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Computational Photography

Optical Splitting
Trees for
High-Precision
Monocular
Imaging

M any computational photography appli-

cations require sets of images that are
captured simultaneously from the same viewpoint but
have different image sensors and imaging parameters.
In this article, we address the problem of designing effi-
cient multisensor cameras that can capture such
images. Although for two- and three-sensor cameras
ad-hoc designs are often effective, the design problem
becomes challenging as the number of sensors increas-
es. We demonstrate results on cameras created using
our new design paradigm that contains as many as eight
sensors. (To gain a better sense of
the issues we’re tackling in this arti-
cle, read the “Basic Background and
Considerations” sidebar.)

In this article, we consider the
design of monocular multiview opti-
cal systems that form optical split-
ting trees, where the optical path
topology takes the shape of a tree because of recursive
beam splitting. Designing optical splitting trees is chal-
lenging when it requires many views with specific spec-
tral properties. We introduce a manual design paradigm
for optical splitting trees and a computer-assisted design
tool to create efficient splitting-tree cameras. The tool
accepts as input a specification for each view and a set
of weights describing the user’s relative affinity for effi-
ciency, measurement accuracy, and economy. An opti-
mizer then searches for a design that maximizes these
weighted priorities. Our tool’s output is a splitting-tree
design that implements the input specification and an
analysis of the efficiency of each root-to-leaf path. Auto-
matically designed trees appear comparable to those
designed by hand; we even show some cases where
they’re superior.

We've previously reviewed and demonstrated captur-
ing multiple monocular views in various contexts, but
rarely have more than three simultaneous views been
captured. (To see others’ approaches to this and similar

The authors present a design
framework and optimizer
for computational systems
containing many sensors on
a common optical axis.
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problems, see the “Related Work” sidebar on page 40.)
Our approach makes design, implementation, and cal-
ibration practical for many more sensors. To demon-
strate the practical application of our splitting tree
paradigm and optimizer, we built the configurable opti-
cal splitting tree system shown in Figure 1 (on page 34)
that captures up to eight views. Assisted by our design
tool, we were able to use this single device to implement
several different popular computational videography
applications: high-dynamic range (HDR), multifocus,
high-speed, and hybrid high-speed multispectral video.
In this article, we demonstrate results for each of these.

Optical splitting trees

Optical splitting trees are schematic representations
of tree-topology filter systems. The edges are light paths
and the nodes are optical elements. Nodes with a single
child represent filters and lenses. Nodes with multiple
children are beam splitters. Leaf nodes are sensors. The
plenoptic field enters the system at the root. The physi-
cal path length to each sensor’s optical center is identi-
cal. However, a sensor’s tree depth (the number of
internal nodes between it and the root) might differ.

Figure 2 shows a schematic of a full binary splitting
tree, viewed from above, where light enters on the upper
right. This layout packs components into a small form
factor with no optical path occluded. The thick black
lines are light baffles preventing the reflective child of
each splitter from imaging stray light.

Further abstracting the structure and using the sym-
bols in Figure 3, we can emphasize the most significant
elements. In each case in Figure 3, light enters at the top
and emerges at the bottom. Spectral filters are narrow
bandpass filters centered at the specified value. “Sensor
+ Lens” sets specify imaging properties. The neutral
density (ND) filter reduces the amount of transmitted
light, equally across all wavelengths. The plate mirror
splits incoming light into two directions. Unless speci-
fied, it reflects 50 percent and transmits 50 percent of
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Basic Background and Considerations

Why are sets of pixel-aligned images of the same scene
useful? Consider a set of images with different exposure
times as an example. Short exposures will capture detail in
the bright areas of a scene, while long exposures will reveal
details in shadows that would otherwise be underexposed.
Fitting an intensity curve to only the correctly exposed
images at each pixel fuses the set of images into a single
high-dynamic range (HDR) image that captures detail
everywhere. We consider the output computational
because the final image isn’t (and can’t be) recorded by an
isolated image sensor; a battery of sensors and
computations produce it. Other popular applications that
require multiple images and computations include high-
speed, super-resolution, focus/defocus analysis, and
multispectral video.

We say that the image sets contain multiple monocular
scene views to distinguish them from stereo and other array
cameras where the optical axis is different for each imager.
Working with monocular views is ideal in many contexts
because the images have direct pixel correspondence.
Except for calibration, they don’t need to be warped and
don’t exhibit parallax artifacts with depth.

The cameras that capture multiple monocular views differ
from conventional cameras. A conventional camera
contains a single objective (lens system) and imager. To
capture multiple views, the camera makes an optical copy
of the incident light using a beam splitter, such as a half-
silvered mirror.

This lets two imagers each observe the same view at half
intensity. Inserting filters and other optical elements into the
optical path between the beam splitter and the imager
leads to different measurements at the corresponding pixels
in each imager. As with the HDR example, we can combine
these measurements into an image that represents more
information (bits) than a single view, allowing for high-
precision measurements. The method of combining the
measurements may increase the dynamic range (high-order

bits), the resolution (low-order bits), the number of samples
acquired at different parameters, or some combination.

The amount of useful precisions for a measurement is
limited by environmental and sensor noise. The ratio of
measured light to incident light is that optical sensor’s
efficiency. Efficiency and the intensity of the light source
determine the amount of noise in an optical measurement.
Therefore it’s good to design optical systems where a large
fraction of light reflected off the subject actually reaches the
sensor instead of, for example, being absorbed by filters or
lost at lenses through absorption and internal refraction.

When considering a system’s efficiency, it’s useful to
discuss each component’s efficiency—for example, a lens
that absorbs 10 percent of the incident light is only 90
percent efficient. Although overall efficiency is desirable,
sometimes someone intentionally uses an inefficient
component. A common example is a neutral density filter,
which modulates overly intense light. Considering
efficiency over the whole spectrum, a band-pass filter is also
intentionally inefficient because it blocks light outside the
pass band.

An accurate sensor measures the desired quantity. This is
a separate concept from precision. For example, a
bathroom scale with five decimal places and a brick on top
of it measures weight with high precision but low accuracy
because of the brick’s added weight. In contrast, a well-
calibrated scale with no decimal places has high accuracy
but low precision. To make an optical design accurate we
must match the real-world specifications of components
like filters and sensors to the theoretically desired ones and
calibrate for common sources of error like element
misalignment and radial distortion. Of course, components
with tightly controlled specifications could be prohibitively
expensive—economy is often a real limiting factor for both
products and research. Design is the process of balancing
theoretical desires, engineering capability, and the four
concerns of efficiency, accuracy, precision, and economy.

incident light (“50R/50T”). Dichroic mirrors reflect or
transmit light according to the incident wavelength.We
know that all paths from the root to the leaves have the
same physical length, so the representation need not
preserve distances. Angles are an artifact of building the
physical system and also need not be represented.

We're left with an abstraction where only graph topol-
ogy is of significance. The tree has a branch factor of at
most two when the beam splitters are plate mirrors (as
in our implementation). Other splitting elements can
produce higher-degree nodes. We can collapse subtrees
of beam splitters with no intervening filters into a
single node representation with many children, as in
Figure 4 (on page 35). This representation also abstracts
the nature of the employed splitting element .

Figure 5a shows a balanced multispectral splitting
tree. Each beam splitter is a dichroic mirror, which
divides half the remaining visible spectrum among its
children so that no light is lost. This is an excellent
approach, except that manufacturing large dichroic mir-

rors is expensive. Figure 5b schematically shows a less
efficient design using readily available bandpass filters
(for example, Edmund Optics’ filters NT43-055 through
NT43-088). Each path receives about 1/8 of the inci-
dent light, which is bandpass filtered immediately
before the lens. Note that both designs are useful; the
splitting-tree concept makes it easy to switch between
them if necessary.

Many applications require a balanced binary tree, in
which each sensor has the same tree depth and the beam
splitters divide incident light evenly between their chil-
dren. In others (such as HDR) it’s useful to unbalance
the tree. We may do so either by using beam splitters
with uneven division ratios, or by creating a structural-
ly unbalanced tree where the sensors’ tree depths vary.

The two designs that we present each have their
advantages. Both designs are straightforward ones that
someone could construct manually. Other applications
offer more alternatives (for example, Figures 5 and 6
demonstrate cost and efficiency tradeoffs), or have spec-
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1 (a) Top and (b) side images of our generic eight-view splitting tree

system, which can quickly be reconfigured to implement previous capture
systems such as high-dynamic range (HDR) and multispectral video, or to

meet novel applications. The superimposed laser beam shows the recur-

sively split optical path.

2 Physical
layout of a
balanced eight-
view splitting
tree. The red
lines are beam
splitters and
thick black lines
are baffles.
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ifications that force tough compromises between desir-
able characteristics.

Consider a hypothetical application that requires HDR
in the red and near-infrared channels, moderate dynam-
icrange across the visible spectrum, and a final catch-all
with low-precision, wide-spectrum measurement (we
could easily envision face recognition applications with
similar requirements). Furthermore, assume that the
ideal bit depths of the different channels are all speci-
fied by the theory behind this application. Many split-
ting trees exist that meet these specifications. This
immediately raises nontrivial design questions: Should
one split the color channels out first? Should the red
channel of the visible spectrum sample be used in the
HDR red/infrared, even though it only overlaps partly
with the desired spectral response? Should exposure,
aperture, or neutral density (ND) filters be used to cre-
ate the HDR trees? Which brand of filter produces the
least light loss?

Like most graphics and vision researchers, we’ve pre-
viously answered questions like these by evaluating a
handful of promising straw-man designs and ignoring
the full design space of possibilities. If the tradeoffs are
heavily biased (for example, if the budget isn’t a major
factor, but the signal-to-noise ratio is crucial), it’s not
surprising that we can resolve many design decisions
by intuition. In those cases, we make reasonable ad-hoc
decisions.

What is surprising (at least, it was to us) is that many
cases exist where intuitive decisions for seemingly sim-
ple applications often produce inaccurate cameras. This
can be seen by analysis of the splitting tree for error
sources. Figure 7 reveals the primary reason for this.
The curves in the figure show the actual spectral
response, according to the manufacturers, for nominal-
ly uniform components like sensors, plate mirrors, and
filters. Ideally, these curves should all be horizontal
lines. In reality, they’re bumpy curves. This means that
a simple design decision like splitting the optical path
has unintentionally changed the spectral response and
relative efficiency at each sensor.

When several splits, filters, and lenses are combined,
these deviations from the theoretically ideal behavior
create significant inaccuracy. This inherent spectral inac-
curacy leads to problems in other parameters. For exam-
ple, if the red channel is too dim because the beam
splitter modulated it unevenly, we must adjust either
exposure or aperture to compensate. Alternatively, we
could try a different brand of sensor, splitter, filter, or
lens. But which of several brands should we use? Even
when budgets are flexible, the cost of purchasing pre-
cisely uniform components can quickly skyrocket
because of manufacturing challenges, so most cameras
are designed with nonuniform components.

The error introduced by the deviation between
abstractideal component behavior and real-world spec-
ifications motivates a desire to include the real compo-
nent specifications in the design process. Considering
lenses, splitters, and filters, a tree with eight cameras
contains dozens of components, some of which are
shared over multiple sensors. Adjusting the components
along one path affects other downstream sensors, cre-



ating a combinatorial configuration problem that then
multiplies the difficulty of the previously intuitive design
decisions.

To solve this larger design problem, we created an
optimizer that searches design space. Where a human
being’s design is created under the false assumption that
components have ideal properties, the optimizer makes
no such assumption and achieves a more accurate fit to
the desired specification of the camera as a whole.

Assisted design

We now describe a method for an assisted design tool
that creates splitting trees to meet a formal specifica-
tion. It addresses the complexity of designing large trees
and can balance nonideal components against each
other. It also takes into account efficiency, cost, and
accuracy. The design process contains two phases. The
first deterministically constructs an inefficient, expen-
sive tree that’s close to the specification and then applies
a deterministic series of simplifications to reduce the
cost. The second phase is an optimizer that performs
short, random walks through the space of all possible
trees, searching for similar but better trees. It continues
until the user explicitly terminates it. Our implementa-
tion is in Matlab, using trees from the Data Structures
toolbox. We computed all the results in less than an
hour, although usually the first minute brought the
objective function within 10 percent of the peak value
and the optimizer spent the remaining time
addressing minor spectral deviations.

Input specification
Our algorithm takes a set of design speci-
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fications {X,I, Y} and objective function
weights (o, B, 3, €, y) as input. It also contains
a database of components from a real optics
catalog (the Edmund Optics Catalog—see
http://www. edmundoptics.com). We dis-
cuss the design specification in the following
paragraphs; we discuss the weights in the
“Objective function” section.
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6 Some HDR video trees that vary (a) exposure, (b) aperture, (c) filters, and (d) struc-
ture. The most efficient approach is (d).

mIis the (unitless, scalar) importance of 1.0

this sensor relative to others. ' : ""~~l....ml,_‘ : ' —— NT45-854 BS: Refl.

B Y [p] is a vector of the scalar imaging 0.8r — — NT45-854 BS: Trans.
parameters (p): aperture area, exposure 0.6 / . T NT54-726 ND 30%
time, polarization sensitivity, time shift, < 5 — — — | EC655 Mono Sensor

. . D 0.4f =
horizontal and vertical subpixel shift, focal =~ ¥l oo i T T
length, and focus depth. 0.2r- R .
0 I 1 1 1 1 I 1 I 1 "‘I’“ """
In this notation, a hat over the variable distin- 400 450 500 550 600 65}\0(nnz)00 750 800 850 900 950

guishes a specification variable from its coun-

terpart that’s adjusted during optimization.
The subscript v denotes the sensor that a vari-
able describes. Note that no tree structure
hints are provided with the specification; the
tool begins from scratch.

7 Actual efficiency curves for nominally uniform components: beam-splitter #854,
neutral-density filter #726, and a Prosilica charge-coupled device. Because these curves
are not ideal flat, horizontal lines, naive manual design loses efficiency. In contrast, our
design tool considers the actual curves and can exploit imperfections in the filters to
boost overall light efficiency.
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Efficiency

Efficiency is a desirable quality in a camera. In this
section, we rigorously define the efficiency q of a cam-
era as the fraction of incident light that’s measured by
Sensors. o

The specification {X,I,Y} dictates how the tree dis-
tributes light, but the scale is necessarily relative because
at input time the light loss inherent in the design is
unknown. Likewise, each component in the catalog
must be annotated with a curve describing its transmis-
sion (for a filter), split ratio (for a beam splitter), or dig-
ital output sensitivity (for a sensor) at several
wavelengths. Figure 7 shows examples of these curves.

We call this curve the quantum efficiency of a com-
ponent. We represent it with a vector q[] describing the
ratio of output to input light at a node, sampled at 12
wavelengths between 400 and 950 nanometers (nm).
Because our components are passive, q[A] < 1. In other
words, the efficiency of a component describes the ratio
of light lost as it travels through that component. For a
view v, let

qVDL] = Hi e pathqi[k]

over every component i on the path from v to the root.
Let scalar q be the mean efficiency of that view with
respectto A, and let

qtree - 2 ve viewsqv

denote the efficiency of the entire camera. With these
definitions, X [A]=q [A]/q, specifies the shape of
the desired response and I, [Al= ‘_lv /q ree 18 the scalar
fraction of measured light captured by view v.

Objective function

The optimizer seeks camera designs that maximize
the goals of efficiency, accuracy, and cost. The objective
function is the weighted sum of expressions represent-
ing each of these goals:

obj(tree)=  oq,. m
- (B(x,-X)P @

+8 U, -1 (3)

+HE @, -Y)P) )

T2 ®

These expressions drive the optimizer as follows.

B Efficiency (Equation 1). Maximize the total light
measured (and therefore, the signal-to-noise ratio).

H Spectral accuracy (Equation 2). Minimize the
difference from the color specification.

H Relative importance (Equation 3). Ensure that
each sensor receives the correct amount of light rel-
ative to other sensors, regardless of overall efficiency
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(this is particularly important for applications like
HDR where exposures vary widely).

B Parameter accuracy (Equation 4). Minimize
the difference from the specified pixel shift, tempo-
ral shift, polarization, motion blur, and defocus.

B Economy (Equation 5). Minimize the purchase
cost of components.

Each expression is quadratic to create stable maxima.
Recall that X and Y are vectors, so | '|2 is a dot product,
and that the hats denote specification variables.

Greek-letter variables are user-tunable weights, which
may vary from zero (which ignores a term) to arbitrar-
ily large positive numbers (which demand that the opti-
mizer exactly meets the specification). They’re all scalars
except for € which is a vector so that each imaging para-
meter may be weighted independently.

We distinguish between scalar (that is, exposure time)
parametersin Y and the spectral response vector X for
two notational reasons. First, most optical components
exhibit surprising spectral nonuniformity but are rela-
tively controlled along other parameters (see Figure 7).
Representing spectral error explicitly is therefore infor-
mative. Second, the optimization weight is the same for
each wavelength. We could instead consider the system
to be parameterized only by scalars, where the first 12
represent responses at different wavelengths.

We choose initial weights so that each of the five
expressions has approximately the same magnitude.
(Note that this depends on the units selected for Y.) The
result quality is most sensitive because preserving accu-
racy introduces filters that absorb light. Other weights
can vary within a factor of two without affecting the out-
put, since cost and accuracy are less contentious when
many filter choices are available.

Deterministic phase

The goal of this phase is to construct a tree that accu-
rately meets the view specifications. To simplify the
process, economy and efficiency are left unconstrained.
The system first groups the views into separate
binary trees of similar X to increase the later likelihood
of shared filters and then links those trees into a single
large tree.

All splitters are 50R/50T plate mirrors at this stage. To
satisfy the X values, the system evaluates the actual X
ateach leaf and introduces bandpass filters immediate-
ly before the sensors to optimize the spectral accuracy
term. It then sets all parameters as dictated by Y . Final-
ly, it evaluates I at each leaf and inserts ND filters
until the the system satisfies the importance accuracy
constraint.

Search phase

From the deterministically computed tree we search
for steps in the design space that increase the bojective
function obj using the uphill simplex method. Each step
begins with a randomly chosen transformation. Because
many transformations require parameter changes to be
beneficial, the Y vectors are adjusted to increase spectral
and importance accuracy before obj is evaluated for the
altered tree.



Several transformations preserve x and I while poten-
tially reducing the cost of the tree or increasing q
These tree identities include the following:

treé

M no transformation (allows Y change without a tree
change);

W if the same filter appears on both children of a beam
splitter, move it to the parent of the splitter;

B replace a chain of filters with a single, equivalent fil-
ter;

W reorder the filters in a chain (tends to encourage the
second and third items);

M rotate a node, as in Figure 8; and

B replace a splitter and filters on its children with a split-
ter whose R/T ratio approximates the filter ratio

For example, the right rotation transformation in Fig-
ure 8 reparents node B. After transformation, the opti-
mizer explicitly adjusts the ND filters to maintain the light
ratios at qa:qp:qc=2:1:1. For the left tree, the fractions of
light at the root are 1/4, 1/8, and 1/8. For the right,
they’re 1/2,1/4, and 1/4. Both designs capture the same
(relative) measurement, but the right tree is twice as effi-
cient. However, spectral filters are expensive and ND fil-
ters have negligible cost. The tree on the left is therefore
almost twice as economical as the tree on the right.

Transformations other than the ones that we’ve noted
can change X and I and are therefore less likely to
improve the tree, since the design search begins with a
tree that is nearly optimal for those variables. Nonethe-
less, such transformations provide reachability to the
entire design space and therefore allow the optimizer
to theoretically find the best tree given sufficient run
time. These transformations include

B adding, removing, or changing a filter at random;

B rotating a subtree right or left without adding filters;
B replacing a beam splitter at random; and

B swapping two subtrees.

Experimental system

To test our design framework we built a physical con-
figurable splitting-tree system with eight computer
vision sensors that use 100 x 100-mm plate-mirror and
hot-mirror beam splitters (see Figure 1). We removed
the black baffles in Figure 1a for Figure 1b to make the
cameras and light beam more visible from the side. Hot
mirrors transmit visible light and reflect infared.

The sensors are Bayer filter A601fc color cameras and
monochrome A601f cameras by Basler. Each sensor is
equipped with a Pentax objective. The tree exactly fits on
a 2 x 2 square-foot optical breadboard with holes spaced
at half-inch intervals. The sensors are connected to a
single 3-GHz Pentium 4 computer using the FireWire
interface. We wired the hardware shutter trigger pins
to each of the eight data pins of the PC parallel port,
which we precisely controlled by writing bit masks to
that port through a special Win32 driver (see http://
www.logix4u.net/inpout32.htm).

The difficulty of calibration increases with the num-
ber of elements. Sensors that share an optical center are
also more difficult to calibrate than array systems where

[ 50% | | 25% |
A B C

—>
(][]

8 This “right rotation” transformation at the root reparents node B.

the views aren’t expected to align perfectly.

To calibrate the system, we first orient the plate mir-
ror beam splitters at 45 degrees to the optical axis. To
orient these, we place a lens cap over each camera and
shine a laser along the optical axis to illuminate a single
point near the center of each lens cap. Working through
the splitting tree from the root to the leaves, we rotate
the beam splitters until each dot appears exactly in the
center of the lens cap.

Second, we construct a scene containing a nearby tar-
get pattern of five bullseyes on transparent plastic and
a distant, enlarged pattern on opaque poster board so
that the two targets exactly overlap in view 1. We then
translate all other sensors until the target patterns also
overlap in their views. This ensures that the optical cen-
ters are aligned.

Third, we compute a software homography matrix to
correct any remaining registration error. We find corre-
sponding points in 3D by filming the free movement of
a small liquid-eye display (LED) light throughout the
scene. Let C; be the N x 3 matrix whose rows are homo-
geneous 2D positions—that is, [xy 1]—of the light cen-
troid at subsequent frames in view number v. The
transformation mapping pixels in view 1 to those in
view v is

Hx* =arg min(| chv_1|2): Cle

where T denotes a pseudo-inverse. We solve this system
by singular value decomposition because it is frequent-
lyill conditioned. For color calibration, we solve the cor-
responding system in color space using pixel values
sampled from a Gretag Macbeth color chart instead of
2D positions.

Applications and results

We implemented various video capture applications
using a mixture of data acquisition trees that were hand-
designed using the framework and ones that the opti-
mizer automatically produced. Without our system, it
often takes several days to assemble and calibrate a new
computational photography camera for a single appli-
cation when starting from scratch. Because our hard-
ware system is configurable and most splitting trees
form subsets of the full tree that we prebuild on the opti-
cal table, we can configure for different applications
comparatively quickly. For each of the examples
described here we reconfigured and calibrated the sys-
tem in about two hours, even when outside the labora-
tory. Paired with the assisted design tool, this allows for
much greater experimental flexibility than we had pre-
viously enjoyed.

In each example, the result figures and videos demon-
strate accurate color, temporal, and spatial image cap-
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Captured data Result: Tone-mapped HDR composites ture, and registration across many more

Sequence 1

Sequence 2

monocular views than in previous work.
The deterministic phase always pro-
duces a viable design, so optimization
will technically never fail. However, in
about two out of 10 cases, it takes longer
to adjust the weights than it would to
simply adjust the output of the determin-
istic phase manually. In its current form,
the optimizer is therefore most useful
when applied to designs with many sen-
sors, significantly nonuniform compo-
nents, or tricky spectral constraints.

High dynamic range
Figure 6 shows several splitting trees
for a simple, HDR camera where the rel-
ative intensities observed by the views are
powers of two. We designed these by
hand based on previous work and verified
that with appropriate weights the opti-
mizer rediscovered equivalent structures.
In Figure 6a, a large economy weight
Y gives the inexpensive variable

9 Frames from two HDR sequences. Images on the left are four simultaneously exposure solution.! The drawbacks
captured views. The large images on the right are the corresponding tone-mapped of that approach are inconsistent
composites. motion blur between cameras and low

(b)
10 Multifocus images captured by sensors. (a) Eight simultaneous views
with different focus depths, and (b) a fused infinite depth-of-field result.
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q,..=15/32 efficiency. Increasing
the exposure weight and decreasing the aperture
weight in € leads to Figure 6b, where the aperture
varies. Now motion blur is correct but the depth of
field varies and is still low.

An alternative is to use ND filters as in Figure 6c, simi-
lar to Mitsunaga et al.> Compared to Debevec and Malik’s!
method, this corrects both motion blur and depth of field
but not efficiency. Our optimizer did not rediscover this
approach—instead it found a better design!

The tree in Figure 6d has q,  =30/32. Instead of
blocking light with the iris, shutter, or filters, it redi-
rects excess light at a sensor to other sensors that can
measure it. Aggarwal and Ahuja® mention a similar
design in passing; however, their design was never
implemented and we believe that it would have pro-
duced undesirable asymmetric point-spread functions
if actually built.

Figure 9 shows results from two HDR experiments.
In sequence number one (top), the actor is brightly lit
and the city lights are dim in the background. In
sequence number two (bottom), the actor is inside a
dark office and the sky and city in the distance are
bright. On the right are resulting tone-mapped HDR
images. These combine frames from four different sen-
sors to keep all scene elements visible and within the
display’s dynamic range.

Multiple focus and defocus

We can use images focused at multiple depths to
recover depth information*® and form images with an
infinite” depth of field. Many systems* split the view
behind the lens. Splitting in front of the lens lets us vary
not only the location but also the depth of the field by
changing the aperture.



To capture images with varying depths of field, such
as those in Figure 10, we use a full binary tree with with
eight cameras. Each sensor is focused at a different
depth, ranging from 20 cm from the optical center
(about 4 cm from the first beam splitter) to 20 m (effec-
tively infinity). We use wide f/1.4 apertures for a nar-
row depth of field on each sensor.

Figure 10 shows an artificially wide depth of field
achieved by a weighted sum of each view. The weight
at each pixel is proportional to the local contrast (lumi-
nance variance) in the view, squared.

Matting and other designs

Two matting algorithms®? from computer graphics
literature use custom cameras that can be expressed
within our framework. We compare the originally pub-
lished designs against new ones created by our optimiz-
er from their specifications.

McGuire et al.® capture three monocular views, each
with a focal length of f=50 mm and each at equal impor-
tance: a pinhole view with an aperture, and two views
focused at different depths. Their design uses two
50R/50T beam splitters and two filters.

Given their specifications, the deterministic phase of
our optimizer immediately produced the correct (but
inefficient) tree in Figure 11a. The deterministic phase
is constrained to create a full binary tree, place sensors
at leaves from left to right, and then add filters at the
leaves to implement the desired specification.

After many iterations the optimizer found a better tree
shown in Figure 11b. In this tree, the second split is on
the right, between the two wide-aperture sensors. This
gives more light to the pinhole sensor and reduces the
number of ND filters required. Note that the short-pass
filter has also propagated up the tree but not yet reached
the root.

After about 40 minutes, our optimizer appeared to
stabilize on the tree design shown in Figure 11c. Com-
pared to the originally published design and trees found
on previous iterations, this new design achieves higher
efficiency through a 70R/30T beam splitter; a single,
weaker ND filter shared across two views to reduce cost;
and a short-pass filter to attenuate the color sensors’
undesirable infrared response. The optimizer adjusted
exposures slightly to compensate for imperfections at
the 50R/50T beam splitter on the right branch, where
it chose a low-quality component to reduce cost. Subse-
quent runs produced approximately the same output.
Adjusting the input weights traded accuracy in the expo-
sure time against accuracy of the aperture size.

We performed a similar experiment on Debevec et
al’s® matting system that uses a plate mirror and an
infrared filter to capture two monocular views. The opti-
mizer simply replaced the half mirror with a hot mirror
to increase efficiency at no additional cost.

The matting cameras are simple. Figure 12 shows
the tree computed for an arbitrary complex specifica-
tion. The optimizer correctly created an efficient HDR
(c, d, e) subtree. However, it failed to place a hot
mirror between (a) and (b), probably because we
weighed accuracy much higher than efficiency for this
test. The six plots show how well it did match the
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12 Plots of (I - x) versus A nanometers for a complex camera. Dashed
lines are the specification, solid lines are the final design; for a good
design, these are close in both magnitude (I) and shape (x). The design
tool independently matched each spectral efficiency curve close to the
specification, taking into account imperfections in the actual filters.
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We build on the work of previous authors who have split
light paths using a variety of optical methods to capture
similar images from multiple sensors simultaneously. Here
we review the devices that accomplish this splitting (which
are nodes in our splitting tree) and discuss how our
approach is relevant to their applications.

Beam splitters

Both prisms and plate mirrors are popular beam-splitting
mechanisms. They can be constructed to split light into two
or more paths, and the ratio of intensities directed to each
path at each wavelength can be adjusted. The most
common and economical element is a half-silvered plate
mirror. A drawback of plate mirrors is that their orientation
must be calibrated relative to the optical path. In contrast,
sensors placed immediately against the sides of a splitting
prism are automatically registered up to a 2D translation. In
the case of 3-charge-coupled device cameras, a dichroic
prism that separates light by wavelength is often used to
capture three copies of the image, each with a different
spectral band. Prisms have also been used for high-dynamic
range (HDR) imaging.'

Our implementation places beam splitters between the
lens and the scene, which enables us to use separate lens
parameters for each sensor. An alternative is to split the
light in between the lens and the sensor.? This alternative
shares a single lens over all sensors, which simplifies lens
calibration and reduces lens cost, but makes calibration and
filter changes more difficult.

McGuire et al.? use a beam-splitter camera with three
views for matting. They report that it can be extended to
exhaustively sample various sampling parameters by taking

brands of ND filters based on their g-curves.

High speed

desired accuracy; it even chose between different

the cartesian product of all sampling parameters and
adding large numbers of beam splitters and sensors. We
extend these ideas with a detailed discussion and
implementation of a full, calibrated eight-view system,
analysis methods, and sparse parameter sampling that lets
us create views with completely independent
characteristics. We demonstrate more efficient and
economical camera designs for their application in the
“Matting and other designs” section in the main article.

Pyramid mirrors

Another interesting way to create multiple copies involves
placing a pyramid mirror behind the lens.** (Placing a
mirror pyramid in front of the lens, as discussed in Tan et
al.,® creates a panoramic field of view that’s unrelated to our
work.) Placing the mirror behind the lens creates a compact
optical path, but has some drawbacks. It requires a large
aperture, which leads to a narrow depth of field and limits
the situations to which we can apply it.

It's also nontrivial to divide light intensity unevenly
between the image copies, as might be desirable for HDR.
Furthermore, the edges between the individual mirrors
cause radiometric falloffs as discussed in Aggarwal and
Ahuja.*

Even after calibration, these fall-offs reduce the effective
dynamic range of each view. The defocus point-spread
function from such a camera is a differently oriented
triangle in each view, instead of the disk in a beam-splitter
camera. This makes it difficult to fuse or compare images in
which objects are at different depths; objects outside the
depth of field appear not only defocused but also shifted
away from their true positions.

tage of our approach is that the sensors share an optical
center for accurate scene capture with depth variation
and view-dependent effects.

Figure 13 shows eight frames from a high-speed
sequence of a soda can opening and the capture tree
used. Each frame has an exposure time of 1/120th sec-
ond and the entire sequence is captured at 240 frames
per second (fps), so the views overlap temporally. This
gives ﬁ[ree =1/4, which is lower than the ﬁtree =1 for
an array such as the one by Wilburn et al.** The advan-

Multimodal high speed

High speed, HDR, and so on are sampling strategies.
They’re useful for building high-level applications such
as surveillance in an HDR environment. It’s natural to
build hybrid sampling strategies, which are easy to
express and experiment with in our splitting tree
framework.

13 A 240-fps video of a soda can opening. Each of the eight sequential frames shown was captured by a different
sensor. The tree is on the right; note the 1/120-second overlapping exposures, longer than is possible for a single-
sensor, high-speed camera.
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Alternatives

For flat scenes and scenes far (more than10 m) from the
camera, parallax and view-dependent effects may be
ignored. In that case the calibration problem is comparatively
easy, because the sensors’ optical centers needn’t be aligned.
Dense arrays of side-by-side sensors (such as in Wilburn et
al.”) have captured multiple approximately monocular views
for such cases. Arrays capture much more light than a
splitting tree. However, a tree can capture both nearby and
deep scenes, and can share filters and other optical elements
over multiple sensors.

We can use a mosaic of filtered CCD pixels to sample
multiple parameters in a single image. The Bayer mosaic
tiles per-pixel bandpass filters, sampling three wavelengths
with a single monochrome sensor. Recently, some filter
mosaics have been proposed for sampling other parameters
with high precision.®® This approach can be implemented
compactly and requires no calibration (once manufac-
tured), making it ideal for many applications. The drawback
is that it trades spatial resolution for resolution along other
imaging dimensions. Such a system also makes it difficult to
experiment with aperture and timing effects, which we
explored in this article.

Previous commercial optical design systems like Synopsys,
Ados, and Zemax emphasize the tracing of rays through
lenses. To the best of our knowledge, none significantly
address the issues of sampling the plenoptic function
through splitting and spectral response that we discuss here.

We use the configuration from Figure 4 Frame #
designed by the optimizer to capture hybrid
high-speed visible/infrared video. A hot-mirror
directs infrared down the right subtree and vis-
ible light down the left subtree. Each subtree
has four cameras with temporal phase offsets,
so the entire system yields 120 fps video with
four spectral samples. Figure 14 shows frames
from a sequence in which a person catches a
tumbling infrared remote control and then
transmits it at the camera. Because the config-
uration captures four spectral samples at 120
fps, the high-frequency infrared pattern trans-
mitted by the remote is accurately recorded, as
is the fast tumbling motion at the sequence’s
beginning.

166
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Conclusions and future work 286

We presented a framework useful for manu-
al camera design and an algorithm for automat-
ic design. We also implemented a configurable
system that samples multiple parameters per
frame and demonstrated its utility. Using our
framework and this system, high-precision
imaging applications become easier to develop
and produce results of comparable or better
quality than alternative solutions. Manual
designs are easily understood but rely excessive-
ly on the notion of ideal components. Automat-
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ically designed trees contain surprising and complex ele-
ment choices. These microbalance the true response
curves of components and are frequently more efficient.

For future work, we’re investigating multispectral
HDR for surveillance, alternative multifocus approach-
es for matting, and multispectral high-speed video for
material testing in the context of splitting trees. Anoth-
er area of future work is addressing the limitations of
the current automatic design approach to find more effi-
cient and general designs. For example, element cost
should be a function of tree depth, since filters closer to
the root must be larger to fill the field of view. We believe
that genetic algorithms are likely to produce better out-
put than our optimizer because they’re naturally suited
to a tree combination.

The optical elements form a filter system that terminates
atdigital sensors. In an application, this is always followed
by a digital filter system. The next step is to simultaneous-
ly design both the optical and software filter systems. W
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