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with Stochastic Search Techniques
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Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794{4400

Abstract

This paper presents a novel approach to assist the
user in exploring appropriate transfer functions for the
visualization of volumetric datasets. The search for a
transfer function is treated as a parameter optimiza-
tion problem and addressed with stochastic search tech-
niques. Starting from an initial population of (ran-
dom or pre-de�ned) transfer functions, the evolution
of the stochastic algorithms is controlled by either di-
rect user selection of intermediate images or automatic
�tness evaluation using user-speci�ed objective func-
tions. This approach essentially shields the user from
the complex and tedious \trial and error" approach,
and demonstrates e�ective and convenient generation
of transfer functions.

1 Introduction

Direct volume rendering is a key technology for the
visualization of large sampled, simulated, or synthe-
sized 3D datasets from scienti�c, engineering, and
medical applications. However, an important problem
that inhibits its widespread use is the complex inter-
relationship of rendering parameters combined with
the lack of interactivity. For example, the user often
has to �nd the appropriate parameter settings for the
rendering of a dataset without immediate visual feed-
back.

Of particular importance to the outcome of direct
volume rendering are transfer functions. A transfer
function assigns values for optical properties, such as
color and opacity, to original values of the dataset be-
ing visualized. In certain applications, the appropriate
choice of transfer function depends to a large extent
on the data itself. For example, in routine medical
visualizations of CT data it is often possible to use
pre-de�ned transfer functions to highlight certain tis-

sue types, such as bone or muscle. However, when
using visualization for data exploration, the image de-
pends to a large extent on the subjective goals of the
user. For example, molecular scientists may want to
visualize a molecule in vastly di�erent ways, depend-
ing on their needs. In these cases, it is imperative to
experiment with di�erent transfer functions before a
satisfactory visualization is achieved. This exploration
of the parameter space can also lead to unexpected
discoveries about the data.

By far the most commonly used method for data
exploration is \trial and error." Transfer functions
are repeatedly modi�ed and each newly-rendered im-
age is judged with the hope of eventually �nding a
good visualization, which highlights some properties
of the volume data in an informative way. In this
paper, we introduce a fundamentally new method for
the generation of transfer functions. In general, we
treat the search for the appropriate transfer function
as a parameter optimization problem which can be ap-
proached with stochastic search techniques. Figure 1
shows the two new methods that will be explored in
this paper.

Figure 1a shows the visualization process us-
ing semi-automatic generation of transfer functions.
Stochastic algorithms are used to generate a �rst set
(or population) of transfer functions, which leads to a
�rst population of images. Based on user evaluation
of the images, the search process is repeated until a
satisfactory visualization has been achieved. We have
incorporated this approach into an intuitive and easy-
to-use user interface. In Section 5, we show results
from our experiments. They indicate that an optimal
visualization is achievable even though the only user
interaction is image evaluation.

In an alternative approach, shown in Figure 1b, the
visualization process allows the user to express the ob-
jective goals for the desired images. Examples of ob-
jective functions include entropy, histogram variance,
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Figure 1: a) Automatic parameter generation with
user evaluation of the resulting images. b) Automatic
parameter generation and automatic evaluation of im-
ages based on user-de�ned objective functions.

or edge energy of the resulting images. Both of these
methods allow the user to evaluate the visualization,
either subjectively or objectively, in terms of the �-
nal images, and not in terms of the shape or physical
interpretation of the underlying transfer functions.

The next section de�nes transfer functions in the
context of direct volume rendering, and Section 3 in-
troduces the key concepts of stochastic search tech-
niques. We show how to use stochastic algorithms to
generate a set of transfer functions. Section 4 presents
our implementation, which incorporates the genetic
evolution methods into an easy to use and intuitive
user interface. Finally, Section 5 discusses the results
by applying several well-known stochastic search algo-
rithms to the problem of transfer function generation.

2 Transfer Functions

Volume rendering techniques typically rely on the low-
albedo approximation to how the volume data gen-
erates, scatters, or occludes light [4, 9]. E�ects of
the light interaction at each dataset location are in-
tegrated continuously along viewing rays according to
the following equation:

I(a; b) =

Z b

a

s(x)e

R
x

a

�(t)dt
dx; (1)

where

I(a; b) is the intensity from a ray passing through the
dataset between points a and b;

s(x) is the source term, giving the light added per
unit length along the ray, including self-emission

and reected light; and

�(t) is the absorption coe�cient, corresponding to the
attenuation of light per unit length along the ray
due to scattering or extinction.

The mapping which assigns a value for optical prop-
erties like � or s to each value of the scalar f being
visualized is called a transfer function. The transfer
function for � is called opacity transfer function, typi-
cally a continuously varying function �(f) of the scalar
f . Often it is also useful to include the surface normal,
approximated by the direction of the gradient rf , as
an additional parameter of the opacity transfer func-
tion �(f;rf). This approach has been widely used in
the visualization of bone or other tissues in medical
datasets or for the iso-surface visualization of electron
density maps [11].

The source term s can also be speci�ed as a transfer
function s(f) of the scalar f . The simplest source term
is direction independent, representing the glow of a hot
gas [12]. It may have red, green, and blue components,
with their associated color transfer functions sred(f),
sgreen(f), and sblue(f). More sophisticated models in-
clude shading e�ects, where the source term at posi-
tion x is calculated as s(x) = �(x; !r; !i)i(x). i(x) is
the incoming illumination reaching x, and �(x; !r; !i)
is the bidirectional spectral reectivity, as a function of
the direction !r of the reected light, the direction !i
of the incoming light, and other properties that vary
with x, such as the surface normal [12]. Common ap-
proximations for � include the Phong [14], Blinn [3],
or Cook and Torrance [5] shading models. All of these
models may contain one or more rather complex trans-
fer functions that can not be analytically expressed.

Despite these physical interpretations of transfer
functions, it is often di�cult for the user to select
them in a meaningful way. For example, when no
prior knowledge about the dataset is available, di�er-
ent transfer functions may lead to di�erent discoveries
of interesting properties of the data. In addition, the
complex interaction of opacity and emission makes it
very hard, if not impossible, to predict the e�ect of
changing more than one of them simultaneously. This
work is aimed at overcoming this problem by provid-
ing additional tools for data exploration that do not
require any understanding of the underlying physical
processes.

3 Stochastic Search Techniques

We view the search for the appropriate transfer func-
tion as a parameter optimization problemwhere meth-



ods developed for global optimization can be used.
The domain space for transfer function selection is
very large, with the number of possibilities growing
exponentially with the number of transfer functions.
Because of the long volume rendering time for each
image, a fast convergence to the global optimal solu-
tion becomes essential. This excludes an exhaustive
search among all possible solutions. It also prohibits
the use of enumeration techniques such as dynamic
programming or random search techniques such as
Monte-Carlo methods. Furthermore, we would like to
approach the optimum by an adaptive, stepwise strat-
egy. Partially satisfying, intermediate results should
be passed on to the next iteration with the intention
of positively inuencing the �nal image.

Stochastic search techniques are particularly suit-
able for this purpose. Although there is no formal
guarantee of convergence, stochastic search techniques
have a high probability of locating the global solution
optimally in a multi-modal search landscape, where
several locally optimal solutions exist. They have been
successfully used in many �elds, including computer
graphics [15]. The implementation of stochastic al-
gorithms is remarkably easy. The basic structure of
the methods we investigate in this paper is shown in
Figure 2.

First, we are looking for an encoding of the opti-
mization problem solutions (1), which can be thought
of as a unique mapping of structures x(i) onto solu-
tions. In the simplest case, each structure is a binary
string. In the following subsection we present con-
ditions for the appropriate encoding of transfer func-
tions. A population P (t) at time t is an S-dimensional
vector of structures

P (t) = hx1(t); x2(t); : : : ; xS(t)i; (2)

where S is the population size. The initial popula-
tion P (0) (2) is usually chosen at random to represent
a wide variety of encodings. Alternatively, heuristi-
cally chosen initial transfer functions may be used to
an advantage. For the generation of solutions from
encodings it is customary to use the biological terms
genotype and phenotype. The genotype is the encoded
representation of a possible problem solution into a
structure si(t), in this case an encoded representa-
tion of a transfer function. The encoded represen-
tations are used to produce phenotypes that give a
user-de�ned meaning to the structures. In this case,
the encoded transfer functions produce rendered im-
ages as phenotypes. The translation from genotype
(encoded transfer function) to phenotype (image) is
given by the direct volume rendering algorithm. An

1. Design a schema to encode the solutions to the op-
timization problem.

2. Generate an initial population P (0) of possible so-
lutions.

3. Evaluate the initial population and assign a �tness
value to each solution.

4. While no satisfactory solution is found:

4a. Stochastically select an intermediate popula-
tion P 0(t).

4b. Generate new solution population P (t) from
P 0(t).

4c. Evaluate the new solutions in P (t).

4d. Possibly load-balance the population of solu-
tions.

Figure 2: Basic stochastic search algorithm.

image is rendered for each of the transfer functions of
the current population P (t). Each image is then eval-
uated (3 and 4c), and a measure of success, or �tness,
is assigned automatically or provided interactively by
the user.

Stochastic search algorithms mainly di�er in how
they select an intermediate population (4a), how the
new solutions are generated (4b), and how a possible
load-balancing of solutions is applied (4d). In this pa-
per, we apply hill-climbing (HC), parallel hill-climbing
(PH), parallel hill-climbing which attempts to balance
the load by keeping good solutions over more than one
iteration (PL), simulated annealing (SA) [10], and ge-
netic algorithms (GA) [8]. We will now discuss in more
detail how the basic stochastic search algorithm shown
in Figure 2 can be applied to the generation of transfer
functions.

3.1 Solution Encoding

In Section 2, we de�ned a transfer function as a
mapping from the scalar data f and/or gradient to
some optical property, such as color and opacity. In
the following discussion we restrict ourselves to trans-
fer functions that map a single scalar value to a single
optical property. However, the algorithms can easily
be extended to allow for multiple parameters, as we
show in Section 5.

The domain and range of a transfer function can be
normalized to be in the interval [0; 1], so that we can



mathematically de�ne a transfer function as:

f :D ! V; D 2 [0; 1]; V 2 [0; 1]: (3)

Although theoretically a transfer function can be of
any form, optical models generally have some require-
ments for smoothness and continuity of valid transfer
functions. Furthermore, more easily identi�ed opti-
mality conditions can be provided if f is a smooth
function with continuous �rst and second derivatives.
We call this constraint the smoothness condition.

For maximum generality we choose a vector repre-
sentation of the continuous transfer functions. The
N samples representing a transfer function fi can
be stored as a vector of N oating point numbers
xi = [s1; s2; : : : ; sN ]. This representation has to sat-
isfy the following two reconstruction conditions. The
original signal representing the function was band-
limited and it has been sampled above the Nyquist
frequency. If these conditions are met, we can per-
fectly reconstruct the continuous function f from N
discrete samples. Stochastic changes are applied to
individual values in this vector. To guarantee the
smoothness condition, we apply a low-pass �lter to
any newly-generated vector.

The user may have previous knowledge about the
data that allows transfer functions to take on certain
values over speci�ed domains but to exclude others.
For example, the user may specify certain ranges of
opacity values for di�erent domains of the function
that correspond to di�erent tissue types. We call these
pre-de�ned constraints domain conditions. They can
be de�ned over di�erent ranges of sample indices of the
transfer function vector xi, and are always satis�ed in
the whole optimization process.

To simultaneously generate transfer functions for
more than one optical property we can reformulate
the stochastic search as a single-objective problem ei-
ther by forming a weighted combination of the di�er-
ent objectives or by replacing some of the objectives
by constraints. Furthermore, instead of evaluating the
image as a whole, one very often would like to combine
aspects of one image, for example the transparency of
an object, with aspects of another image, for exam-
ple the color of the object. To provide this exibility,
we have developed an approach that we call indepen-
dent property selection. The user has the option of
interactively or automatically assigning di�erent �t-
ness values for each optical quality of an image, such
as opacity or color.

3.2 Initial Population

The initial population of transfer functions P (0)
can be either randomly generated or provided by the

user. Because certain transfer functions are commonly
used as starting points, for example linear ramps, we
provide a library of some typical initial functions. The
user has the option of editing and changing these func-
tions before proceeding with the stochastic process.
Figure 3 shows some examples of initial transfer func-
tions.

Figure 3: Examples of initial transfer functions.

3.3 Selection of the Intermediate Popula-
tion

There are two methods for the selection of the in-
termediate population of solutions P 0(t). First, we
can randomly pick individual solutions from the previ-
ous population with uniform probability distribution.
This uniform random selection scheme is used for the
hill-climbing (PH, PL) and the simulated annealing
(SA) algorithms.

For the genetic algorithm we use proportionate se-
lection, where a function with �tness value fi is al-
located fi= �f o�springs [8, 16]. �f is the average �t-
ness value of the population. If each selected function
has a �tness value of fi = 1, the average �tness be-
comes s=S0, and the expected number of parents for
each function is S0=s. A systematic conversion of this
fractional number into the actual number of o�springs
may result in methodical allocation biases. We use a
stochastic roulette wheel selection scheme to generate
the population P 0(t) of parents [2]. Each transfer func-
tion is allocated a slot of a roulette wheel. The size
of the slot is proportionate to the expected number
of parents S0=s. A random number r 2 [0; 2�] de-
termines the slot of the next transfer function to be
copied into the parent population P 0(t). This proce-
dure is repeated until all parents are generated.

3.4 Generation of New Solutions

Every one of the N samples of each transfer func-
tion in P 0(t) is given a chance to undergo so-called
mutation according to the mutation rate Rm. Mu-
tation perturbs individual transfer functions to intro-
duce stochastic variability [16]. In order to gradually
decrease the search rate, we use a dynamic mutation



strategy, where the mutation rate Rm exponentially
decreases with an increasing number of generations
[16]. If an original oating point sample so is under-
going mutation, it is perturbed by a number pm to
the new sample value sn = so + pm. pm is deter-
mined by a random perturbation factor fm 2 [�1; 1]
and a constant perturbation distance dm, such that
pm = fmdm.

To satisfy the smoothness condition as discussed
above in \Solution Encoding," we apply a Gaussian
�lter during the mutation operation, an approach we
call mutation splatting. Figure 4 shows the general
concept. The original sample so at position xm is mu-

m

After mutation

Before mutation

p

x rr x
m mm

s

so

n

Figure 4: Mutation splatting at position xm. so is
the original sample; snis the new sample; pm is the
perturbation; rm is the splatting range.

tated by a perturbation pm to the new sample sn. A
random number rm is generated and de�nes the range
[xm � rm; xm + rm]. The Gaussian function G(x) is
applied inside this range, so that:

f(x) = f(x)+pmG(x�xm); (xm�rm) � x � (xm+rm):

Mutation splatting introduces a high variance to the
new functions while preserving certain smoothness
conditions. To compensate for the remaining spikes
due to crossover, we apply a low-pass �lter after re-
production.

In addition to mutation, which is used by all
stochastic search techniques, genetic algorithms also
use recombination, which merges information with the
hope of producing more adapted solutions [16]. Re-
combination is achieved by the so-called crossover
operator. The parents are randomly paired, and
each pair is given a chance for crossover accord-
ing to the crossover rate Rc. Among the di�erent

crossover mechanisms, we chose to implement two-
point crossover [6]. The arrays of N samples encod-
ing the transfer functions are treated as rings. Two
crossover points along the array are randomly chosen
and the in-between sections are exchanged. This pro-
cess eliminates the single-point crossover bias towards
the end segments of the array.

After a new solution is generated, we have to check
whether all domain conditions are satis�ed. If any
of the constraints are not met, the solution is either
discarded or modi�ed to satisfy the conditions. For
example, any newly-generated solution could be mod-
i�ed to guarantee that the opacity value corresponding
to zero scalar data values is zero.

3.5 Solution Evaluation

The translation from encoded transfer functions to
images is given by the direct volume rendering algo-
rithm. This algorithm introduces a complex, non-
linear relationship between the transfer functions and
the associated image. The most fundamental contri-
bution of this paper is the idea of hiding this complex-
ity from the user by transferring the problem from the
evaluation of actual transfer functions (genotype) to
the evaluation of the rendered images (phenotype).
In other words, we simply hope and assume that a
better transfer function produces a better image after
rendering. \Better" in this context can be completely
de�ned by the user's subjective intentions, or by some
user-speci�ed objective �tness function.

In the subjective approach, the user interactively
evaluates the performance or �tness of transfer func-
tions by analyzing the resulting images. This model
allows the user to come up with a meaningful and sat-
isfactory rendering without needing any knowledge on
how the transfer functions look or how they inuence
the rendering process. Consequently, we change the
basic stochastic search algorithm shown in Figure 2 to
include a user-evaluation stage.

User evaluation of transfer functions is based purely
on the quality of the images they generate. By select-
ing satisfactory images, the user selects the associated
transfer functions as well. A �tness value fi is assigned
to each function according to the user selection. All
functions have an initial �tness value of 0. Once they
are selected, their �tness value becomes 1. We call
such a scheme binary selection because it corresponds
to a \like" or \don't like" decision of the user during
evaluation of the images.

Other schemes are possible, for example, a subse-
quent reduction of the assigned �tness value in the
order of selection. The function selected �rst gets a
�tness of f1 = 1. The �tness value fi of the ith



selected function is reduced by a constant reduction
value fr , that is, fi = fi�1 � fr . However, we found
that such a ranking scheme requires a fair amount of
discipline and book-keeping from the user, and that
binary selection is an easier and more natural way of
user interaction.

In the alternative objective approach, we use auto-
matic evaluation of images to generate renderings that
satisfy certain objective criteria. The user �rst speci-
�es one or more 2D image operators that measure a
certain image quality. The optimization problem is to
�nd images that minimize or maximize these measure-
ments while satisfying domain conditions.

Several image operations have been incorporated
into our system as the criteria of �tness evaluation.
First, an approximation of the �rst order image en-
tropy has been implemented to approximately mea-
sure the amount of information in the image. For ex-
ample, images with high entropy generally contain a
lot of details. Therefore, maximizing the image en-
tropy can usually provide a good starting point for
the exploration of unknown data. However, image en-
tropy only measures the probabilities of gray values
occurring in the image and is not concerned with what
these values actually are. For example, an image con-
sisting of 50% pixels with value 255 and 50% pixels
with value 254 has the same entropy as an image con-
sisting of 50% pixels with value 255 and 50% pixels
with value 0.

An alternative measure is to maximize the variance
of pixels in the �nal image. This typically leads to an
image histogram that is spread out, although it has
the danger of moving all the gray levels to the ends
of the spectrum. The third function we incorporated
is aimed at maximizing the edge energy in an image.
The intention is to achieve images with well-de�ned
surfaces, which are among the most interesting visu-
alization results. The user has the choice of propor-
tionally combining these criteria. Of course, a user
can also use any other �tness evaluation function, de-
pending on the application.

4 User Interface

To experiment with the proposed method for trans-
fer function generation, we have tested a variety of
stochastic techniques, which include hill climbing, par-
allel hill-climbing, load balance parallel hill-climbing,
simulated annealing, and genetic algorithms. These
techniques have been incorporated into VolVis [1], a
public domain volume visualization system developed
at SUNY Stony Brook. Figure 5 (included in the color

section of these proceedings) shows the graphical user
interface of our implementation.

The upper-left area of Figure 5 shows an image
window with 25 volume-rendered images of a sim-
ulated high-potential iron protein dataset generated
from a population of pre-de�ned initial transfer func-
tions. Due to screen real-estate limitations, we chose
to render only small, so-called \thumb-print" images
of 100 by 100 pixels and restricted the population
size S to 25. Note that the performance of stochastic
search techniques, such as genetic algorithm, is closely
related to the selection and the size of the initial pop-
ulation, and generally 25 is small for the population
size. However, our experiments indicate fast conver-
gence when user selection is used as the �tness eval-
uation. For objective evaluation, a larger population
size can be used since intermediate images do not have
to be displayed.

The images are rendered using the ray-casting rou-
tines of VolVis with a user-speci�ed low to high accu-
racy. We currently use only opacity and color transfer
functions. The rendering time is by orders of magni-
tudes longer than the execution time of the stochastic
algorithms. To achieve interactive control, we calcu-
late and maintain a 3D sample bu�er which stores the
values of the sample points along each ray at the be-
ginning of the evolution. Thereafter, when a new set
of transfer functions is applied to produce a new im-
age, we need only to perform the compositing and thus
save an enormous amount of time.

The upper-right portion of Figure 5 shows the con-
trol panel. In addition to image accuracy, color for-
mat (gray scale or RGB), evaluation method (man-
ual or automatic), and stochastic technique, the user
also has the exibility of choosing the optical proper-
ties that need to be considered during optimization.
Currently, we allow three choices: opacity and color,
opacity only, or color only. Other values that may
be changed include parameters for mutation splatting
and low-pass �ltering. Furthermore, the user can in-
teractively modify the parameter values used in the
evolution process. For example, the genetic algorithm
contains three important parameters: the population
size, the crossover rate, and the mutation rate. With
our population size of 25, we chose an initial crossover
rate Rc of 0.9 and a mutation rate Rm of 0.01, as sug-
gested in [7]. The user can also interactively set the
parameters for the �tness evaluation functions, such
as the weights for entropy, variance, edge, and user-
selected �tness functions. Note that user selection can
be used as a part of the automatic �tness evaluation
function, thereby combining the subjective and objec-



tive �tness evaluations. Furthermore, the system al-
lows the user to de�ne up to 10 domain conditions for
each optical property.

The bottom area of Figure 5 shows the evolution
process using a dynamic tree [13]. Each node of the
tree corresponds to a generation of the evolution. At
each node, a population of transfer functions is rep-
resented by an icon which shows the �rst image of
the generation. The tree keeps record of the evolution
history and thus allows the user to trace back to a
particular generation.

When user evaluation is desired, an image of the
parent generation can be selected with a single mouse
click. Each selected image is highlighted and can be
de-selected by a second mouse click. A double click on
an image starts a pre-de�ned action, such as the gen-
eration of a higher resolution rendering of the image.
Alternatively, a drawing window displays the color and
opacity transfer functions associated with the image.
The user can then interactively edit and change these
transfer functions during the evolution process.

5 Results

Figure 6 (in the color section) shows the exploration of
di�erent volume visualizations of an MRI head. The
resolution of the MRI dataset is 59� 133� 133. The
genetic algorithm and manual evaluations were em-
ployed to generate the images. This particular dataset
is known to be quite di�cult to visualize because slight
changes in the transfer functions may produce dra-
matically di�erent results. In this example, instead
of converging to a set of similar images, we tried to
get many di�erent renderings using only one genetic
evolution process. Consequently, we selected very dif-
ferent parents from a certain generation, with the hope
that a new, interesting visualization would be gener-
ated after mutation and crossover. We also modi�ed
the genetic parameters and used high mutation and
crossover rates. This example e�ectively presents the
power of our algorithmfor exploring unknown datasets
or for generating new visualization e�ects.

Figures 7a and 7b (in the color section) show exam-
ple evolutions towards di�erent renderings of a high-
potential iron protein with resolution of 66� 66 � 66
voxels. Each image has been rendered with high image
accuracy using our optimized volume ray caster with
the 3D sample bu�er. It took about 10 seconds for
both rendering and stochastic processing to generate
a whole population of 25 images on a Silicon Graphics
High Impact equipped with one 250MHZ R4400 pro-
cessor and 128MB of RAM. Genetic algorithm and

manual evaluation were employed for the evolutions.
Both �gures show only the user-selected images,

where each row corresponds to a di�erent evolution
generation. The top rows show user selections from
the initial population, P0, which is shown in Figure 5.
The boundary of each image indicates which optical
property the user selected: red for color and opacity,
green for opacity, and blue for color. The bottom row
shows examples from the �nal population of images.
Our intention was to rely on the genetic algorithm
and manual evaluations to produce two very di�erent
sets of renderings from the same initial population.
Figure 7a shows the evolution towards orange, mostly
opaque images, whereas the �nal images of Figure 7b
are green and mostly transparent. Please note the fast
convergence of the algorithm towards the desired re-
sults after only two generations. No transfer functions
were edited, and for each set to arrive at the �nal ren-
dering took well below 5 minutes.

Figures 8a through 8d (in the color section) present
results using objective �tness evaluation. Starting
from the same initial population shown in Figure 5,
we applied di�erent stochastic algorithms for 100 gen-
erations. The evaluation criteria used are maximizing
image entropy for Figure 8a, maximizing image his-
togram variance for Figure 8b, maximizing image en-
ergy content for Figure 8c, and maximizing the equal
combination of these three criteria in Figure 8d. It
can be seen that all the features that appear in any
of the images of the initial population are present in
Figure 8a, and that well-de�ned surfaces are visible in
Figure 8c.

We have performed several experiments using dif-
ferent stochastic search techniques. Although we can
not draw any substantial conclusions because of the
limited number of experiments, it became clear that
simple hill-climbing is not as e�ective as the other
approaches. On the other hand, there seems to be
no major di�erence between genetic algorithms and
simpler stochastic approaches such as parallel hill-
climbing and simulated annealing.

6 Conclusions and Future Work

In this paper we have presented a new approach for
generating transfer functions for volume rendering us-
ing stochastic search techniques. The incorporation
of global optimization techniques into a visualization
system yields a novel type of user interaction with the
dataset. Instead of dealing with the large and abstract
parameter space of the rendering algorithm directly,
the user can concentrate on the quality and meaning



of the resulting images. By interactively or automat-
ically evaluating the performance of each image, the
user guides the search process towards a set of �nal
renderings satisfying visual or other goals. Our imple-
mentation demonstrates that optimal and sometimes
unexpected but interesting results can be achieved
without knowledge of the complex interaction between
transfer functions and the rendering process.

We are currently implementing a number of im-
provements to the system. For example, our experi-
ments show a strong relationship between the selection
of the initial population and convergence speed. We
think that it may be bene�cial to incorporate meth-
ods of expert systems for the selection of the initial
transfer functions. In addition, we plan to apply the
proposed evolutionary methods to other �elds in com-
puter graphics, for example, to the evolution of spec-
tral reectivity functions for di�erent surface materi-
als, or to the generation of texture maps.
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Figure 5: User interface with 25 initial images. Figure 6: 25 di�erent images for an MRI head.



Figure 7: Two transfer function evolutions with user
evaluations for a simulated high-potential iron protein.

Figure 8: Final images generated by automatic eval-
uations of di�erent criteria: (a) image entropy; (b)
image variance; (c) edge content; (d) a combination
(1=3 entropy, 1=3 variance, and 1=3 edge content).


