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PAPER

A Parallel Pipeline Convolution for Perspective Projection
in Real-Time Volume Rendering

Masato OGATAy, Member, Takahide OHKAMIyy, Hanspeter P�steryy,
Hugh C. Laueryy�, Nonmembers, and Yasunori DOHIyyy, Member

SUMMARY This paper proposes a convolution with sys-
tolic array sturucture for perspective projection in real-time vol-
ume graphics based on the shear-warp method. In the original
method, the further the ray proceeds, the more voxels are re-
quired for the calculation of convolution. The increase of required
voxels makes di�cult to implement the method in VLSI oriented
architecture. 1) We use several sets of resolution of voxels asso-
ciated with depth, in order that convolution can be done with
constant number of voxels independent of depth. 2) We imple-
ment 3D convolution by three serial 1D convolutions along X, Y
and Z axes, which reduces the calculation steps from M3 to 3M ,
where the convolution is calculated for M3 area. For V 3 voxels
dataset, the number of pipelines for rays is V 2 and their pipeline
stage is 3M . If the hardware of a single pipeline has the capa-
bility of calculating V rays, each of the implemented pipelines
is assigned to V theoretical pipelines (for V 2 rays). In actual
implementation, a number of hardware pipelines should be much
smaller than the V theoretical pipelines. We fold the theoreti-
cal pipelines and reduce them to the certain number of hardware
pipelines. Regarding this folding, we show the relation between
folding process and its necessary time delay. The architecture
can generate image of 2563 voxles dataset( V = 256 ) at 30Hz
with 4 pipelines. In addition, the architecture can be extended
easily for 5123(V = 512) and 10243(V = 1024) dataset with 32
pipelines and 256 pipelines respectively.
key words: Volume Graphics, Volume Rendering, Graphics Ar-
chitecture, Real-Time, Perspective Projection, Scienti�c Visual-
ization, Computer Graphics, Systolic Array.

1. Introduction

Fast direct volume rendering systems are in high de-
mands. This is due to an increasing number of scien-
ti�c data generated by a variety of computer simula-
tions, medical data obtained by MRI and CT scanners,
and geological, oceanographic, and meteorological da-
ta collected from various sensors. One of the notable
characteristics shared by these volume data is the sheer
amount of data elements to be processed in rendering.
This requires a huge amount of computing resources
for animated visualization, which is essential to observe
some physical phenomena. Another characteristic of
the data is that they can not be represented by surfaces

Manuscript received June 21, 1999.
Manuscript revised

yMitsubishi Precision Co, Ltd., 345 Kamimachiya, Ka-
makura, Japan

yyA Mitsubishi Electric Research Laboratory, 201 Broad-
way Cambridge, M.A, U.S.A

yyyDivision of Elec. & Comp. Eng., Yokohama National
University,156 Tokiwadai, Hodogaya, Yokohama, Japan

as in the conventional polygon-based graphics; the vol-
ume data may include complicated internal structures
and shapeless features.

Although there are many algorithms for volume
rendering, the ray-casting algorithm is the precisest al-
gorithm based on a physical model. It casts rays from
the center of projection into a volume to calculate each
pixel value on a screen. Let suppose I(a; b) be a inten-
sity from a ray through the volume between points a
and b, s(r) be a light added per unit length at distant
r along the ray, and �(r) be an absorption coe�cient
corresponding to the attenuation of the light per unit
length. The following Equation (1) calculates the e�ect-
s of the light, and it has been used as volume rendering
equation [1] [5] [10].

I(a; b) =
R b
a
s(r)e

�
R
r

a

a(t)dt
dr (1)

As a simpli�ed implementation of Equation (1),
each sample is computed from voxels surrounding the
sample point by interpolation, then being accumulat-
ed along the ray to calculate the intensity of the pixel.
Each resampling operation is relatively simple, but the
total number of resampling operations is very large, and
the time spent for the operations is dominant in the
rendering time. Because of this, a ray-casting-based
volume rendering system could be considered a resam-
pling machine. Therefore in real-time implementationy,
how to organize a parallel processing for the resampling
is one of major issues.

In this paper, we propose a new VLSI oriented ar-
chitecture of resampling for both parallel and perspec-
tive projections in real-time volume rendering based on
the shear-warp method[6][5]. In particular, we show
implementation of 3D convolution for resampling with
systolic array structure.

2. Previous works

From architectural stand point, the ray-casting algo-
rithm is categorized into two schemes for implementa-
tion: sample-order and voxel-order scheme. As the ter-
m implied, the sample-order scheme uses sample point
as a starting point of processing then get memory ad-
dress of voxel. On the other hand, the voxel-order

ygenerating more than 30 images in a second
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scheme uses memory address of voxel directly as start-
ing point for processing. Each scheme has advantages
and disadvantages for structuring real-time volume ren-
dering architectures.

2.1 Sample-order scheme

The sample-order scheme is straightforward imple-
mentation of ray-casting algorithm. The ray-parallel
method in the scheme parallelizes rendering operations
on a ray basis[4]. The number of rays to cast is de-
termined by the screen size and resolution. It can use
some optimization techniques available for this scheme.
Early ray termination and coherence encoding are t-
wo examples to reduce the number of memory accesses
[7]. The major disadvantage of this scheme is that one
voxel is simultaneously accessed by multiple rays for
resampling, which increases the total number of mem-
ory accesses time. In addition, it requests complicat-
ed memory address calculation from the sample point.
These are disadvantages for hardware implementations.
VIRIM[2] is one of typical real-time parallel rendering
system in this scheme. It is a parallel rendering system
for both parallel and perspective projections, but not
organized in a complete parallel-pipeline structure for
VLSI implementation. In addition, it can not generate
images for large data more than 643 grids in real-time.

2.2 Voxel-order scheme

The voxel-order scheme on the other hand, uses vox-
el address directly so that memory address calculation
is simple and suitable for VLSI implementation. The
major advantages of this scheme are the reduction of
the number of memory accesses, and the �xed resam-
pling structure. The voxel-parallel method[11][10] in
the scheme reads voxeles once and retains them until
all the samples requiring the voxels. The disadvantage
is that there are no major optimization techniques avail-
able for this scheme. The optimization techniques for
the ray-parallel method can not be used for this voxel-
order scheme, because they break the �xed resampling
structure. Cube-4[11] and its VLSI implementation:
EM-Cube[9](product name is VolumePro[12]) are ren-
dering system in this scheme. The architectures are
organized in systolic array structure. However, they
support only parallel projections. The memory access
for parallel projections are very regular and amenable
to parallel pipelined processing; a rendering pipeline is
directly corresponded to a ray. The memory access for
perspective projections, however, are not regular due to
diverging perspective rays. This processing variability
adversely a�ects the parallel-pipeline structure for per-
spective projections and it has been a major obstacle
for hardware implementation in this scheme[12].

The shear-warp[6][5] is another method in voxel-
order scheme. It has been used as software oriented

method for both parallel and perspective projection-
s. Although it has the signi�cant advantage, i.e. both
projections can be treated with uni�ed way, hardware
implementations of convolution for variavle size is hard
due to diversing rays so that it has been used for soft-
ware implementations.

3. Issues of Perspective Projections

The shear-warp method produces a distorted base
planey image with a shearing matrix H[6][5] as an in-
termediate image, then the image is warped to produce
a correct image on a screen. Fig. 1 shows the perspec-
tive rays parallelized at the base plane by the shearing
matrix H. They are parallel to the principal viewing
axis and perpendicular to the base plane. The shearing
transformation shears and progressively scales the vox-
el grid as shown in Fig. 1, where the voxel grid becomes
�ner as the distance from the base plane increases.

Starting from a position in the �rst slice, i.e. base
plane, a parallelized perspective ray proceeds in the
progressively scaled grid to compute a sample at each
slice. The computed samples are accumulated to pro-
duce the �nal pixel value in the base plane image. A
resampling operation is a convolution over the voxels in
a resampling area.

Base Plane
Eye

Grids

Slice  k

Image

Rays

Parallelized 
Rays

Principal

Transform with
HMatrix

Eye

on screen
Viewing Axisk 0

ij

k

xy

z
Equiva-
lent

Fig. 1 Shearing and scaling in perspective projections.

There are two important issues for a parallel
pipelined implementation, i.e. systolic array, of the
method: (1) how to bound a number of voxles
to be convoluted and (2) how to organize a con-
volution. A number of voxels to be convoluted in one
dimension, M , is computed by:

M = 1 + k=k0; (2)

where k yy is the slice number or the distance from
the base plane and k0 the distance between the eye po-
sition (the center of projection) and the base plane as

yA plane the most perpendicular to the viewing vector,
which includes the front face of the volume.

yyWe use notation (x; y; z) for the dataset description and
(i; j; k) for that of transformed as shown in Fig. 1
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shown in the Fig. 1. It can be arbitrarily large with
large values of k and/or small values of k0. Since the
hardware implementation can only use a �xed amount
of resources for convolution, it has to ignore the voxels
outside the convolution area, producing a low-quality
or aliased base plane image.

The convolution structure is another issue. The
underlying architecture pairs a memory module and a
rendering pipeline so that each pipeline can take one
voxel along with neighboring voxels through sideway
communications and produces one sample computed
from the voxels.In this systolic array structure, the
number of inputs (voxels) is equal to the number of
outputs (computed samples). This holds for parallel
projections, but not for perspective projections.

These issues make hard to implement the parallel-
pipeline structure for perspective projections and has
been a major obstacle for hardware implementation in
this method.

4. Basic Ideas

The parallel projection is amenable to parallel process-
ing by assigning a set of rendering pipelines to a set
of rays with one to one corresponding as illustrated in
Fig. 2(a). In order to organaize rarallel pipelined con-
volution, the number of voxels to be convoluted has to
be limited. It is reasonable to use low resolution data
for distant samples so that selecting appropriate resolu-
tion data from multiple resolution dataset, prepared in
advance, limits the number of voxels to be convoluted
within a limit as shown in Fig. 2(b).

Parallelized rays

Processing 
pipeline

Grid

i

k

j

Convolution
area

(a) Sheared without
multi-resolution.

k

i
j

Low resolution 
data

(b) Sheared with
multi-resolution.

Fig. 2 Bounding the number of voxels for convolution with
multi-resolution dataset.

4.1 Sample-Parallel Architecture

We shift a focus from voxels to samples and reorganize
the rendering architecture as a sample-parallel architec-
ture to provide a uni�ed parallel-pipeline structure for
both parallel and perspective projections.

As shown in Fig. 3, the proposed architecture
places a resampling module between the voxel memory
and rendering pipelines. This module is specialized for
resampling with a variable number of voxels in the re-
sampling area. All the complicated communication and
its control between other pipelines are moved from the
rendering pipelines to this resampling module in order
to organize the rendering pipelines in a �xed parallel-
pipeline structure.

Voxel Memory  ( Skewed  multi-resolution)

Resampling Module    ( 3D convolution )

Pixel Memory

Rendering Pipelines

MEM:   Memory  Modules

S(r) e
-a(r)

r

MEM MEM MEM MEM

MEM MEMMEM MEM

Warping CRT

Fig. 3 Proposed sample-parallel architecture.

4.2 Transformation

To estimate a sample, we use four coordinate systems
and transformations between them. The transformed
coordinates are used to calculate weights for convolu-
tion.

The four coordinate systems are the normalized,
shear-shrink, scale-up, and compositing coordinate sys-
tems, as illustrated in Fig. 4. The normalized coordi-
nate system de�nes the original voxel grid at slice 0. It
is equivalent to the base plane coordinate system. The
shear-shrink coordinate system de�nes the voxel grid s-
heared and scaled by a shear-shrink matrix. The scale-
up coordinate system de�nes a grid scaled up by a scal-
ing factor D. This is the e�ect of using multi-resolution
datasets; a dataset covering a larger area e�ectively s-
cales up the grid. The compositing coordinate system
de�nes a pixel grid which coincides with the original
voxel grid in the normalized coordinate system.

i
j
k

i
j
k

i
j
k

i
j
k

*Shear &
Shrink

Scale Up 
  with D Floor

 HMatrix

Normalized
   C.S.

Shear-Shrink
     C.S.

Scale-Up
    C.S.

Compositing
         C.S.

!+

(using MRD)

Fig. 4 Four coordinate systems.

The sequence of transformations from the normal-
ized coordinate system to the compositing coordinate
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system entails the sequence of grid changes as follows;

1) transform a grid point at (i; j; k) in the normalized
coordinate system into a grid point at (i�; j�; k�)
by the shear-shrink matrix;

2) scale up the grid point at (i�; j�; k�) using the s-
caling factor D to a grid point at (iy; jy; ky);

3) apply the 
oor operation to the grid position

(iy; jy; ky) to get the �nal position (̂i; ĵ; k̂).

The scaling factor D is de�ned by D = 2L, where L =
b log2M c, and M is the convolution area size in Equa-

tion (2). The resulting position (̂i; ĵ; k̂) and (iy; jy; ky)
are used for calculation of convolution weight.

4.3 Resampling with convolution

Let suppose convolution area be M �M �M for sam-
ple estimation. A sample value at point (̂i; ĵ; k̂) along
a parallelized ray is given by following 3D convolution.

s
îĵk̂

=
PM�1

l=0

PM�1
m=0

PM�1
n=0

wlmn � vic+l; jc+m; kc+n;
(3)

where ic; jc; kc are given by:

ic = i�bM2 c; jc = j�bM2 c;
kc = k�bM2 c;

and vic+l;jc+m;kc+n is a voxel addressed by (ic + l; jc +
m; kc + n) and wlmn is a convolution weight given by:

wlmn = Wlmn( î� (ic + l)y; ĵ � (jc +m)y;

; k̂ � (kc + n)y ):

If we assume separable weights wlmn , i.e. wlmn =
wnwmwl, then Equation (3) can be transformed into
Equation (4).

sîĵk̂ =
PM�1

n=0 wn

PM�1
m=0 wm

PM�1
l=0

wl � vic+l; jc+m; kc+n;
(4)

where wl, wm, and wn are weights given by:

wl = Wl (̂i� (ic + l)y);

wm = Wm(ĵ � (jc +m)y);

wn = Wn(k̂ � (kc + n)y):

(5)

This assumption is reasonable and useful for the im-
plementation of 3D convolution. For example, 3D La-

grange interpolation formula and a 3D Sinc function
are separable and belongs to this category. By using
separable weight, the 3D convolution can be implement-
ed using series of 1D convolution. This implementation
uses 3M calculation units, i.e. multiplier and adder,
instead of M3 for ordinary 3D convolution.

4.4 Parallel Pipelined Convolution for a special case

Fig. 5 illustrates an implementation of parallel
pipelined convolution with 3 � 3 � 3 area, based on
Equations (4) and (5). The induction of the structure
is described in Appendix A. The �gure shows a special
case: the dataset size in one dimension is equal to the
number of processing pipelines. In the �gure (a), the
convolution has two types of data path; the solid line
shows data path of voxels and dotted line shows that
of sheared position. In each data path, operations are
divided into three groups: one group for the i, the next
for the j, and the last for the k-direction. In j-direction
1D convolution, it has j-delay to adjust timing of next
scanline voxels. In k-direction 1D convolution, it has k-
delay to adjust timing of next slice of voxles. In Fig. 5
(b), how to access all the voxels with a set of pipelines
in sequential manner is shown. Fig. 5 (c) illustrates ge-
ometrical relation between sheared positions and origi-
nal positions on a slice. The di�rence between original
position and sheared position, �i is used for generating
convolution weight for each direction. Fig. 5 (d) illus-
trates data 
ows of an arithmetic unit for i-direction
1D convolution in Fig. 5 (a). For j and k-derection 1D

convolution, (ĵ�my) and (k̂�ny) are used to calculate
weights respectively.

Table 1 shows several snapshots of the pipeline op-
erations of the 1D convolution for the i-direction in
Fig. 5 (a). In this example, one slice of 4 � 4 voxels
is used as input for each pipline, see Fig. 5(b). The
table shows that the 4 results of 1D convolution are
generated simultaneously, see time-5 at location W2�c
in the table. Snapshots for whole pipeline operations
can be induced from the snapshots in Table 1. Because
the 1D convolution structure for the j and k-direction is
similar to that of i-direction, but having di�erent time
delays due to the di�erent timing of neighboring voxels
in the j and k-directions.

4.5 Selecting Multi-Resolution Datasets

The use of multi-resolution datasets can reduce the
number of voxels required for convolution. By select-
ing an appropriate multi-resolution dataset depending
on the resolution of the scaled voxel grid, the archi-
tecture can always use a bounded number of voxels for
resampling regardless of the depth. It is a 3D version of
the mip-mapping scheme for texture mapping [14]. The
memory overhead to store multi-resolution datasets for
a volume of size V 3 is less than V 3=7, which is not
considered a very large overhead.

The resolution level is an indicator of the convolu-
tion area size at each slice in the progressively scaled
voxel grid to choose an appropriate multi-resolution
dataset. The power-of-2-based resolution level L is giv-
en by:
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� Grid data in Com-
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(̂i; ĵ; k̂) ! A! a

(ly;my; ny) ! B ! b
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vl;m;n ! D ! d
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C +WD ! c

Fig. 5 3 � 3 � 3 pipelined 3D convolution with four pipelines for a special case:
V = NP = 4.

Table 1 Snapshots of data 
ow in 1D convolutions. The data 
ow for i-direction is
shown.

Time Location Pipe 0 Pipe 1 Pipe 2 Pipe 3

1 W0 �D v000 v100 v200 v300
W0 � c ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � )

2 W0 �D v310 v010 v110 v210
W0 � c (v000; 0; 0 ) (v100; 0; 0 ) (v200; 0; 0 ) (v300; 0; 0 )
W1 � c ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � )

3 W0 �D v220 v320 v020 v120
W0 � c (v310; 0; 0 ) (v010; 0; 0 ) (v110; 0; 0 ) (v210; 0; 0 )
W1 � c (v000; v100; 0 ) (v100; v200; 0 ) (v200; v300; 0 ) (v300; v000; 0 )
W2 � c ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � ) ( � ; � ; � )

4 W0 �D v130 v230 v330 v030
W0 � c (v220; 0; 0 ) (v320; 0; 0 ) (v020; 0; 0 ) (v120; 0; 0 )
W1 � c (v310; v010; 0 ) (v010; v110; 0 ) (v110; v210; 0 ) (v210; v310; 0 )
W2 � c (v000; v100; v200) (v100; v200; v300) (v200; v300; v000) (v300; v000; v100)

5 W0 �D v001 v101 v201 v301
W0 � c (v130; 0; 0 ) (v230; 0; 0 ) (v330; 0; 0 ) (v030; 0; 0 )
W1 � c (v220; v320; 0 ) (v320; v020; 0 ) (v020; v120; 0 ) (v120; v220; 0 )
W2 � c (v310; v010; v110) (v010; v110; v210) (v110; v210; v310) (v210; v310; v010)

(p; q; r) = pW1 + qW2 + rW3

L = b log2M c; (6)

where M is the convolution area size in Equation (2).

The scaling factor D is de�ned by D = 2L.The
multi-resolution data, vi;j;k, for convolution are spec-
i�ed by the logical address (L; bi=Dc; bj=Dc; bk=Dc).
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Note that their geometrical positions are given by
(iy; jy; ky).

4.6 Multi-Resolution Skewed Memory Organization

The skewed memory organization is a technique to s-
tore voxels in separate memory modules so that voxels
in a slice can be accessed in parallel without any mem-
ory con
ict regardless of the viewing direction [3]. It
does not require multiple volume copies. The proposed
architecture uses it to store multi-resolution datasets.

Consider a system with Np rendering pipelines
for a volume of size V 3. A logical memory address
for the multi-resolution skewed memory is speci�ed by
(L; i; j; k), where L is the resolution level. Each multi-
resolution dataset can be stored in the skewed memory
as if it were an original volume dataset.

Let np be a memory module number, L be a res-
olution level in the module, and ip be an index in the
module, the multi-resolution data are accessed with the
physical address (np; L; ip) given by the following ad-
dressing scheme:

np = m mod Np; (7)

ip = bm=Npc+ j0V 0=Np + k0V 02=Np; (8)

where

i0 = b i
D
c; j0 = b j

D
c; k0 = b k

D
c;

V 0 = bV
D
c;

m = (i0 + j0 + k0) mod V 0:
(9)

5. Proposed Architecture

5.1 Pipelined Convolution for a general case.

Fig. 5 in the previous section shows the 3D convolution
for a special case V = Np = 4, where V is a size of
dataset in one dimension and Np is a number of pro-
cessing pipelines. In general, V is equal to or greater
than Np. By folding a string of voxel with NP voxels,
the set of pipelines can access a string of voxels repeat-
edly. Fig. 6 shows folding the string of voxels with 4
pipelines for V 3 dataset.

i

j

Time  1 Time  2 Time    V/4 

Time   V/4 + 1

Time   2*V/4 + 1

Time   V/4 + 2 Time   2*V/4 

N  = 4p

V  voxels

Time   3*V/4 

Fig. 6 Folding a string of voxels with NP = 4 for a data
dimension V which is greater than 4.

The folding scheme requests another delay ele-
ments in the architecture. Those are: folding-delays,

left-folding-delays and selectors. Fig. 7 illustrates
derivation of these elements and their control. In the
�gure, derivation of time delay for the case of V = 8 and
NP = 4 is shown. Fig. 7 (a) shows a naive implemen-
tation, i.e. no folding. Fig. 7 (b) illustrates dummy
time-slots generated for folding. The input timing of
the left half voxels is one unit time early to the right
one. To compensate this timing mismatch, delay units
are used. Fig 7 (c) shows that the dummy time slots
are �lled by folding. By this folding, there is no wasted
time slots. As a result of the derivation, we can see that
the time delay for folding-delays is always 1 unit time
regardless of V , on the contrary that of left-folding-

delays is V=NP . Using these additional delay elements
and controls, Fig. 5 can be extended to 3D convolution
for a general case.

Fig. 8 shows a block diagram of 3D convolution for
the general case: V >= Np and Np = 4. The structure
is a direct extension from 3D convolution in Fig. 5. In
the structure, the j-delay of V=4 is used to adjust time
delay for voxels in a next scanline, and the k-delay of
V 2=4 for a next slice of voxels. In addition, the struc-
ture has folding-delays and left-folding-delays to com-
pensate time delay caused by folding as described in
Fig. 7.

In summary, the number of delay time for gener-
al case with NP pipelines is shown in Table 2. It is
actually con�gured as a variable delay element for d-
i�erent resolution levels in adaptive processing. For a
given scaling factor D, representing a resolution level,
the delay element causes a delay of (V=D)=4 for j-delay
and (V=D)2=4 for k-delay respectively as shown in Ta-
ble 2. The variable delay element can be implemented
using a FIFO memory addressed in a circular manner
by a single pointer for both read and write operations.
The cycle time from one location to the same location
determines the delay time, which can easily be changed
by changing the maximum address value.

In the �gure, the shearings (i; j; k) ! (iy; jy; ky)

and (i; j; k) ! (̂i; ĵ; k̂) are carried out on the 
y at s-

hear block in the �gure. This shearing is carried out
using DDA instead of matrix multiplication.

Table 2 Number of time delay versus data dimension V and
the number of processing pipelines NP .

Location of delay Number of delay
Non adaptive Adaptive

j-delay V=NP (V=D)=NP

k-delay V 2=NP (V 2=D)=NP

left folding delay V=NP (V=D)=NP

folding delay 1 1

5.2 Rendering Timings

The rendering time is directly related to the number
of resampling operations to perform, which can be re-
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(c) Folding a string of voxels with 4
pipelines.

Fig. 7 A derivation chart of folding delays and their control
for the folding process; V = 8 and NP = 4.

duced by the use of multi-resolution data. It is upper-
bounded by the total number of resampling operations
without multi-resolution datasets, that is, only with o-
riginal voxels.

Since the resampling and other rendering opera-
tions can fully be pipelined, the pipeline cycle time can
be equal to the memory access time Tm. This implies
that the processing bottleneck is the memory access
time. For a given set of rendering parameters, access-
es to the voxel memory are regular and deterministic.
A double bu�ering technique can be used to provide
continuous data streams from the voxel memory to the
resampling module and rendering pipelines. The pixel
memory does not require much bandwidth on average,
because the pixel write operations are bursty but in-
termittent. A simple pixel bu�ering technique with a
FIFOmemory will be enough for pixel write operations.
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Fig. 8 3 � 3 � 3 pipelined 3D convolution for general case:
V � NP , Np = 4.

The voxel and pixel memories can be implemented by
SDRAM (Synchronous DRAM) chips to exploit their
burst access mode.

Let V 3, Np, andNf be the volume size, the number
of rendering pipelines, and the number of image frames
generated per second. The total number of samples Ns

to compute in each pipeline for one second is given by:

Ns = V 3Nf=Np: (10)

For each second,

NsTm <= 1: (11)

For a given set of parameters Tm, Nf , and Np, the
maximum dimension of volume that can be rendered is
given by:

V <=
3

q
Np=(NfTm): (12)

Assuming that Tm = 8 ns as in a 125-MHz SDRAM
chip and Nf = 30 frames/second, the volume dimen-
sions computed for several values of Nf and Np are
shown in Fig.9. The volume dimensions computed for
several typical values of Nf and Np are also shown in
Table 3. These values verify that the proposed ar-
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Fig. 9 Maximum volume dimensions.

Table 3 Maximum volume dimensions for typical frame rate.

Nf Np (# pipelines)
(frames/sec) 2 4 8 16 32 64

30 203 255 322 405 511 644
20 232 292 368 464 585 737
10 292 368 464 585 737 928

chitecture can render volumes of practical sizes in real-
time.

Multi-resolution datasets are generated before a
volume dataset is loaded into the voxel memory. They
can be generated o�-line by software. The set of op-
erations to compute a single data from eight data at
a lower level includes seven additions, one division
(shift), and eight memory reads, and one memory write;
V 2(V � 1)2=4 sets of operations are required for a vol-
ume of V 3. Although the number of operations can be
reduced by using some optimization techniques, such
as bu�ering and pipelining, it seems still di�cult to
perform these operations on the 
y with the current
technologies. It may be reasonable, however, to per-
form these operations using several frame periods for
practical applications.

6. Experiments

We built a software simulator to simulate the pipeline
data 
ow of the proposed architecture and verify the
concept for both parallel and perspective projections.
To compare images, we also built a sample-order ray-
casting renderer that computes slices of samples per-
pendicular to the viewing vector and accumulates them
to produce the �nal image. We conducted several ren-
dering experiments with these simulators.

Fig. 6 (a) shows a perspective image rendered from
an opaque cube of size 643 to verify the perspective pro-
jection. The �lter kernel based on the 2�2�2 Lagrange
formula is used in resampling.

Figs. 6 (b) and (c) show two perspective images
rendered from an opaque checker-board cube of size
1283 (spatial frequency of 64 Hz) to explore the aliasing

problem; a fully opaque dataset gives the worst case for
aliasing. The image in Fig. 6 (b) is generated by using
the nearest neighbor voxel values in resampling, show-
ing the aliasing problem clearly. The image in Fig. 6 (c)
is generated by using a 3� 3� 3 box �lter kernel in re-
sampling, showing the antialiasing e�ect by convolution
using multi-resolution datasets.

Figs. 6 (d), (e), and (f) show the images rendered
from the engine block of size 2563 used in Lacroute's
rendering experiments [6] with a manually adjusted
opacity table. Fig. 6 (d) shows a perspective projec-
tion image, and Fig. 6 (e) shows a parallel projection
image for a comparison purpose. These two images are
generated by using a kernel based on the 3� 3� 3 La-
grange formula.

Fig. 6 (f) is a perspective projection image generat-
ed by the sample-order ray-casting renderer with inter-
polations using multi-resolution datasets. The number
of the slices taken for this image is 258, about the same
number of slices (256) used in Fig. 6 (d). The two im-
ages in Figs. 6 (d) and (f) look comparable in quality.

7. Future Work

The analysis for �xed-point arithmetic is an essential
work for hardware implementation. And the other fu-
ture work is the theoretical analysis for convolution on
re-sampled data from irregular volumes.

8. Conclusion

We have proposed a new VLSI architecture of real-time
volume graphics using 3D convolution for both parallel
and perspective projections based on the shear-warp al-
gorithm. In the original algorithm, the further the ray
proceeds, the more voxels are required for the calcu-
lation of convolution. The increase of required voxels
makes di�cult to implement the algorithm in hardware.
1) We prepare several sets of resolution of voxels associ-
ated with depth, in order that convolution can be done
with constant number of voxels independent of depth.
2) We implement 3D convolution by three serial 1D
convolutions along X, Y and Z axes, which reduces the
calculation steps from M3 to 3M , where the convolu-
tion is calculated for M3 area.

For V 3 voxels dataset, the number of pipelines for
rays is V 2 and their pipeline stage is 3M . If the hard-
ware of a single pipeline has the capability of calculating
V rays, each of the implemented pipelines is assigned
to V theoretical pipelines (for V 2 rays). In actual im-
plementation, a number of hardware pipelines should
be much smaller than the V theoretical pipelines. We
fold the theoretical pipelines and reduce them to the
certain number of hardware pipelines. Regarding this
folding, we show the relation between folding process
and its necessary delay.
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(a) Perspective projection with 2�
2 � 2 convolution.

(b) Perspective projection by re-
sampling the nearest neighbor
voxels.

(c) Perspective projection with 3�
3 � 3 convolution.

(d) Perspective projection with
3 � 3 � 3 convolution.

(e) Parallel projection with 3�3�
3 convolution.

(f) Screen-to-Object perspective
projection by interpolations using
multi-resolution datasets.

Fig. 10 Generated images with simulators.

The architecture can generate image of 2563 voxles
dataset( V = 256 ) at 30Hz with 4 pipelines. In
addition, the architecture can be extended easily for
5123(V = 512) and 10243(V = 1024) dataset with 32
pipelines and 256 pipelines respectively. Our architec-
ture has processing expandability.
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Appendix A: Induction of systolic array struc-
ture in a special case

. The access timing di�erence Td between two voxels
is de�ned by Equation (A� 1) using voxel dimension V
and the number of pipelines Np, refer to Fig.6.

Td(vijk ; vlmn) = b(i�l)+V (j�m)+V 2(k�n)
Np

c (A� 1)

The 3D convolution, Equation (4), is separated in-
to the following series of equations.

aic;�; � =
PM�1

l=0 wl � vic+l; �; � ;

b�; jc; � =
PM�1

m=0 wm � a�; jc+m; � ;

s�; �; kc =
PM�1

n=0 wn � b�;�; kc+n :

(A� 2)

In this induction, the real sheared positions indicated
în the Equation (4) are not necessary so that we do not
used it for simplicity.

Fig.A� 1 shows 4 aic; �;� (ic = 0; � � � ; 2) with stand-
ing up form. In the �gure, same voxels are indicated
with arrows. These same voxels need not to be ac-
cessed each time from memory, but with data passing
through. The delay time for these passing thorough
can be calculated using Equation (A� 1). In this case,
Td1(vi+1; �; � ; vi;�; �) = 0. Therefore delay units for
timing adjustment are not necessary for the data pass-
ing.
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Fig. A� 1 Induction of 4 parallel pipelined 1D convolution for
i-direction.
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Fig. A� 2 Induction of 4 parallel pipelined 1D convolution for
j-direction.

Fig A� 2 illustrates 4 b�;jc;� with standing up for-
m. There are same results of i-direction 1D convolu-
tion value ai;�;� as indicated with arrows. In this case,
Td2(a�;jc+1;� ; a�;jc;�) = 4=4. Therefore 1 unit time de-
lays are necessary to adjust timing for data passing.

Same discussion can be applied for k-direction. In
this case, Td3(b�;�;k+1 ; b�;�;k) = 16=4. This means 4
unit times delay is necessary for data passing. From
these discussions, Fig.5 is induced. Without loosing
generality, these discussions can be applied for the in-
duction of the parallel pipelined convolution for special
case, i.e. V = Np.
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