
 

Ray Casting Architectures for Volume Visualization

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Ray, Harvey, Hanspeter Pfister, Deborah Silver, and Todd A.
Cook. 1999. Ray casting architectures for volume visualization.
IEEE Transactions on Visualization and Computer Graphics 5(3):
210-223.

Published Version doi:10.1109/2945.795213

Accessed February 18, 2015 4:04:12 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4138553

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28933551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4138553&title=Ray+Casting+Architectures+for+Volume+Visualization
http://dx.doi.org/10.1109/2945.795213
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4138553
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Ray Casting Architectures for Volume Visualization
Harvey Ray, Hanspeter P�ster, Deborah Silver, Todd A. Cook

Abstract|Real-time visualization of large volume datasets

demands high performance computation, pushing the stor-
age, processing, and data communication requirements to

the limits of current technology. General purpose paral-
lel processors have been used to visualize moderate size
datasets at interactive frame rates; however, the cost and

size of these supercomputers inhibits the widespread use
for real-time visualization. This paper surveys several spe-
cial purpose architectures that seek to render volumes at

interactive rates. These specialized visualization accelera-
tors have cost, performance, and size advantages over par-

allel processors. All architectures implement ray casting
using parallel and pipelined hardware. We introduce a new
metric that normalizes performance to compare these ar-

chitectures. The architectures included in this survey are
VOGUE, VIRIM, Array Based Ray Casting, EM-Cube, and

VIZARD II. We also discuss future applications of special
purpose accelerators.

I. Introduction

V
OLUME visualization is an important tool to view
and analyze large amounts of data from various sci-

enti�c disciplines. It has numerous applications in areas
such as biomedicine, geophysics, computational uid dy-
namics, �nite element models, and computational chem-
istry. Numerical simulations and sampling devices such as
magnetic resonance imaging (MRI), computed tomography
(CT), satellite imaging, and sonar are common sources of
large 3D datasets. These datasets are generally anywhere
from 1283 to 10243 and may be non-symmetric (i.e., 1024
� 1024 � 512).
Volume rendering involves the projection of a volume

dataset onto a 2D image plane. From Figure 1 we see
that a volume dataset is organized as a 3D array of volume
elements, or voxels1.

Voxels represent various physical characteristics, such as
density, temperature, velocity, and pressure. Other mea-
surements, such as area and volume, can be extracted from
the volume datasets. Volume data may contain more than
a hundred million voxel values requiring a large amount of
storage. In Figure 1, the voxels are uniform in size and reg-
ularly spaced on a rectilinear grid. Other types of volume
data can be classi�ed into curvilinear grids, which can be
thought of as resulting from a warping of a regular grid,
and unstructured grids, which consist of arbitrary shaped
cells. This paper presents a survey of recent custom vol-

Harvey Ray is a Ph.D. student at Rutgers State University, Email:
haray@caip.rutgers.edu
Hanspeter P�ster is with Mitsubishi Electric Research, Email: p�s-

ter@merl.com
Deborah Silver is an associate professor at Rutgers State University,

Email: silver@caip.rutgers.edu
Todd Cook is a research and development engineer at Improv Sys-

tem Inc., Email: toddc@improvsys.com
1Note, the term voxel has been used to refer to point samples and

cubic volume elements. The papers surveyed here use both de�nitions
for illustration purposes. Therefore, �gures in this paper will use a
point sample representation or a unit volume representation of a voxel

Fig. 1. Volume dataset.

ume rendering architectures that seek to achieve interactive
volume rendering for rectilinear datasets. A survey of other
methods used to achieve real time volume rendering is pre-
sented in [47]. The motivation for custom volume renderers
is discussed in the next section. Several other custom ar-
chitectures exist [1], [8], [10], [16], [17], [19], [36], [38] but
were not presented because they are either related to the
architectures presented here or are not considered to be
recent. Section III presents three parallel volume render-
ing algorithms that are implemented by the architectures
in this paper. Major components of a volume rendering
system are discussed in Section IV. Five specialized vol-
ume rendering architectures are surveyed in Section V. A
new metric is introduced in Section VI to compare each
architecture. A comparison of the surveyed architectures
is presented in Section VII and a discussion is presented in
section VIII. Future trends for specialized rendering archi-
tectures are presented in Section IX.

II. Need for Custom Visualization

Architectures

A real-time volume rendering system is important for the
following reasons [37]: 1) to visualize rapidly changing 4D
(spatial-temporal) datasets, 2) for real-time exploration of
3D datasets (e.g., virtual reality), 3) for interactive ma-
nipulation of visualization parameters (e.g., classi�cation),
and 4) interactive volume graphics [21]. As the sampling
rates of devices become faster, it will be possible to gener-
ate several 3D datasets at interactive rates; real-time vol-
ume rendering is required to visualize these dynamically
changing datasets (e.g., for 3D ultrasound [43], [45]). It
is often necessary to view the dataset from continuously
changing positions to better understand the data being vi-
sualized; real-time volume rendering will enhance visual
depth cues through motion and occlusion as the dataset
is viewed from varying positions. Classi�cation is impor-
tant in correctly visualizing the dataset by con�guring ob-
ject properties (opacity, color, etc.) based on voxel values;

as necessary.



classi�cation is an iterative process which will bene�t from
real-time volume rendering; thus, scientists will be able
to interactively manipulate opacity and color mappings.
Volume graphics is an emerging area of research that pro-
duces synthetic datasets [21]. Volume graphics challenges
the way 3D graphics is currently implemented. Traditional
3D graphics use polygonal meshes to model objects and
these meshes are scan-converted into pixels inside the frame
bu�er. Alternatively, volume graphics models objects as a
3D discrete set of point samples (voxels). These voxels
comprise the 3D dataset. The dataset is rendered using
standard volume visualization techniques.

Real-time visualization of large 3D datasets places strin-
gent computational demands on modern workstations, es-
pecially on the memory system. Table I estimates the mem-
ory bandwidth to render di�erent size datasets at 30Hz. It
is assumed that the volume rendering algorithm accesses
each voxel once per projection. The required memory
bandwidth can not be sustained on most modern worksta-
tions and personal computers. The dataset must be par-
titioned among multiple memory modules to achieve the
desired bandwidth and parallel processing must be used.

TABLE I

Estimated memory bandwidth for real-time volume

rendering.

Dataset Size Frame Rate (Hz) Memory Bandwidth
1283 � 16 30 120 MB/s
2563 � 16 30 960 MB/s
5123 � 16 30 7.5 GB/s
10243 � 16 30 60 GB/s

Massively parallel processors and multiprocessors archi-
tectures [2], [4], [13], [26], [42], [50] have achieved image
generation rates up to 30Hz on moderate sized datasets
using algorithmic optimizations; however, the cost of these
machines is prohibitive. In addition, the algorithmic op-
timizations are usually dataset dependent. Custom archi-
tectures have the potential to match or exceed the perfor-
mance of other interactive visualization solutions at a lower
cost and smaller size. Performance, cost, and size bene�ts
are necessary for a desktop interactive visualization system.

III. Parallel Ray Casting

Volume rendering involves the direct projection of the en-
tire 3D dataset onto a 2D display. Volume rendering algo-
rithms can simultaneously reveal multiple surfaces, amor-
phous structures, and other internal structures of a 3D
dataset [18]. These algorithms can be divided into two
categories: forward-projection and backward-projection.
Forward-projection algorithms iterate over the dataset dur-
ing the rendering process projecting voxels onto the image
plane. A common forward-projection algorithm is splat-
ting [46]. Backward-projection algorithms iterate over the
image plane during the rendering process re-sampling the
dataset at evenly spaced intervals along each viewing ray.
In general, ray casting algorithms traverse the dataset in
a more random manner. All architectures surveyed in

this paper implement ray casting, a common backward-
projection algorithm [28]. The ray casting algorithm is ca-
pable of producing high-quality images and a large degree
of parallelism can be exploited from the algorithm.

In ray casting, rays are cast into the dataset. Each ray
originates at the viewing (eye) position, penetrates a pixel
in the image plane (screen), and passes through the dataset.
At evenly spaced intervals along the ray, sample values
are computed using interpolation. The sample values are
mapped to display properties such as opacity and color. A
local gradient is combined with a local illumination model
at each sample point to provide realistic shading of the
object. Final pixel values are found by compositing color
and opacity values along a ray. Composition models the
physical reection and absorption of light.

Because of the high computational requirements of vol-
ume rendering, the data needs to be processed in a
pipelined and parallel manner. Parallel ray casting algo-
rithms use one of the following processing strategies: ob-
ject order, image order, or hybrid order [14]. This division
describes the manner in which a dataset is processed. Fig-
ure 2 illustrates the three variations.

Im
age

Plane

Im
age

Plane

Im
age

Plane

Intermediate Plane

A) Image order B) Object order C) Hybrid order

Fig. 2. Ray casting categories.

A dataset in Figure 2 is organized as a set of parallel
slices. Image order algorithms cast rays through the image
plane and re-sample at locations along the ray (Figure 2A).
They o�er exibility for algorithmic optimizations, but ac-
cessing the volume memory in a non-predictable manner
signi�cantly slows down memory performance. Object or-
der algorithms require that the dataset be re-sampled so
that the slices are aligned with the view direction (Fig-
ure 2B). A major advantage of object order algorithms
is that accesses to the volume memory are predictable,
thereby, leading to e�cient memory bandwidth utilization.
Hybrid order algorithms project the dataset to the face of
the dataset most parallel to the image plane. This also
allows for predictable memory accesses to the volume data
where no more than one sample is taken per voxel. The
intermediate 2D image is warped into the �nal image (Fig-
ure 2C). The shear-warp algorithm is an example of a hy-
brid order algorithm [27]. A summary of implementation
tradeo�s for each parallel scheme is shown in Table II.

IV. Components of a Ray Casting System

The following components are needed for any ray casting
implementation:

Memory system provides the necessary voxel values at a



TABLE II

Tradeoffs for different parallelization methods.

Image order Object order Hybrid order
Advantages - Easy to implement - Regular memory access - Merge bene�ts of

algorithmic optimizations patterns image order and object
(e.g., early-ray termination) order algorithms

Disadvantages - "Random" memory access - Di�cult to implement - Perspective projections
patterns algorithmic optimizations adversely a�ect performance

- Non-uniform mapping of - Additional 2D image
ray samples to voxels warp required

rate which ultimately dictates the performance of the ar-
chitecture.
Ray-path calculation determines the voxels that are pene-
trated by a given ray; it is tightly coupled with the organi-
zation of the memory system.
Interpolation estimates the value at a re-sample location
using a small neighborhood of voxel values.
Gradient estimation estimates a surface normal using a
neighborhood of voxels surrounding the re-sample location.
Classi�cation maps interpolated sample values and the es-
timated surface normal to a color and opacity.
Shading uses gradient and classi�cation information to
compute a color that takes into account the interaction
of light on the estimated surfaces in the dataset.
Composition uses shaded color values and opacity to com-
pute a �nal pixel color for display.

A. Memory System

The memory system is the most important component of
a visualization architecture. The memory system contains
the dataset and is responsible for supplying the compu-
tational units with voxel values at a high bandwidth to
support the target frame rate. Since the dataset will be
visualized from various view positions, the throughput of
the memory system should be as view independent as possi-
ble. Regardless of the parallel processing strategy, each ray
casting algorithm requires simultaneous access to multiple
voxels. Ideally, the memory system provides these voxels in
a conict-free manner; otherwise, the overall system may
su�er performance degradation.
The architectures surveyed in this paper use four mem-

ory partitioning schemes shown in Figure 3 to achieve a
high memory throughput. Sub-block partitioning (Fig-
ure 3A) divides the dataset into smaller volumes. Each
sub-block is assigned to a di�erent memory module. Or-
thogonal slice partitioning (Figure 3B) assigns each slice
inside the dataset to a memory module. Each slice is per-
pendicular to one axis of the dataset. In this partitioning
scheme, memory throughput is maximized for two of the
three orthogonal viewing directions. The eight-way inter-
leaved memory system (Figure 3C) assigns each voxel in
a 2 � 2 � 2 block to separate memory banks. The eight-
way interleaved memory partition is limited to eight par-
allel memory accesses. As a result, it can be combined
with sub-block partitioning when additional parallelism is
necessary. The skewed (non-orthogonal) slice partitioning
scheme (Figure 3D) assigns slices that make a 45� angle
with each axis of the dataset to memory modules. In this

Fig. 3. Common memory organization schemes.

partitioning scheme, the memory throughput is maximized
for the three orthogonal viewing directions.
The maximum performance obtained by a volume ren-

dering architecture is primarily determined by the de-
gree of parallelism and the memory technology used.
Recent memory devices use pipelining to accelerate lin-
ear accesses. Synchronous memories, such as Syn-
chronous DRAM (SDRAM), can sustain memory accesses
at 150MHz. This is a three-fold speed up over previous
alternatives. More recently, Rambus de�ned a high-speed
interface that will allow sustainable bandwidths up to 800
MB/s using an 8-bit bus. Using a wider 16-bit bus (Direct
Rambus), these devices are able to sustain 1.6 GB/s data
throughput [3]. These advanced memories can potentially
enhance performance for any given architecture. A metric
that measures the ability of a volume rendering architec-
ture to utilize available memory bandwidth is presented in
Section VI.

B. Ray-Path Calculation

Calculating ray-voxel intersections is tightly coupled
with the memory system design and is related to the type
of ray casting algorithm used. The appropriate memory
addresses for each voxel that a ray penetrates must be
computed. These addresses are calculated by construct-
ing a line (ray) between the viewing position and a pixel
on the image plane and extending the line (ray) through
the dataset. Based on the processing strategies from the
previous section, it may be necessary to calculate a sub-
stantial number of memory addresses in parallel. Look-



up tables (or templates) have been used to reduce the
computation involved in calculating ray paths through the
dataset [49]. For parallel projections and hybrid order ar-
chitectures, templates only need to be generated once per
projection because all rays have the same slope.

C. Interpolation

Estimating the sample value requires evaluation of the
trilinear interpolation equation:

S(i; j; k) = P000(1� i)(1� j)(1� k)
+ P100i(1� j)(1� k) + P010(1� i)j(1� k)
+ P110ij(1� k) + P001(1� i)(1� j)k
+ P101i(1� j)k + P011(1� i)jk + P111ijk

(1)
i, j, and k are fractional o�sets of the sample position in
the x, y, and z directions, respectively. These variables are
between 0 and 1. Pabc is a voxel whose relative position in
a 2�2�2 neighborhood of voxels is (a; b; c). a, b, and c are
the least signi�cant bit of the x, y, and z sample position,
respectively. From Equation 1, we see that a total of 24
multiplications are necessary and eight voxel values are re-
quired to compute each re-sample location. The number of
multiplications can be reduced by approximately one-half
if factors are re-used. If we assume that each 1�1�1 unit
volume in a 512�512�512 dataset contains one re-sample
location per projection, then more than 1.5 billion multipli-
cations would be necessary for each projection. Multiple
projections are needed per second for interactive projec-
tion rates, requiring an enormous amount of computational
power. As few as eight multiplications are necessary if the
interpolation weights are stored in a look-up table. Higher-
order interpolation can be used to improve image-quality
but it is typically not done in hardware because of its com-
putational cost.

D. Gradient Estimation

The next step is the determination of gradients to ap-
proximate surface normals for classi�cation and shading.
x-, y-, and z-gradients may be computed using central dif-
ferences:

Gx = S(i+1;j;k)�S(i�1;j;k)
�x

Gy = S(i;j+1;k)�S(i;j�1;k)
�y

Gz = S(i;j;k+1)�S(i;j;k�1)
�z

(2)

S(i; j; k) is the interpolated sample at the location (i; j; k)
inside the dataset. �x, �y, and �z is the spacing be-
tween samples in x, y, and z directions, respectively. The
costly divisions are usually avoided because of the regular
spacing between voxels inside the dataset. Two re-sample
locations adjacent to the sample location in each direction
are required to compute the gradient using central di�er-
ences. Some algorithms use a larger neighborhood of voxels
to generate images that appear smoother and/or to reduce
temporal aliasing. In addition to the gradient vector com-
ponents, the gradient magnitude and the normalized gradi-
ent vector may be required. Gradients can also be taken at

neighboring voxels and interpolated to yield the gradient
at the re-sample location.
In practice, several gradient estimation schemes ex-

ist [15], [18], [31], [34], [51]. A comprehensive considera-
tion of these methods is beyond the scope of this survey.
In general, high-quality gradient estimation requires ad-
ditional computation and memory bandwidth (or on-chip
storage) that may a�ect performance and cost.

E. Classi�cation

Classi�cation maps a color and opacity to sample val-
ues. Opacity values range from 0 (transparent) to 1:0
(opaque) [28]. Classi�cation is typically implemented in
hardware using look-up tables (LUTs). These LUTs are
typically addressed by sample value and/or gradient mag-
nitude, and they output sample opacity and color. It is de-
sirable to be able to modify the information in these LUTs
during the visualization process in real-time. If the archi-
tecture processes multiple re-sample locations in parallel,
these LUTs must be duplicated to avoid contention.

F. Shading

The Phong shading algorithm [40], or variants, are of-
ten used in the shading subsystems of volume rendering
architectures. This algorithm requires gradients, light and
reection vectors to calculate the shaded color for each re-
sample location. The algorithm involves computationally
expensive division, multiplication, and exponentiation that
must be implemented in hardware. In practice, the shading
algorithm is implemented in either arithmetic units for ac-
curacy or reectance LUTs for exibility [44]. For color im-
ages, the Phong shading models may be applied to the red,
green, and blue components. Also, additional computation
may be necessary if multiple light sources are supported.

G. Compositing

The composition system is responsible for summing up
color and opacity contributions from re-sample locations
along a ray into a �nal pixel color for display [41]. The
front-to-back formulation for compositing is:

CAcc = (1:0� �Acc) � Csample + CAcc

�Acc = (1:0� �Acc) � �sample + �Acc
(3)

CAcc is the accumulated color, �Acc is the accumulated
opacity, Csample is the samples color, and �sample is the
samples opacity. Two multiplies are needed to composite
each re-sample location. Compositing in a front-to-back
order allows for early ray termination if a desired opacity
threshold has been reached. Back-to-front composition can
be utilized to simplify the calculation; however, early ray
termination is not possible. Color information produced
from the compositing system is stored into a frame bu�er
for display.

V. Architecture Survey

This section presents �ve special purpose volume ren-
dering architectures. A description of each architecture is



given along with its performance. The following architec-
tures are surveyed, in chronological order of their develop-
ment: VOGUE, VIRIM, Array Based Ray Casting, EM-
Cube, and VIZARD II. Each �gure in this section were
redrawn from their original publication.

A. VOGUE

The VOGUE architecture [22], [24] was developed at the
University of T�ubingen, Germany. One rendering engine
provides high-quality, volume-rendered images with mul-
tiple light sources using four custom VLSI chips. A block
diagram of the architecture is shown in Figure 4. The main

Fig. 4. VOGUE architecture.

goals of VOGUE are exibility and compactness. VOGUE
is capable of three rendering modes based on the gradient
estimation method: a fast 8-voxel gradient, a slower in-
termediate quality 32-voxel gradient, and a higher quality
56-voxel gradient. VOGUE hardware consist of an Ad-
dress SeQuencer (ASQ) for memory addressing, a volume
memory (VoluMem) for dataset storage, a Reconstructor
EXtractor (REX) for interpolation, a COLOSSUS unit for
shading, and a COMET unit for composition. VOGUE
implements an unrestricted Phong illumination model in
addition to depth cueing.

A.1 Description

The Volume Memory (VoluMem) is organized as an
eight-way interleaved memory system (see Figure 3C)
which allows eight voxels surrounding a trilinear re-sample
location to be retrieved in parallel.
The ASQ unit provides necessary addresses for the Vol-

uMem. It generates addresses for the voxels involved in
re-sampling and gradient estimation. A ray's initial posi-
tion and incremental values to the next re-sample location
are computed by the host computer and passed to the ASQ
where they are incremented to compute the address of the
eight voxels surrounding the re-sample location.
The REX unit performs trilinear interpolation using the

eight voxels from VoluMem to compute the re-sampled
value. The REX contains three stages of linear interpo-
lators. Adjacent voxels from the trilinear interpolation
neighborhood are used in linear interpolations to compute
edge-values, then pairs of edge-values are used in linear
interpolations to compute face-values, and the last linear

interpolation uses a pair of opposite face-values to compute
the �nal sample value. The REX is a pipelined unit and
produces one interpolation value per clock cycle.

In addition to interpolation, the REX unit also per-
forms gradient calculation. Gradient calculation requires
1 memory accesses for the fastest gradient mode (8-voxel
gradient), 4 memory accesses for the intermediate mode
(32-voxel gradient), and 7 memory accesses for the highest
quality gradient mode (56-voxel gradient). In the fastest
gradient mode, opposite face-values computed during tri-
linear interpolation are used to compute gradients. The
higher quality gradient modes require additional voxels and
interpolation. The REX unit can produce one gradient vec-
tor and magnitude per clock cycle. The REX unit contains
three pipelined square units and one square root unit to
compute the gradient magnitude.

Classi�cation information is stored in three LUTs: spec-
ular coe�cient, color, and opacity. These tables are in-
dexed using the sample value, gradient, and gradient mag-
nitude. These values are subsequently used by the shading
unit (COLOSSUS) and compositing unit (COMET).

The COLOSSUS shading unit implements the unre-
stricted Phong illumination model and depth cueing. The
specular coe�cient from the LUT along with the gradi-
ent vector, light vector, and ambient coe�cient are passed
to the COLOSSUS chip. The COLOSSUS chip internally
converts operands to logarithms to reduce multiplication
and division to simple addition and subtraction, respec-
tively. The costly exponentiation operation required by the
Phong illumination model is reduced to a multiply; how-
ever, fast logarithmic converters are necessary. These units
are pipelined to achieve the desired system performance.

Shaded samples are composited in the COMET chip.
The COMET chip requires an opacity, from a LUT, and
color values from the COLOSSUS chip. These values are
composited into a �nal pixel color that is passed to the
frame bu�er.

A.2 Performance

Estimated performance of one VOGUE module, contain-
ing the four VLSI units (ASQ, REX, COLOSSUS, and
COMET), is 2:5 frames/second for 2563 datasets using the
fastest rendering mode. For higher performance, several
rendering modules are connected to other modules in a
ring network. To achieve larger memory throughput, a
fully-parallel implementation uses sub-block partitioning
to globally partition the dataset. Each sub-block is lo-
cally partitioned using the eight-way memory interleaving
scheme and is stored into the VoluMem of a given rendering
module. Boundary voxels are replicated among adjacent
rendering modules to enhance performance.

VOGUE is capable of perspective projection and is able
to utilize early ray termination. The estimated perfor-
mance using the fastest 1-access gradient mode is 20Hz

using eight modules for 2563 datasets and using 64 mod-
ules for 5123 datasets. VOGUE's highest quality gradient
mode improves image-quality, however, performance is low-



ered to 2 frames/second.

B. VIRIM

The VIRIM architecture has been developed and assem-
bled at the University of Mannheim [12] to achieve real-
time visualization on moderate sized datasets (256� 256�
128) with high image quality. VIRIM is an object order
ray casting engine that uses the Heidelberg raytracing al-
gorithm [32] discussed below. The VIRIM architecture is
shown in Figure 5. It consist of a geometry unit and a ray

X-, Y- Gradient Processor

Interpolation Tree

Ray-casting
Unit

DSPs

Board Master

DSPs

Board Master

Density LUT

2 Independent
Banks of 8 Units Each

Interpolation
Weight Memory

Address Generator

Geometry
Unit

Host Bus

Fig. 5. VIRIM architecture.

casting unit. The geometry unit is responsible for inter-
polation and gradient calculation; the ray casting unit is
responsible for implementing the actual ray casting algo-
rithm.

B.1 Description

The rotation of the dataset occurs on dedicated rota-
tion hardware called the Rotator Board (geometry unit in
Figure 5). The Rotator Board aligns the dataset with the
viewing position. The Rotator Board consists of the vol-
ume memory, a geometry processor, an interpolation pro-
cessor, and a gradient processor.
The dataset is stored in an eight-way interleaved mem-

ory system. The dataset is rotated using backward map-
ping from the re-sample position and a weighted interpola-
tion mask on an eight voxel neighborhood. Arbitrary (e.g.,
Gaussian) interpolation weights can be used in the 8-voxel
neighborhood instead of trilinear interpolation. The geom-
etry processor generates the addresses for the eight memory
banks using a rotation matrix. Unlike other architectures,
VIRIM does an interpolation on classi�ed density values.
The mappings are stored in eight LUTs that can be freely
modi�ed.
A modi�ed 2D Sobel �lter is used to estimate the X

and Y components of the gradient vector in the re-sampled
coordinate system. Because of this, the gradient is only
two-dimensional and view dependent. The output of the
rotator board are the density and gradient values for a
sample location. These components are transferred to the

Digital Signal Processor (DSP) boards (ray casting unit in
Figure 5) using a specialized bus and stored into �rst-in
�rst-out memories (FIFOs). The geometry units are much
faster than the DSPs; therefore, the FIFOs are required to
de-couple speed di�erences between the two units.
The DSP board implements ray casting with the Hei-

delberg illumination model. In the Heidelberg model, the
dataset is rotated such that viewer looks along a major
axis. Two light sources enter the volume. One light source
is along the direction of the viewer and the other light
source is 45� from the �rst light source. Light intensity
is calculated slice-by-slice, and the �nal illumination value
per sample is generated by the summation of all light in-
tensity emitted in the viewers direction. The Heidelberg
raytracing algorithm can account for reection, absorption,
emission of light, and is capable of producing shadows.
The DSP board contains eight DSP chips and a CPU.

Floating point operations for the shading and visualiza-
tion algorithm are performed by the DSPs. The DSPs are
programmable and provide exibility for the architecture
to implement di�erent volume rendering and shading algo-
rithms.

B.2 Performance

VIRIM is capable of producing shadows and supports
perspective projections. One VIRIM module with four
boards has been assembled and achieves 2:5Hz frame rates
for 256� 256� 128 datasets. To achieve interactive frame
rates, multiple rendering modules have to be used; however,
dataset duplication is required. Four modules (16 boards)
are estimated to achieve 10Hz for the same dataset size,
and eight modules (32 boards) are estimated to achieve
10Hz for 2563 datasets [14].

C. Array Based Ray Casting

The Array Based Ray Casting engine developed at the
University of New South Wales [6] is an object order ray
casting architecture. This architecture consists of two par-
allel pipelined arrays used to rotate the dataset and to cast
rays, as illustrated in Figure 6. These rotation arrays are

Warp Array
Double
Buffered

Input
Memory

Ray Array 1.5n
Rendering
Pipelines

Frame
Buffer

Input
Stream

Scanline 0

Scanline 1.5n

Slice Shear Ray CastingDataset

x

z
y

Fig. 6. Array Based Ray Casting architecture.



connected between n memory modules and 1:5n render-
ing pipelines, n is the resolution of the dataset. In the
second array, intersections with voxels are determined by
using nearest neighbor or zero order interpolation. Each
rendering pipeline performs shading and composition for
a given scanline. In addition, the system is composed of
a double-bu�ered input memory, memory swapping array,
and a frame bu�er.

C.1 Description

The volume dataset is stored in a double-bu�ered vol-
ume memory that allows the simultaneous loading of one
dataset and visualization of another. The memory sys-
tem uses orthogonal slice partitioning (see Figure 3B). The
dataset is stored in memory in a view dependent manner
using coordinate swapping. Using a spherical coordinate
system, view positions are classi�ed as being in one of eight
primary octant regions. As the dataset is loaded, coordi-
nate swapping occurs based on the view position to allow
conict-free access to beams. Note that coordinate swap-
ping performs a partial rotation. Limited rotations about
the X- and Y- axis occurs in the Warp Array and Ray Ar-
ray, respectively. These three partial rotations allow gen-
eral rotation of the dataset.

Vertical beams, indicated by similar shaded voxels in
Figure 6, are loaded into the Warp Array in one clock cy-
cle. The Warp Array rotates the volume by �45� around
the X-axis by shearing slices in Y. The shear is accom-
plished in the Warp Array by shifting beams of voxels
based on a comparison of the row coordinate and the
beam's rotated Y-coordinate. The �rst column of the Warp
Array computes these Y-coordinates for each voxel, and
the remaining columns contain simple processing elements.
These elements perform three basic functions: shift-right,
shift-right-up, and shift-right-down. The rows in both the
Warp Array and Ray Array correspond to a discrete Y-
coordinate. However, explicit Y-coordinate information is
only stored in the Warp Array.

Voxels in the rightmost column of the Warp Array pro-
ceed to adjacent processing elements in the leftmost column
of the Ray Array. The Ray Array casts parallel rays into
the sheared YZ-slices. As indicated in Figure 6, a row in-
side the Ray Array corresponds to a scanline of rays. Ini-
tializers compute X- and Z-coordinates for voxels during
ray casting. Each ray's initial coordinate and increment
vector is shifted into place inside the Ray Array before ray
casting. The processing elements in the Ray Array im-
plement a Compare-and-Shift-Right function. If a voxels
coordinate matches a ray's current coordinate, a ag is set
which proceeds through the remainder of the array with
the voxel and coordinate data. The Ray Array implements
nearest neighbor or zero order interpolation.

A one dimensional array of rendering pipelines classi�es,
shades, and composites the voxels along the discrete rays.
To estimate gradients, each element in the Ray Arrays has
additional registers to bu�er voxel information. Voxels tra-
verse a row inside the Ray Array three times. A 3� 3 box

�lter is used in the Rendering Pipelines to estimated gradi-
ents. The gradient estimation and shading algorithm uses
a full 26-voxel neighborhood and creates smoothly shaded
images [9].

C.2 Performance

If n is the dimension of the volume data, the size of the
Warp Array and Ray Array are 1:5n� n and 1:5n� 1:5n,
respectively. For 2563 datasets, this corresponds to approx-
imately 212,992 processing elements. An additional col-
umn in each array contains the coordinate initializers. The
architecture also contains 1:5n rendering pipelines. The
Warp Array for this dataset dimension is estimated to �t
inside a 5� 5 array of FPGAs. Processing elements in the
Ray Array are larger than those in the Warp Array and re-
quire more hardware. However, a smaller Ray Array (i.e.,
with fewer columns) can be used by time-multiplexing the
Ray Array and stalling the Warp Array, thereby reducing
throughput.

This architecture only supports parallel rendering and
is capable of 15Hz frame rates for 2563 datasets shar-
ing the Ray Array 10 times. The architecture has under-
gone several changes since its publication and is now called
VIZAR [7].

D. EM-Cube

EM-Cube is a commercial version of the high-
performance Cube-4 [36], [37], [39] volume rendering ar-
chitecture that was originally developed at the State Uni-
versity of New York at Stony Brook. EM-Cube is currently
under development at Mitsubishi Electric Research Labo-
ratory [35]. The Cube family of architectures are charac-
terized by memory skewing. EM-Cube is a highly parallel
architecture based on the hybrid order ray casting algo-
rithm shown in Figure 2C. Rays are sent into the dataset
from each pixel on the base plane, which is co-planar to the
face of the dataset that is most parallel to the image plane.
Because the image plane is typically at some angle to the
base-plane, the resulting base-plane image is 2D warped
onto the image plane.
The main advantage of this algorithm is that voxels can

be read and processed in planes of voxels (so called slices)
that are parallel to the base-plane [37]. Within a slice,
voxels are read from memory a beam of voxels at a time,
in top to bottom order. This leads to regular, object order
data access. The EM-Cube architecture utilizes memory
skewing [20] on a block granularity for conict-free beam
access.

D.1 Description

EM-Cube will be implemented as a PCI card for Win-
dows NT computers. The card will contain one volume ren-
dering ASIC, 32 Mbytes of volume memory, and 16 Mbytes
of local pixel storage. The warping and display of the �-
nal image will be done on an o�-the-shelf 3D graphics card
with 2D texture mapping. The EM-Cube volume rendering
ASIC, shown in Figure 7, contains eight identical render-



ing pipelines, arranged side by side, and interfaces to voxel
memory, pixel memory, and the PCI bus. Each pipeline

Interpolation

Gradient
Estimation

Shading &
Classification

Compositing

P
ipeline 0

P
ipeline 1

P
ipeline 2

P
ipeline 3

P
ipeline 4

P
ipeline 5

P
ipeline 6

P
ipeline 7

Voxel Memory Interface

Pixel Memory Interface

SDRAM SDRAM SDRAM SDRAM

SDRAM SDRAM SDRAM SDRAM

P
C

I Interface
E

M
-C

ube
A

SIC

Slice B
uffers

Fig. 7. EM-Cube architecture with eight identical ray casting
pipelines.

communicates with voxel and pixel memory and the two
neighboring pipelines. Pipelines on the far left and right
are connected to each other in a wrap-around fashion (indi-
cated by grey arrows in Figure 7). A main characteristic of
EM-Cube is that each voxel is read from volume memory
exactly once per frame. Voxels and intermediate results
are cached in so called slice bu�ers so that they become
available for calculations precisely when needed.

EM-Cube is a parallel projection engine with multiple
rendering pipelines. Each pipeline implements the ray cast-
ing algorithm. Samples along each ray are calculated using
trilinear interpolation. A 3D gradient is computed using
central di�erences between trilinear samples. The gradient
is used in the shader stage, which computes the sample
illumination according to the unrestricted Phong lighting
model using a reectance LUT [44]. Look-up tables in the
classi�cation stage assign color and opacity to each sample
point. Finally, the illuminated samples are accumulated
into base plane pixels using front-to-back compositing.

Volume memory is organized as four 64-Mbit 16-bit wide
SDRAMs for 32 Mbytes of volume storage. The volume
data is stored as a 2� 2 � 2 blocks of neighboring voxels.
Miniblocks are read and written in bursts of eight voxels
using the fast burst mode of SDRAMs. In addition, EM-
Cube uses linear skewing of these blocks. Skewing guaran-
tees that the rendering pipelines always have access to four
adjacent miniblocks in any of the three slice orientations.

D.2 Performance

EM-Cube is a parallel ray casting engine that imple-
ments a hybrid order algorithm; however, EM-Cube does
not support perspective projections. Each of the four
SDRAMs provides burst-mode access at up to 133MHz,
for a sustained memory bandwidth of 4� 133� 106 = 533
million 16-bit voxels per second. Each rendering pipeline
operates at 66MHz and can accept a new voxel from its
SDRAM memory every cycle. Eight pipelines operating in
parallel can process 8� 66� 106 or approximately 533 mil-
lion samples per second. This is su�cient to render 2563

volumes at 30 frames per second.

E. VIZARD II

The VIZARD II architecture is being developed at the
University of T�ubingen to bring interactive ray casting into
the realm of desktop computers [33]. This is the second
generation of VIZARD systems [23], [25]. These image or-
der architectures are characterized by methods to reduce
memory bandwidth requirements for interactive visualiza-
tion. While VIZARD uses a pre-shaded and pre-classi�ed
compressed dataset, VIZARD II only preprocesses gradi-
ents that are stored into a quantized gradient table. Using
central di�erences as the underlying gradient �lter, prepro-
cessing the gradient �lter requires only a few seconds and
is only performed once per dataset. Gradient quantization
potentially allows VIZARD II to implement global gradi-
ents. VIZARD II was designed to interface to a standard
PC system using the PCI bus. The dataset is stored in four
interleaved memory banks along with a pre-computed gra-
dient index, segmentation index, and gradient magnitude
for each voxel. The combination of pre-computed gradi-
ents, caching, and early ray termination reduces the band-
width requirements of the memory system. Added exi-
bility is obtained by using a DSP and FPGAs as the im-
plementation technology. This allows the VIZARD II card
to perform other visualization task such as reconstruction,
�ltering, and segmentation.

E.1 Description

The VIZARD II architecture is illustrated in Figure 8.
VIZARD II consists of four functional blocks: Control

Control
Unit
(CU)

Address
Multiplexer

Volume Memory
M1 M2 M3 M4

Trilinear Interpolation Unit (TIU)
Sample and Gradient

Shade and
Composit Unit

(SCU)

r, g, b, α

Memory
Unit (MU)

Viewing Parameters

Fig. 8. VIZARD II architecture.

Unit, Memory Unit, Trilinear Interpolation Unit, and
Shading/Compositing Unit. The Control Unit is deter-
mines intersections of the rays with the dataset and cut
planes. The Memory Unit stores the dataset in four
SDRAMmodules, each with its own SRAM cache. The Tri-
linear Interpolation Unit is responsible for re-sampling the



dataset. It also interpolates the gradients at o�-grid loca-
tions using eight parallel lookups to the quantized gradient
table. The Shading and Compositing Unit supports look-
up-based shading and multiple classi�cation tables. Final
pixels values are transferred through the PCI bus to the
host computer.

VIZARD II implements an image order algorithm that
utilizes early ray termination. The algorithm �rst pre-
processes the dataset to compute gradient indices for each
voxel. The gradient index contains 9 bits but is not lim-
ited to 9 bits. Alternatively, the full gradient component
could be stored with the voxel memory. The 9-bit gradient
index generates 512 table entries. Using 512 entries, the
average error in the gradient computation is 2:3 degrees
and the maximum error is 7:9 degrees [33]. Larger gradi-
ent tables can be used for greater accuracy. Four voxels
(including gradient index) are simultaneously accessed in
parallel. These voxels are four-way interleaved with respect
to the YZ-plane. A burst memory access is used to fetch
adjacent voxels in the X-direction. To access a 2 � 2 � 2
trilinear neighborhood, four voxels (in the YZ-plane) are
accessed in parallel from each bank, and a sequential burst
memory access from each bank provides the remaining four
values from an adjacent YZ-plane. These values are cached
in separate cache banks to allow parallel access and re-use.

The Interpolation Unit uses the fractional x; y; and z

components and the trilinear interpolation neighborhood
from the Memory Unit to re-sample the dataset. The gra-
dient index is used to address the gradient look-up table.
The resulting x; y; and z gradient components are interpo-
lated in a similar manner. The trilinear interpolation units
can sustain samples at a rate up to four times faster than
the rate of the memory system if the desired voxels reside
inside the cache. The sample throughput is enhanced by
supersampling the dataset because of a signi�cant increase
in cache hits.

The sample and gradient value are used in the Shading
and Compositing Unit to classify and shade the sample.
The classi�cation table is chosen using a classi�cation in-
dex and the architecture handles segmentation and mul-
tiple cut-planes. Phong shading is implemented using a
look-up table and compositing uses the standard "over"
operator. Early ray termination is utilized to increase the
frame rate.

E.2 Performance

VIZARD II supports multiple cut planes, segmentation,
parallel, and perspective viewing. It is expected to sus-
tain a frame rate of 10Hz. However, its worst-case per-
formance is approximately 1 frame per second. Worst-case
performance occurs for 1:1 mapping of samples to voxels
and a transparent classi�cation of the dataset. Using four
100MHz SDRAM devices, this architecture is capable of
14 � 106 samples per second worst-case performance and
56� 106 samples per second best-case, assuming 4:1 map-
ping of samples to voxels.

VI. Performance Metrics

The performance of a volume rendering architecture is
determined by several factors:
Frame Rate is the number of images that can be generated
per unit of time and is measured in frames per second (or
Hz).
Samples Processed Per Second (SPPS) is the number of
�ltered samples that can be generated per unit of time. Un-
like frame rate, SPPS is not sensitive to image and dataset
resolution. SPPS is similar to trilinear interpolated sam-
ples per second that is commonly used in the speci�cation
of 3D texture mapping hardware.
Latency is the time between a change in dataset or viewing
parameters and the display of the updated image.
Image quality is mainly a qualitative assessment that is re-
lated to the resolution of the generated images, interpola-
tion �lter, gradient �lter, and illumination models used.
Scalability is the ability of an architecture to extend its
performance by increasing the amount of computational
and memory throughput. Ideally, a linear increase in the
number of rendering modules should linearly increase an
architecture's frame rate or maintain its frame rate for a
linear increase in dataset size.
Although many architecture's primary goal is to achieve
high frame rates and SPPS, image quality may be more
desirable when visualizing static datasets. Frame rate and
SPPS are indicators of the amount of acceleration that is
provided by the rendering architecture. One drawback to
these metrics is that both are proportional to the amount
of bandwidth available to the architecture. This is unde-
sirable since the architectures surveyed span several gener-
ations of memory technology. To address this problem, we
introduce a simple model that measures the ability of an
architecture to convert voxel throughput (memory band-
width) into sample throughput. The model can be derived
by accounting for changes in throughput along the process-
ing path as a voxel is converted into a �ltered sample. This
leads to a relationship between peak memory bandwidth
and e�ective sample throughput. Sample throughput can
be given by the following equation:

S sample

second

= B voxel
second

�

P
z }| {

U% �
1

V voxel
sample

(4)

where S is performance measured in SPPS, B is the peak
bandwidth of the memory system, U is the memory band-
width utilization (in percent), and V is the average number
of voxels that need to be fetched per sample. In this survey,
B is held constant to compensate for advances in memory
technology and for varying degrees of parallelism among
the di�erent architectures.
U , memory bandwidth utilization, is the percentage of

the peak memory bandwidth that is realized. The product
of U and B is the sustained voxel throughput into the ren-
dering components. For maximum performance, U should
be 1:0. U accounts for any combination of random cycles,
sequential cycles, and idle time on the memory bus. U is



given by:
U = w

r�C+(1�r) (5)
where r is the percentage of all accesses that are random
and w is the percentage of time that voxels are trans-
ferred to rendering components (bus utilization). C is the
speedup of a memory device obtained by using sequential
memory access (or burst access) instead of random access.
C is a memory technology dependent term. For example,
assume a 100MHz SDRAM memory (10ns synchronous
access time) has a 70ns random access time (including page
faults). This leads to a C of 7:0 (i.e., 700%). In this case,
if all memory accesses are random (r = 1:0) and the mem-
ory bus is fully utilized (w = 1:0), the memory bandwidth
utilization, U , would be as low as 14:3%. To account for
the fact that not all random accesses are page faults we as-
sume that the memory bandwidth utilization is 20% when
the bus is fully utilized (w = 1:0) with random accesses
(r = 1:0). This is a conservative estimate for newer DRAM
memories.
V is the average number of voxels that are fetched from

memory per sample. V is related to the size of the gradi-
ent and interpolation �lter. For example, an architecture
that uses a 32-voxel gradient �lter could have V = 32 using
a brute force approach; however, if voxels and intermedi-
ate results are bu�ered e�ciently, V = 1 because access to
bu�ered (or cached) voxels can occur in parallel with new
voxel accesses. Some architectures use algorithmic acceler-
ation (e.g., early ray termination) to enhance performance.
The reduction in fetched voxels due to algorithmic speedup
is view and dataset dependent. In our comparison, we as-
sume a reduction of V by a factor of 3 when early ray
termination has been implemented [28].
We call the term, P = U

V
in Equation 4, Sample Pro-

cessing E�ciency. It is an architecture speci�c measure
of how peak memory bandwidth (B) translates to SPPS
(S). If each voxel is accessed on average once per �ltered
sample (V = 1:0) and the memory system is fully utilized
(U = 1:0), then the sample processing e�ciency, P , will be
1:0. Sample processing e�ciency may be larger than 1:0
if compression is used or if the volume dataset is super-
sampled (i.e., multiple re-sample locations per unit vol-
ume). Sample processing e�ciency, P , is related to frame
rate, F , by the following formula:

F frame

second

=
B voxel

second
� P sample

voxel

T sample

frame

(6)

B is the peak bandwidth of the memory system and T is
the number of samples needed to render the frame. Sam-
ple processing e�ciency only measures the ability to con-
vert memory bandwidth to processed samples; it is rela-
tively independent of memory technology and can therefore
be used as an objective measure of architecture e�ciency.
However, it does not measure other important performance
metrics such as image-quality, cost, scalability, or latency.
Since the architectures presented in this paper span several
generations in VLSI technology, it is di�cult to augment
the comparison with normalized cost. Consequently, we do
not explicitly compare cost or use a cost/performance ra-
tio. However, it should be noted that these architectures

will reach a higher performance/price ratio than most in-
teractive volume rendering options currently available.

VII. Comparison

Table III presents a comparison of the �ve architectures.
The categories include (1) status - the present stage of de-
velopment, (2) algorithm - type of ray casting algorithm
used, (3) memory partitioning - the organization of the
memory system, (4) interpolation hardware - size, type,
and/or implementation of the interpolation �lter, (5) gra-
dient hardware - size, type, and/or implementation of the
gradient �lter, (6) shading - shading algorithm supported,
(7) perspective support - the ability to handle perspective
projections, (8) real-time data input - the potential to sup-
port real-time streamed input, (9) target technology - type
of implementation, (10) performance limitations - bottle-
necks in the system, (11) scalability - the ability to scale
performance using multiple rendering pipelines, (12) algo-
rithmic acceleration - early ray termination support, (13)
sample processing e�ciency - normalized acceleration met-
ric that also accounts for algorithmic speedup, (14) pub-
lished SPPS - performance numbers obtained from the re-
spective publications, and (15) architectural highlights -
features considered important for next generation volume
rendering architectures.

The VOGUE architecture supports three rendering
modes based on its gradient computation kernel (8, 32,
and 56 voxels). Voxels are re-fetched on average 8, 32, and
56 times for mode 1, mode 2, and mode 3, respectively.
VOGUE can accommodate multiple point light sources
with an unrestricted Phong illumination model. Each mod-
ule is memory limited and capable of 40� 106SPPS per-
formance in the fastest rendering mode. Because of its
random memory access pattern, VOGUE's memory band-
width utilization is 20%. As a result, VOGUE's sample
processing e�ciency is between 0:00357 (mode 3) and 0:025
(mode 1) without algorithmic acceleration. Assuming that
an algorithmic speedup of 3 is realizable due to early ray
termination, the sample processing e�ciency in Table III
has been multiplied by 3:0. In large multi-module con�gu-
rations, VOGUE's sample processing e�ciency per module
may decrease due to network overhead.

Image quality is the primary focus of the VIRIM archi-
tecture. This architecture is capable a exible illumina-
tion model including shadows. VIRIM uses programmable
DSPs that support other rendering, shading, and interpo-
lation algorithms. VIRIM is capable of 40 � 106SPPS
performance. Multiple engines can be used to increase per-
formance; however, each engine must duplicate the entire
dataset. The object order algorithm leads to no random
memory accesses (r = 0:0). However, sample processing ef-
�ciency is limited by a global bus between the re-sampling
hardware and the rendering hardware. The sample pro-
cessing e�ciency, P , is the ratio of the sustainable sam-
ple throughput of the bus between the Geometry and Ray
Casting Units and the peak voxel throughput of the mem-
ory system. P = 0:2 for 40MSample

second
bus bandwidth (VME



TABLE III

Architecture comparison.

VOGUE VIRIM Array Based EM-Cube VIZARD II
Ray Casting

Started 1993 1994 1995 1997 1998
Status Simulated System built Simulated ASIC in Simulated

development
Algorithm Image order Object order Object order Hybrid order Image order
Memory Eight-way Eight-way Orthogonal Skewed Four-way

Partitioning slice block
Interpolation Trilinear Programmable Nearest Trilinear Trilinear
Hardware neighbor
Gradient Three Modes 2D Sobel 26-voxel Central Quantized
Hardware (8/32/56 voxels) �lter neighborhood di�erences gradient
Shading Phong Programmable Programmable Phong Phong

Perspective Yes Yes No No Yes
Projections
Real-time Moderately Di�cult Easy Easy Di�cult
Data Input Di�cult
Target VLSI O�-the-shelf FPGA VLSI DSP/FPGA

Technology components
Performance Memory Bus Memory Memory Memory
Limitation
Scalability Moderate Hard Easy Easy Moderate
Early Ray Yes No No No Yes
Termination
P , Sample mode 1: 0.075 0.2 0.1 (m = 10) 0.95 0.075 (1:1 sampling)
Processing mode 2: 0.01875 (B = 200MV oxels

second
) 1 (m = 1) 0.3 (4:1 supersampling)

E�ciency mode 3: 0.01071
Published SPPS 40� 106 40� 106 240� 106 533 � 106 56� 106

(one module) (m = 10) (4:1 supersampling)
Architectural High-quality Algorithmic Double- High Good
Highlight parallel and perspective exibility bu�ering performance performance

rendering and shadows cost ratio

bus) and assuming the eight memory modules can sustain
200MV oxel

second
. A new memory architecture was introduced

in [5] that enhances the memory bandwidth utilization;
however, the voxel re-fetch factor V is increased. This new
memory system uses bu�ers and a pre-fetch mechanism to
achieve a sample processing e�ciency of 0:125.

The Array Based Ray Casting architecture strives for
high performance. It uses slice-by-slice processing to ren-
der the dataset. The two arrays used in this architecture
are a 2D array of processing elements. In FPGA imple-
mentations, feedback paths in the larger Ray Array limit
the maximum clock speed. The double-bu�ered memory
o�ers support for real-time data input. The architecture
is fully pipelined and parallel and uses only local commu-
nication. However, the hardware required to implement
the two arrays scales with O(n2), where n is the dimen-
sion of the volume data. This architecture does not use
interpolation leading to lower image quality and does not
support perspective projections. The performance of this
architecture is memory limited. In the full implementation,
the Ray Array contains 1:5n � 1:5n processing elements.
In this con�guration, memory bandwidth utilization, U , is
1:0. However, one drawback is the size and cost to imple-
ment the O(n2) Ray Array. One solution is to shorten the
Ray Array (reduced columns) and to re-use them multi-
ple times per projection. In this smaller con�guration, the
memory bandwidth utilization is inversely proportional to
the number of times the Ray Array is shared. The sample
processing e�ciency, P , is 1:0

m
, where m is the number of

times the Ray Array is re-used. Theoretically, m can be
as large as 1:5n, where n is the dataset resolution, greatly
reducing the size of the ray array and severely limiting the
performance of the architecture. m can be assumed to lie
be between 1 and 10 for practical implementations. Using
this assumption, this architecture has a sample processing
e�ciency of 1 (best-case) and 0:1 (worst-case). m is a de-
sign parameter for this architecture based on target cost,
size, implementation technology, and performance.

EM-Cube is a highly optimized parallel rendering ar-
chitecture and it was designed to render high-resolution
datasets at real-time frame rates on a PC or workstation.
The skewedmemory system and slice-parallel processing al-
lows EM-Cube to sustain a large memory bandwidth. EM-
Cube uses memory skewing on a block granularity. This
reduces chip pin-out and communication costs. This archi-
tecture can sustain 533 � 106SPPS using four 133MHz

SDRAMs. During perspective projections certain view
points may adversely a�ect performance for hybrid order
algorithms. As a result, EM-Cube does not support per-
spective projections. EM-Cube uses central di�erences for
gradient estimation which requires 32 voxels; however, no
performance penalty is incurred since EM-Cube uses on-
chip storage to bu�er sample values. Only local commu-
nication between processing pipelines are used, therefore,
EM-Cube is highly scalable. EM-Cube's memory utiliza-
tion is 1:0 because it can sustain synchronous memory ac-
cesses for each of its voxels. By processing the dataset
in sections, EM-Cube is able to signi�cantly reduce on-



chip storage [35]. Consequently, EM-Cube's average voxel
re-fetch is increases slightly because some voxels on the
boundary of a section must be re-fetched from the mem-
ory system. EM-Cube's average voxel re-fetch is 1:05 for
eight sections on a 256 � 256 � 256 dataset. As a result,
EM-Cube's sample processing e�ciency is 0:95.

VIZARD II uses three methods to reduce memory band-
width requirements for interactive visualization: 9-bit
quantized gradient, caching, and early ray termination.
VIZARD II supports perspective viewing, multiple cut
planes, and segmentation. The quantized central di�er-
ence gradient requires preprocessing and may degrade im-
age quality when compared to traditional central di�erence
gradients. In general, gradient quantization can be used to
support a wide range of gradient �lters and the size of the
gradient table can be increased to enhance accuracy (i.e.,
image quality). The VIZARD II architecture has been sim-
ulated and is still at the research stage. A maximum per-
formance of 56 � 106SPPS performance can be achieved
assuming 4:1 supersampling of the dataset. Maximum per-
formance is limited by the memory system. A worst-case
performance of 14�106SPPS occurs for 1:1 sampling of the
dataset. The performance of this architecture is memory
limited. Since VIZARD II uses early ray termination, we
assume that its algorithmic speedup is 3:0. VIZARD II's
average voxel re-fetch is 8. The quantized central di�er-
ence gradient prevents the voxel re-fetch from being larger
than the size of the trilinear interpolation neighborhood.
Since VIZARD II's memory system is clocked at 20% of
its maximum rate, its memory e�ciency factor is 0:2 as-
suming worst-case (1:1 sampling). The cache memory and
Trilinear Interpolation Units are clocked four times faster
than the rate of the memory system. When the dataset
is 4:1 super-sampled or higher, a substantial increase in
cache hits increases the memory bandwidth utilization to
0:8 best-case. This architecture has an overall sample pro-
cessing e�ciency of 0:075 (1:1 sampling) and 0:3 (4:1 sam-
pling) taking into consideration a threefold speedup due to
early ray termination.

VIII. Discussion

In each architecture, maximum performance is limited
by either the memory system or global communication
bottlenecks, such as buses or networks. Memory limita-
tions are inherent to each architecture. Global buses and
networks arise because of the need to communicate voxel
data or intermediate values over a common medium. The
volume rendering algorithm and memory organization de-
termine whether these potential bottlenecks a�ect perfor-
mance. Architectures that are only memory limited tend
to be more scalable.

There is a tradeo� in most of the architectures between
performance, quality, and hardware cost. VOGUE's di�er-
ent rendering modes present performance-quality tradeo�s.
Practical implementations of the Array Based Ray Casting
and EM-CUBE architectures use slightly modi�ed con�gu-
rations from a fully parallel design leading to performance-

cost tradeo�s. On the other hand, VIZARD II trades per-
formance versus image quality by using a 9-bit quantized
central di�erence gradient. VIRIM's dataset duplication in
the fully parallel implementation illustrates performance-
cost tradeo�s. Furthermore, we see general trade-o�s be-
tween the di�erent types of parallel rendering algorithms.
Image order algorithms exhibit greater exibility, object
order algorithms typically have higher sample processing
e�ciencies, and hybrid order algorithms can have charac-
teristics of both. The primary objectives of the volume
rendering architect is to balance these tradeo�s based on
the target applications.

Of the surveyed architectures, EM-CUBE and VIZARD
II are the only architectures still actively being developed.
The primary goal of these architectures is an interactive
visualization system that will augment a low-cost work-
station or desktop computer. EM-Cube and VIZARD II
will �t on a PCI card for a standard PC. As such, both
architectures are also designed to be low-cost.

Note that two of the three architectures (Array Based
Ray Casting and EM-Cube) do not support perspective
projections. Although perspective projections may have
less importance in medical and scienti�c visualization, per-
spective projections are necessary in virtual reality, volume
graphics, and stereoscopic rendering applications. A gen-
eral purpose volume rendering solution must support both
types of projections.

Volume rendering is useful in both scienti�c visualization
and volume graphics. These two paradigms do not have
the exact same requirements. Scienti�c visualization is pri-
marily parallel rendering with simple illumination models;
whereas, volume graphics requires greater rendering ex-
ibility. EM-Cube addresses many issues related to inter-
active scienti�c visualization. Although VIZARD II has
lower performance, it is a more general rendering architec-
ture with support for perspective projections, multiple cut
planes, and segmentation.

IX. Future of Special-Purpose Accelerators

Recently, interactive image generation rates have been
achieved on medium resolution (i.e., 512 � 512 � 64)
datasets using 3D texture mapping (a forward-projection
algorithm) [2]. One advantage of texture hardware is that
volumetric primitives can be mixed with geometric primi-
tives. However, texture mapping hardware does not readily
support all aspects of volume visualization, such as per-
sample gradient computation and per-sample illumination.
In addition, texture memory is usually limited. Volume
rendering hardware encompasses texture mapping by in-
cluding 3D �ltering (trilinear interpolation and gradient
�lters) and very high-bandwidth memory; thus, future vol-
ume visualization accelerators are likely to be used for high-
performance texture mapping. Texture memory is typi-
cally four-way (eight-way) interleaved (similar to VIZARD
II's and VOGUE's memory system) to allow conict-free
2D (3D) re-sampling. A potential area of research is an
e�cient memory organization that readily supports both



volume rendering, texture mapping, and next generation
memory technology. In addition, the ability to render both
voxel and polygonal primitives in a single projection for
virtual reality should be considered.

The architectures surveyed represent the �rst generation
of custom architectures that implement the ray casting al-
gorithm. These architectures primarily focus on high out-
put frame rates. We believe the second generation archi-
tectures will address dynamic datasets or large input rates.
Fast sampling devices and interactive volume graphics will
help promote this trend. Future interactive visualization
systems may soon consist of a special purpose accelerator
card connected to a real-time data acquisition subsystem.
In volume graphics applications, it is expected that vol-
ume updates, volume animation, and voxelization will re-
quire input frame rates comparable to output frame rates.
Consequently, it may be necessary to parallelize voxel in-
put into the volume memory and the memory partitioning
scheme in a given architecture may not necessarily be the
optimal partitioning scheme for both parallel voxel input
and output. Also, double bu�ered volume memory (see Ar-
ray Based Ray Casting) will be necessary to eliminate ren-
dering artifacts and performance loss when simultaneously
loading and visualizing dynamic datasets. Furthermore,
3D double-bu�ering follows the development of the tradi-
tional graphics pipeline (i.e., double-bu�ered frame bu�er).
These are areas for additional research.

If volume graphics is to o�set traditional polygonal
graphics, volumetric raytracing [48] and perspective pro-
jections must be considered. Raytracing is capable of pro-
ducing photo-realistic images using shadows, reection, re-
fraction, etc. For instance, VIRIM is capable of shadows.
Secondary rays during raytracing have less coherence than
primary rays, therefore, volumetric raytracing may be bet-
ter suited for image order architectures. Ray casting archi-
tectures that rely on lock-step coherence between cast rays
(i.e., Array Based Ray Casting and EM-Cube) may have
di�culty incorporating raytracing.

Memory throughput increased an order of magnitude
(e.g., Direct Rambus) since most of the architectures in
this paper were �rst proposed. Advances in semiconductor
technologies towards deep-submicron processes will con-
tinue to promote higher logic speeds, higher memory den-
sity, as well as lower memory access times. In addition, the
ability to embed large amounts of memory on-chip with
computational units will further enhance memory through-
put. All of these trends will simplify future volume render-
ing architectures, increase their speed, and lower their cost.
Furthermore, as these special-purpose accelerators evolve,
software and application-program interfaces (APIs) will be
de�ned and developed [11], [29], [30]. They will provide
the user with more exibility and additional features, such
as stereoscopic views. The availability of low-cost real-
time hardware and industry strength APIs will increase
the acceptance of volume visualization and volume graph-
ics. This will certainly lead to the development of new and
exciting applications.

Acknowledgments

Special thanks to Meena Bhashyam for help review-
ing the manuscript, and Michael Doggett, Christof Rein-
hart, Michael Mei�ner, and Gunter Knittel for their useful
insight and correspondence regarding their architectures.
This work was supported by the O�ce of Naval Research
under grant number N00014-92-J-1252 and CAIP research
center at Rutgers State university.

References

[1] I. Bitter and A. Kaufman. A Ray-Slice-Sweep Volume Rendering
Engine. In Proceedings of the Siggraph/Eurographics Workshop
on Graphics Hardware, pages 121{138, August 1997.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering
and Tomographic Reconstruction using Texture Mapping Hard-
ware. In 1994 Workshop on Volume Visualization, pages 91{98,
Washington, DC, October 1994.

[3] R. Crisp. Direct Rambus Technology: The Next Main Memory
Standard. IEEE Micro, 17(6), November 1997.

[4] T. J. Cullip and U. Neumann. Accelerating Volume Reconstruc-
tion with 3D Texture Mapping Hardware. In Technical Report
TR93-027, Department of Computer Science at the University
of North Carolina, Chapel Hill, 1993.

[5] M. de Boer, A. Gr�opl, T. G�unther, C. Poliwoda, C. Reinhart J.
Hesser, and R. M�anner. Latency-Free and Hazard-Free Volume
Memory Architecture for Direct Volume Rendering. In Proceed-
ings of the 11th Eurographics Hardware Workshop, pages 109{
118, Poitiers, France, August 1996.

[6] M. C. Doggett. An Array Based Design for Real-Time Volume
Rendering. In 10th Eurographics Workshop on Graphics Hard-
ware, pages 93{101, August 1995.

[7] M. C. Doggett. Vizar : A Video Rate System for Volume Visu-
alization. PhD thesis, University of New South Wales, 1996.

[8] M. C. Doggett and G. R. Hellestrand. Video Rate Shading for
Volume Data. In Australian Pattern Recognition Society Digital
Image Computing : Techniques and Applications, pages 398{
405, December 1993.

[9] M. C. Doggett and G. R. Hellestrand. A Hardware Architecture
for Video Rate Smooth Shading of Volume Data. In Eurographics
Hardware Workshop, pages 95{102, September 1994.

[10] S. M. Goldwasser, R. A. Reynolds, and T. Bapty. Physician's
Workstation with Real-Time Performance. IEEE Computer
Graphics and Applications, 5(12):44{57, December 1985.

[11] R. Grzeszczuk, C. Henn, and R. Yagel. Advanced Geometric
Techniques for Ray Casting Volumes. In SIGGRAPH 98 Course
Nbr. 4, Orlando, FL, 1998.

[12] T. G�unther, C. Poliwoda, C. Reinhart, J. Hesser, R. M�anner,
H.-P. Meinzer, and H.-J Baur. VIRIM: A Massively Parallel
Processor for Real-Time Volume Visualization in Medicine. In
Proceedings of the 9th Eurographics Hardware Workshop, vol-
ume 19, No. 5, pages 705{710, 1995.

[13] B. M. Hemminger, T. J. Cullip, and M. J. North. Interactive
Visualization of 3D Medical Image Data. In Technical Report
TR94-027, Department of Radiology and Radiation Oncology
at the University of North Carolina, Chapel Hill, 1994.

[14] J. Hesser, R. M�anner, G. Knittel, W. Stra�er, H. P�ster, and
A. Kaufman. Three Architectures for Volume Rendering. In
Proceedings of Eurographics '95, volume 14, No. 3, Maastricht,
The Netherlands, September 1995. European Computer Graph-
ics Association.

[15] K. H�ohne, M. Bomans, A. Pommert, M. Riemmer, C. Schiers,
U. Tiede, and G. Wiebecke. 3D Visualization of Tomographic
Volume Data Using The Generalized Voxel Model. The Visual
Computer, 6(1):28{36, February 1990.

[16] D. Jackel. The graphics PARCUM system: A 3D Memory Based
Computer Architecture for Processing and Display of Solid Mod-
els. Computer Graphics Forum, 4(4):21{32, 1985.

[17] S. Juskiw, N. Durdle, V. Raso, and D. Hill. Interactive Rendering
of Volumetric Data Sets. Computer and Graphics, 19(5):685{
693, 1995.

[18] A. Kaufman. Volume Visualization. IEEE Computer Society
Press, 1991.

[19] A. Kaufman and R. Bakalash. CUBE - An Architecture Based on



a 3D Voxel Map. Theoretical Foundations of Computer Graphics
and CAD, pages 689{700, 1988.

[20] A. Kaufman and R. Bakalash. Memory and Processing Archi-
tecture for 3D Voxel-based Imagery. IEEE Computer Graphics
and Applications, 8(6):10{23, November 1988.

[21] A. Kaufman, D. Cohen, and R. Yagel. Volume Graphics. IEEE
Computer, 26(7):51{64, July 1993.

[22] G. Knittel. VERVE: Voxel Engine for Real-Time Visualiza-
tion and Examination. Computer Graphics Forum, 19(3):37{48,
September 1993.

[23] G. Knittel. A PCI-based Volume Rendering Accelerator. In
In Proceedings of the 10th Eurographics Workshop on Graphics
Hardware, pages 73{82, August 1995.

[24] G. Knittel. A Scalable Architecture for Volume Rendering. Com-
puter and graphics, 19(5):653{665, 1995.

[25] G. Knittel and W. Stra�er. VIZARD-Visualization Accel-
erator for Realtime Display. In Proceedings of the Sig-
graph/Eurographics Workshop on Graphics Hardware, pages
139{146, August 1997.

[26] P. Lacroute. Analysis of a Parallel Volume Rendering System
Based on the Shear-Warp Factorization. IEEE Transactions on
Visualization and Computer Graphics, 2(3):218{231, September
1996.

[27] P. Lacroute and M. Levoy. Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation. In
Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Or-
lando, Florida, July 24-29, 1994), Computer Graphics Proceed-
ings, Annual Conference Series, pages 451{458. ACM Press, July
1994.

[28] M. Levoy. Display of Surfaces From Volume Data. IEEE Com-
puter Graphics and Applications, 5(8):29{37, May 1988.

[29] B. Lichtenbelt. Design of A High Performance Volume Visual-
ization System. In Siggraph/Eurographics Hardware Workshop,
pages 111{119, August 1997.

[30] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to Volume
Rendering. Hewlett-Packard Professional Books. Prentice Hall
PTR, 1998.

[31] B. Lichtenbelt M. Bentum and T. Malzbender. Frequency Anal-
ysis of Gradient Estimators in Volume Rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 2(3):242{254,
September 1996.

[32] H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann, and
H. J. Baur. The Heidelberg Ray Tracing Model. IEEE Computer
Graphics and Applications, pages 34{43, November 1991.

[33] M. Mei�ner, U. Kanus, and W. Stra�er. VIZARD II: A PCI-
Card for Real-Time Volume Rendering. In Proceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, pages
61{67, Lisbon, Portugal, August 1998.

[34] T. M�oller, R. Machiraju, K. Mueller, and R. Yagel. A Com-
parison of Normal Estimation Schemes. In IEEE Visualization
Proceedings 1997, pages 19{26, October 1997.

[35] R. Osborne, H. P�ster, H. lauer, N. McKenzie, S. Gibson,
W. Hiatt, and T. Ohkami. EM-Cube: An Architecture for
Low-Cost Real-Time Volume Rendering. In Proceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, pages
131{138, Los Angeles, CA, August 1997.

[36] H. P�ster. Architectures for Real-Time Volume Rendering. PhD
thesis, State University of New York at Stony Brook, Computer
Science Department, Stony Brook, NY 11794-4400, 1996. MERL
Report No. TR-97-04.

[37] H. P�ster and A. Kaufman. Cube-4 - A Scalable Architecture for
Real-Time Volume Rendering. In Volume Visualization Sympo-
sium Proceedings, pages 47{54, October 1996.

[38] H. P�ster, A. Kaufman, and T. Chiueh. Cube-3: A Real-Time
Architecture for High-Resolution Volume Visualization. In In
1994 Workshop on Volume Visualization, pages 75{83, Wash-
ington, DC, October 1994.

[39] H. P�ster, A. Kaufman, and F. Wessels. Towards a Scalable
Architecture for Real-Time Volume Rendering. In Proceedings of
the 10th Eurographics Workshop on Graphics Hardware, pages
123{130, Maastricht, The Netherlands, August 1995.

[40] B. Phong. Illumination for Computer Generated Pictures. Com-
munications of the ACM, 18(6):311{317, 1975.

[41] T. Porter and T. Du�. Compositing Digital Images. Computer
Graphics, 18(3), July 1984.

[42] P. Schr�oder and G. Stoll. Data Parallel Volume Rendering as
Line Drawing. In 1992 Workshop on Volume Visualization,
pages 25{31, Boston, MA, October 1992.

[43] S. W. Smith, H. G. Pavy, and O. T. von Ramm. High-Speed Ul-
trasound Volumetric Imaging System { Part I: Transducer De-
sign and Beam Steering. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 38(2):100{108, 1991.

[44] J. van Scheltinga, J. Smit, and M. Bosma. Design of an On-
Chip Reectance Map. In Proceedings of the 10th Eurographics
Workshop on Graphics Hardware, pages 51{55, Maastricht, The
Netherlands, August 1995.

[45] O. T. von Ramm, S. W. Smith, and H. G. Pavy. High-Speed
Ultrasound Volumetric Imaging System { Part II: Parallel Pro-
cessing and Image Display. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 38(2):109{115, 1991.

[46] L. A. Westover. Splatting: A Parallel, Feed-Forward Volume
Rendering Algorithm. PhD thesis, The University of North Car-
olina at Chapel Hill, Department of Computer Science, jul 1991.

[47] R. Yagel. Towards Real Time Volume Rendering. In Proceed-
ings of GRAPHICON 1996 Saint-Petersburg, Russia, volume 1,
pages 230{241, July 1996.

[48] R. Yagel, D. Cohen, and A. Kaufman. Discrete Ray Trac-
ing. IEEE Computer Graphics and Applications, 12(9):19{28,
September 1992.

[49] R. Yagel and A. Kaufman. Template-Based Volume Viewing.
Computer Graphics Forum, 11(3):153{167, September 1992.

[50] T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullipand J.
Rhoades, and R. Whitaker. Direct Visualization of Volume Data.
IEEE Computer Graphics and Applications, pages 63{71, July
1992.

[51] K. J. Zuiderveld. Visualization of Multimodality Medical Vol-
ume Data using Object-Oriented Methods. PhD thesis, Utrecht
University, March 1995.


