpolation inside the slice are surrounded by
a box. Notice how the orthogonal neighborhoods are shifted and
sheared in memory space due to the skewing difference between
beams.

Assume that we fetch consecutive beams in positiveY direction
from the dataset. This corresponds to fetching consecutive rows in
column direction in Figure 5b. The SFG in Figure 6 shows how
the data is moved between pipeline stages. Dashed edges that leave

11 1 1

b0 b1 b2 b3

m0 m1 m2 m3

Stage 1

Stage 2

Figure 6:SFG for bi-linear interpolation.

on one side of the figure are connected to corresponding edges on
the other side in a wrap around fashion. Each node in the graph
performs a linear interpolation of its two inputs. The first stage
performs a linear interpolation between neighboring voxels of one
beam usingwx, the interpolation weight inX direction. The second
stage performs a linear interpolation between the linearly interpo-
lated samples of two consecutive beams usingwy, the interpolation
weight inY direction.

Looking at the SFG we notice some important patterns. The dat-
apath between memory and stage 1 is used to join two (spatially)
adjacent voxels from a beam at a time. This is easily achieved by
a mergerof adjacent voxels at the processing nodes. The datapath
between stage 1 and stage 2 is used to join data of two (temporally)
subsequent beams. Because the two beams are output in consecu-
tive clock periods, this can be achieved by ashift and delay. Al-
though the skewing difference between input beams has been cor-
rected, the results are still skewed.

To perform a tri-linear interpolation, we need voxel data from
two subsequent slices. Figure 7 shows the complete SFG for tri-
linear interpolation using the SFG of Figure 6. Because voxels from
the second slice are outputn clock periods later, we need to delay
data from the previous slice byn cycles. Furthermore, because
of the skewing difference between beams of subsequent slices, we
need to shift the non-delayed output from the memory by one po-
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Bi-Linear SFG Bi-Linear SFG

m0 m1 m2 m3

n n n

t0 t1 t2 t3

n

Figure 7:SFG for tri-linear interpolation.

sition. For example, compare the beams at indexi = 0 andi = 4
in Figure 4b. The last stage of the SFG in Figure 7 performs the
linear interpolation between the bi-linearly interpolated samples of
the two slices usingwz, the interpolation weight inZ direction.

ABC Gradient Estimation

ABC gradient estimation is similar to tri-linear interpolation. It re-
quires the collection of a3 � 3 � 3 neighborhood of interpolated
samples between the three ABC sample slices. The ray-samples
are output each clock cycle by the tri-linear interpolation stage as
skewed beams. To compute any additional samples required for or-
thogonal gradients (as shown in Figure 3) we use a similar dataflow
approach as for bi-linear interpolation.

To compute the gradients we need to collect the data from the
three consecutive sample slices. Figure 8 shows the corresponding
SFG. The samples currently output by the tri-linear interpolation

gX gY gZ

Ahead

Current

Behind

n
n n

n n n
nn

t0 t1 t2 t3

Slice-based Gradient
Computation

Figure 8:Top-level SFG for ABC gradient estimation.

stage are input without delay as ahead samples. The ahead samples
are delayed byn cycles and input as the current samples. A delay
of the current samples byn cycles produces the behind samples.
As in the case of tri-linear interpolation, the delayed samples are
shifted according to their skewing distance. The last stage in the
SFG computes the central differences between interpolated samples
and outputs the three gradient components.

Shading and Classification

Using this gradient, each sample is shaded using any of the standard
local illumination models. For maximum performance, we need
to perfectly pipeline the shading calculations. Other researchers
have proposed fully pipelined Phong shading and vector normal-
ization architectures [8]. For our prototype implementation, we use
a small, lookup-table based reflectance map shader [2]. It allows
to implement any higher-order shading model without expensive
square root units. Classification is performed based on sample value
and possibly gradient magnitude using a lookup-table opacity map.

Compositing

The shading stage produces consecutive beams of color intensity
values within slices. In the slice-parallel dataflow, the compositing
stage accumulates these intensity values to pixels stored in the base-
plane. The total size of this base-plane buffer is(2n)2, the maxi-
mum size of a base-plane [15]. However, this buffer is distributed
amongm compositing units. The difficulty is how to forward the
intensity values along a ray to the compositing unit that stores the
intermediate base-plane pixel corresponding to that ray. Or, alter-
natively, how to forward the intermediate base-plane pixel value to
the compositing unit that receives the next intensity value along the
ray.

Consider a partially composited base-plane pixel that was pro-
duced after compositing sliceS. We have to forward this pixel to
the compositing unit which receives the next intensity value along
the ray from the shader. Because all rays are 26-connected in dis-
crete space, the next sample along the ray must come from a3� 3
neighborhood inside the next sliceS + 1. Using the discrete ray-
templates of the template-based ray-casting algorithm [17], we can
determine the position inside this neighborhood of the next intensity
value along the ray. Using Figure 9, we can determine the forward-
ing pattern for all possible cases. The figure assumes that the major
viewing direction isZ and that the dataset is stored along beams in
X direction.

Y

X

No skewing b) Skewed,
slice S slice S+1

c) Skewed,

-1 0 1
0 1-1

-1 0 1 0 1 2
0-1

-2 -1 0
1

-1 0 1
210

1 2 3
a)

Figure 9:Compositing neighborhood.

Figure 9a shows the3� 3 neighborhood in case of no skewing.
The center position, surrounded by a box, indicates the current po-
sition of the intermediate base-plane pixel. The numbers indicate
the relative distance inX to the compositing unit that receives the
next sample along the ray. For example, if the ray-templates indi-
cate that the ray in discrete space makes a step in positiveX and
Y directions, the next sample is forwarded to the compositing unit
one position in positiveX direction (shown by a dashed box in the
figure). Because of the skewing difference between beams inside
slices, this forwarding distance is altered as shown in Figure 9b.
Finally, Figure 9c shows the forwarding distances if we take the
skewing between slicesS andS + 1 into account. Because of the
forwarding distances, each compositing unit has to be connected to
three units in positive and one unit in negativeX direction. Fig-
ure 10 shows the corresponding SFG for compositing. Notice that,
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due to the maximum skewing differences of�1 and+3 shown in
Figure 9c, a minimum of five rendering pipelines is required.

i0 i1 i2 i3 i4

p4p3p2p1p0

Figure 10:Compositing SFG.

The resulting pixels of the base-plane are still generated in a
skewed order. However, pixel scanlines can easily be unskewed by
a simple address-permutation inside or when stored into the frame-
buffer.

Extensions for m < n

If m < n, we have to add two minor changes to the dataflow pre-
sented so far. Instead of complete beams we forward partial beams
with n

m
samples each. The order of partial beam access is along

beams. To fetch the data of a complete beam requiresm cycles in-
stead of one cycle. Consequently, all delay operations on edges in
the SFGs, which are needed to gather data from consecutive beams,
need to be changed from 1 tom.

The second change is required because of border cases between
partial beams. For example, the tri-linear interpolation units at
rightmost positionm require voxels from the partial beam that will
be fetched one cycle later. Figure 11 shows how to deal with these
border cases using a technique we callbeam-extension. The partial

Extension

Partial beam i
Partial beam (i+1)

Figure 11:Beam extension.

beami, is delayed by one cycle, until the next partial beam(i+ 1)
arrives, and the overlap necessary for the border cases is available
as an extension to beami. Notice that we need to extend beams
only in the direction of partial beam access. The amount of exten-
sion depends on the processing stage and varies between 3 and 4
data samples.

6 Cube-4 Architecture

Figure 12 shows the complete top-level diagram of the Cube-4 ar-
chitecture with five rendering pipelines. Due to the skewing differ-
ence for pixel exchange in the compositing stage this is the mini-
mal configuration. The dataset is stored in the multiple cubic frame
buffer (CFB) memory modules. Each rendering pipeline contains
four types of processing units: CFB memory and address gener-
ation, tri-linear interpolation (TRILIN), ABC gradient estimation

and shading (Shader), and compositing (Compos). All datapaths
have constant width, corresponding to the word-width of a voxel
(e.g., 8 or 16 bits). The delay of data required for tri-linear inter-
polation and for the ABC gradient estimation is achieved by first-in
first-out (FIFO) memories.

Control of Cube-4 is very simple and can be part of the dataflow.
The host downloads the viewing vector into the CFB address-
generation units. The ray templates are generated in hardware by
adding the viewing vector to the current sample location and com-
puting the resampling weights. From there on, all necessary control
signals travel with the data through the machine, making centralized
control unnecessary.

7 Simulations and Prototyping

We have extensively simulated the algorithm and architecture in C
and a high-level hardware description language (VHDL). Table 7
shows results from the VHDL simulation. The table shows render-
ing performance in frames per second versus the number of render-
ing pipelines for three different dataset resolutions. To translate the
number of simulation cycles into frames per second, we assumed a
relatively low processing frequency of 33 MHz.

Dataset # Pipelines Cycles/frame Frames/sec
643 8 32,814 1,006

16 16,422 2,009
32 8,226 4,012

1283 8 262,206 126
16 131,118 252
32 65,574 503

2563 8 2,097,246 16
16 1,048,638 31
32 524,334 63
64 262,182 126
128 133,106 248

Table 1: VHDL simulation results: Rendering performance as a
function of the number of rendering pipelines.

As a proof of concept we implemented a Cube-4 prototype on
the Teramac, a configurable custom hardware machine developed at
Hewlett-Packard Laboratories [1]. Figure 13a (in the color section
of the proceedings) shows a picture of a 4-board Teramac system.
Teramac can execute synchronous logic designs of up to one million
gates at rates up to 1 MHz. The system has been built from custom
field-programmable logic arrays (FPGAs) packaged in large mul-
tichip modules (MCMs). Figure 13b (in the color section) shows
a picture of a single MCM, which carries 27 FPGAs. Each MCM
measures6:13 � 7:4 inches, weighs approximately 3 pounds, and
has over 3000 pins. The Teramac system we used for our Cube-4
implementation includes 8 boards, 250 MB of RAM, 32 MCMs and
864 FPGAs.

Our prototype of Cube-4 on Teramac implements the design
shown in Figure 12 with five rendering pipelines. The implemen-
tation is capable of producing parallel color projections of1283

8-bit per voxel datasets from arbitrary directions. Inside the shader
units, we use a lookup-table based reflectance map shading. The
total logic complexity for all five rendering pipelines is 330K gates.
Compilation of the complete design onto Teramac takes less than
one hour without user intervention.

The Cube-4 prototype generated an image of any of the1283

datasets in 1.5 seconds at 0.25 MHz, independent of dataset com-
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Rendering Pipeline

ABC FIFOs

CFB FIFO CFB CFBCFBCFBCFB

TRILIN TRILIN TRILIN TRILIN

Shader Shader Shader Shader Shader

Compos Compos Compos Compos Compos

TRILIN

Figure 12:The Cube-4 slice-parallel architecture. Bold lines indicate all data connections of the rendering pipeline in the center. (CFB =
Cubic Frame Buffer, TRILIN = Tri-Linear Interpolation Unit, Compos = Compositing Unit.)

plexity, transfer function, or viewing parameters. The maximum
processing frequency of Cube-4 on Teramac is 0.96 MHz without
any performance optimizations, although higher speeds could be
achieved by careful insertion of additional pipeline stages. Fig-
ure 13c (in the color section) shows volume renderings of a CT
lobster dataset and Figure 14 (in the color section) shows volume
renderings of several other datasets. The use of different opacity
and color transfer functions reveals different aspects of the data.

8 Performance Analysis

The results we presented in the previous section indicate linear
scalability of performance with increasing number of rendering
pipelines. In this section, we look at the theoretical maximum per-
formance of Cube-4. Assuming perfect pipelining of interpolation,
shading, and compositing, we can continually enter data at the max-
imum possible rate, and the theoretical performance of Cube-4 is
thus limited by the access speed of the memories.

If n is the dimension of the dataset,p the number of rendering
pipelines, andfp the processing frequency of the machine, the the-
oretical rendering ratefr in frames per second ispfp

n3
. Figure 15

the frame ratefr as a function of the number of rendering pipelines
p for three different dataset sizes. We show graphs for two different
processing frequenciesfp. The solid lines shows graphs forfp =
33 MHz, corresponding to the cycle time of SDRAM, the fastest
currently available DRAM memory technology. The dashed lines
show performance assuming 100 MHz processing frequency. Be-
cause current DRAM memory can not output data at this rate it
has to be additionally interleaved per rendering pipeline. This addi-
tional interleaving is a standard memory bank arrangement as used
in current general-purpose processors.

In order to allow for a compact implementation, we are currently
developing an application-specific integrated circuit (ASIC) con-
taining several of the Cube-4 rendering pipelines. We have a con-
tract with a company that will fabricate such an ASIC. Preliminary
estimates indicate that an ASIC containing 4 rendering pipelines re-
quires less than 300 pins, including power and ground. Each ASIC
requires only 400K gates, and internal memory for the ABC FIFO
buffers of 40 K, assuming a total of 32 rendering pipelines.

Number of Rendering Pipelines 
8 16 32 64 128 256 512 1024

32

16

8

4

2

Frames per Second

3

3
256

1024

512
3

Figure 15:Theoretical rendering performance of Cube-4 as a func-
tion of the number of rendering pipelines. We show graphs for dif-
ferent dataset sizes ( = 2563;2 = 5123;4 = 10243). Solid
lines indicate 33 MHz processing frequency, and dashed lines indi-
cate 100 MHz processing frequency.
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We are designing a long PCI card system with 32 rendering
pipelines or 8 Cube-4 ASICs, 32 SRAM chips, and a PCI host inter-
face. Such a card would cost a few thousand dollars and provide 30
projections per second for2563 datasets. Larger systems for higher
resolution datasets supporting 30 projections per second, 16-bit per
voxel, can be built, such as a workstation board (e.g., VME size)
for 5123 datasets, and multiple boards for10243 datasets.

9 Conclusions

We have introduced Cube-4, a scalable architecture for true real-
time ray-casting of large volumetric datasets. The unique fea-
tures of Cube-4 are a high bandwidth skewed memory organiza-
tion, localized and near-neighbor datapaths, and multiple, paral-
lel rendering-pipelines with simple processing units. System per-
formance scales linearly with the number of rendering pipelines,
limited only by memory access speed. The Cube-4 architecture,
viewed as a near-neighbor array of simple processors, is extremely
well-suited for very large scale integration (VLSI). Due to its mod-
ularity, it is feasible to build a Cube-4 VLSI chip containing several
rendering pipelines. Such a chip allows the construction of modular
and cost-effective small to medium size volume rendering systems
with true real-time performance for low- to high-resolution datasets
– far above the performance of current systems.

Finally, the choice of whether one adopts a general-purpose or a
special-purpose solution to volume rendering depends upon the cir-
cumstances. If maximum flexibility is required, general-purpose
appears to be the best way to proceed. However, an important
feature of graphics accelerators is that they are integrated into a
much larger environment where software can shape the form of in-
put and output data, thereby providing the additional flexibility that
is needed. A good example is the relationship between the needs of
conventional computer graphics and special-purpose graphics hard-
ware. Nobody would dispute the necessity for polygon graphics ac-
celeration despite its obvious limitations. We are making the exact
same argument for our Cube-4 volume rendering architecture.
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