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Multi-Scale Capture of Facial Geometry and Motion

Bernd Bickel∗ Mario Botsch∗ Roland Angst† Wojciech Matusik† Miguel Otaduy∗ Hanspeter Pfister†

Markus Gross∗

Figure 1: Animation of a high-resolution face scan using marker-based motion capture and a video-driven wrinkle model. From left to right:
video frame, large-scale animation without wrinkles, synthesis of medium-scale wrinkles, realistic skin-rendering, different expression.

Abstract

We present a novel multi-scale representation and acquisition
method for the animation of high-resolution facial geometry and
wrinkles. We first acquire a static scan of the face including re-
flectance data at the highest possible quality. We then augment a
traditional marker-based facial motion-capture system by two syn-
chronized video cameras to track expression wrinkles. The re-
sulting model consists of high-resolution geometry, motion-capture
data, and expression wrinkles in 2D parametric form. This combi-
nation represents the facial shape and its salient features at mul-
tiple scales. During motion synthesis the motion-capture data
deforms the high-resolution geometry using a linear shell-based
mesh-deformation method. The wrinkle geometry is added to the
facial base mesh using nonlinear energy optimization. We present
the results of our approach for performance replay as well as for
wrinkle editing.
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1 Introduction

Capturing the likeness and dynamic performance of a human face
with all its subtleties is one of the most challenging problems in
computer graphics. Humans are especially good at detecting and
recognizing subtle facial expressions. A twitch of an eye or a
glimpse of a smile are subtle but important aspects of human com-
munication and might occur in a fraction of a second. Both the
dynamics of the expression and the detailed spatial deformations
convey personality and intensity [Essa and Pentland 1997].

Although the movie industry continues to make steady progress in
digital face modeling, current facial capture, modeling, and anima-
tion techniques are not able to generate an adequate level of spatio-
temporal detail without substantial manual intervention by skilled
artists. Our goal is to easily acquire and represent 3D face models
that can accurately animate the spatial and temporal behavior of a
real person’s facial wrinkles.

Facial skin can be represented by a hierarchy of skin components
based on their geometric scale and optical properties [Igarashi et al.
2005]. In the visible domain, they range from the fine scale (e.g.,
pores, moles, freckles, spots) to the coarse scale (e.g., nose, cheeks,
lips, eyelids). Somewhere between those scales are expression
wrinkles that occur as a result of facial muscle contraction [Wu et al.
1996]. We call this hierarchy the spatial scales of the face.

Facial motion can also be characterized at multiple time scales. At
the short-time, high-frequency end of the scale are subtle local-
ized motions that can occur in a fraction of a second. More global
motions, such as the movement of the cheeks when we speak, are
somewhat slower. And at the smallest spatial scale, features such
as pores or moles hardly show any local deformations and can be
considered static in time. Expression wrinkles are somewhere be-
tween those extremes. They can occur quickly, but they do not
move fast during facial expressions (e.g., try moving the wrinkles
on your forehead quickly). We call this hierarchy the motion scales
of the face.

In this paper we present a three-dimensional dynamic face model
that can accurately represent the different types of spatial and mo-
tion scales that are relevant for wrinkle modeling and animation.
A central design element of our model is a decomposition of the
facial features into fine, medium, and coarse spatial scales, each
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Figure 2: In our framework we capture a video sequence and motion capture markers of an actor’s performance, together with a static,
high-resolution face scan. The camera calibration and correspondence function enable the transfer of information between those spaces.
Our multi-scale face model first computes a large-scale linear deformation, on top of which medium-scale wrinkles are synthesized.

representing a different level of motion detail. Medium-scale wrin-
kle geometry is added to the coarse-scale facial base mesh. Surface
microstructure, such as pores, is represented in the fine scale of the
model. This decomposition allows us to uniquely tailor the acquisi-
tion process to the spatial and temporal scale of expression wrinkle
motions.

The conceptual components of our facial-capture approach and rep-
resentation are illustrated in Figure 2. First we acquire a static
high-resolution model of the face, including reflectance data. Then
we place approximately 80–90 markers on the face and mark ex-
pression wrinkles with a diffuse color. We add two synchronized
cameras to a marker-based optical motion-capture system and cap-
ture the facial performance. We adapt a linearized thin shell model
to deform the high-resolution face mesh according to the captured
motion markers. From the video data we estimate the expression
wrinkles using a 2D parametric wrinkle model and add them to the
deformed 3D face mesh by solving a nonlinear energy minimization
problem.

Decomposing the face model into these separate components has
several advantages. The motion-capture process needs only the ad-
dition of synchronized video cameras to capture expression wrin-
kles. Throughout the animation, the face geometry maintains the
high-resolution of the static scan and preserves a consistent param-
eterization for the texture and reflectance data. In addition, the face
mesh maintains dense correspondence throughout the animation, so
that edits on the geometry, textures, and reflectance parameters are
automatically propagated to each frame. The model is compact and
provides data in a form that is easy to edit.

The primary contribution of our work is the multi-scale facial rep-
resentation for the animation of expression wrinkles. This model,
which is practical and easy to use, allows for the decomposition
of the capture process for dynamic faces into fine, medium, and
coarse components. The model includes a variety of computational
steps for the mapping of motion-capture data, facial deformation,
and wrinkle animation.

We have implemented a prototype that demonstrates our approach,
and we show results for performance replay and wrinkle process-
ing. Our method creates high-quality facial animations without the
intervention of a skilled artist.

2 Related Work

Face modeling, acquisition, and animation are rich areas of research
in computer graphics [Noh and Neumann 1999] and computer vi-
sion. Here we focus on the related work in capturing 3D models of
facial performance.

Marker-Based Motion Capture The basic idea of combining 3D
face geometry with marker-based motion-capture data dates back
to [Williams 1990]. Today, Vicon dominates the commercial mar-
ket for marker-based facial-capture systems, although many smaller
companies and custom environments exist. These systems acquire
data with excellent temporal resolution (up to 450 Hz), but due to
their low spatial resolution (100-200 markers) they are not capable
of capturing expression wrinkles.

Structured Light Systems Structured light techniques are capable
of capturing models of dynamic faces in real time. [Zhang et al.
2004] use spacetime stereo to capture face geometry, color, and
motion. They fit a deformable face template to the acquired depth
maps using optical flow. [Wang et al. 2004] use a sinusoidal phase-
shifting acquisition method and fit a multi-resolution face mesh to
the data using free-form deformations (FFD). [Zhang and Huang
2006] improve this acquisition setup and achieve real-time (40 Hz)
depth-map acquisition, reconstruction, and display. Structured light
systems cannot match the spatial resolution of high-quality static
face scans [Borshukov and Lewis 2003; Sifakis et al. 2005] or the
acquisition speed of marker-based systems. They also have diffi-
culties in dealing with the concavities and self-shadowing that are
typical for expression wrinkles.

Model-Based Animation from Video There has been a lot of work
in fitting a deformable 3D face model to video (e.g., [Li et al. 1993;
Essa et al. 1996; DeCarlo and Metaxas 1996; Pighin et al. 1999]).
Of special interest are linear [Blanz et al. 2003] or multi-linear [Vla-
sic et al. 2005] morphable models that parameterize variations of
human face geometry along different attributes (age, gender, ex-
pressions). Because these methods make use of some generic,
higher level model, the reconstructed geometry and motion do not
approach the quality of person-specific captured data. [Hyneman
et al. 2005] compensated the lack of details by adding a dynamic
displacement map that included hand-painted wrinkles and furrows.

Image-Based Methods with 3D Geometry [Guenter et al. 1998]
and [Borshukov et al. 2003] compute a time-varying texture map
from multiple videos and apply it to a deformable face model fitted
to the video. [Jones et al. 2006] use the USC Light Stage [Wenger
et al. 2005] augmented with a high-speed camera and projector to
capture the reflectance field and 3D geometry of a face. They re-
light the face using the time-varying reflectance data and simulate
spatially-varying indirect illumination. Image-based methods are
able to produce the most photo-realistic examples of facial perfor-
mance. However, they typically lack in versatility with respect to
editing and changes in head pose and illumination. In principle it
should be possible to combine our approach with an image-based
method.

Anatomical Face Models Anatomical models provide an animator
with model parameters that have bio-mechanical meaning [Koch



Figure 3: Our face-capturing setup consists of six cameras (indi-
cated by blue circles) for tracking large-scale facial motions based
on 80–90 marker points, complemented by two cameras (red cir-
cles) for detecting and fitting medium-scale expression wrinkles.

et al. 1996; Magnenat-Thalmann et al. 2002]. Some models were
specifically developed for wrinkles [Wu et al. 1996; Zhang and
Sim 2005; Venkataraman et al. 2005], but have not been applied
to facial motion capture. To simulate wrinkle bulges due to facial
expressions, we have found that it suffices to model the skin as a
nonlinear shell resistant to stretching and bending [Grinspun et al.
2003; Bridson et al. 2003]. [Terzopoulus and Waters 1993] tracked
marks on a performer’s face using snakes, and used these curves to
drive a muscle-based facial model. [Sifakis et al. 2005] developed a
highly detailed anatomical face model and morph it to fit laser and
MRI scans of a new subject. They use sparse marker-based motion-
capture data to automatically determine muscle activations. The
face mesh is deformed using a 3D nonlinear finite element method.
However, generic anatomical face models are currently not able to
produce expression wrinkles for an individual.

3 Data Acquisition

The static, high-resolution face mesh is acquired using a com-
mercial face-scanning system from 3QTech 1. We use the method
of [Nehab et al. 2005] to improve the acquired geometry using
photometric stereo, thereby successfully capturing even fine-scale
geometric details. The acquisition process takes 30 seconds and
produces a face mesh F with approximately 500k–700k vertices,
depending on the face size. We also acquire reflectance data and
compute the albedo texture, spatially-varying coefficients of the
Torrance-Sparrow BRDF model, and subsurface scattering param-
eters [Weyrich et al. 2006].

The faster, large-scale face motion is captured with a setup con-
sisting of six Basler cameras running at 50 fps with a resolution
of 656× 490 pixels (Figure 3). The cameras are placed slightly
staggered so that each point of the face is clearly visible in at least
two cameras. All cameras are synchronized using an external trig-
ger signal from a USB I/O device 2. We track about 80–90 marker
points on the face, which are painted blue to maximize the color
difference with skin.

The tracking requires a correspondence between points in the video
footage, which we establish by consistently labeling them by hand

1www.3qmd.com
2http://www.datx.com/econ

in the first frame of each camera. The labeled 2D points are
then tracked throughout the whole sequence independently for each
camera. After establishing the intrinsic camera parameters [Svo-
boda et al. 2005] we use a standard triangulation method to com-
pute the 3D location of every marker in every frame. To suppress
noise in the reconstructed 3D positions, we apply a spatio-temporal
bilateral filter to the marker positions, which reduces smoothing for
time frames with large movement. This controlled smoothing is
important for preserving convincing facial expressions.

To capture the slower, medium-scale expression wrinkles we
add two high-resolution Basler cameras with 12.5 fps and 1384×
1038 pixels. These cameras run exactly four times slower than
the motion-capture cameras, making the synchronization easier.
All cameras are extrinsically calibrated so that the reconstructed
motion-capture performance can be easily projected into the views
of the high-resolution cameras.

The scene is captured under approximate ambient uniform illumi-
nation, without any light source intensity calibration. We assume
that the subject faces approximately the same direction throughout
the acquisition process.

4 Large-Scale Animation

The motion-tracking process results in a set of time-dependent
marker positions mi,t ∈ IR3, i = {1, . . . ,n}, t = {0,1, . . .} in the
reference space of the motion-capture system (mocap space). At a
certain time t, the difference vectors

(
mi,t −mi,0

)
represent point-

samples of the continuous deformation field that deforms the initial
face model into the expression at frame t. Our goal is to deform the
initial face mesh F based solely on these displacement constraints.

Since the 3D scan F and the mocap points are defined with respect
to different coordinate systems, the points mi,0 and their respective
displacements

(
mi,t −mi,0

)
first have to be mapped to the coordi-

nate space of the face mesh F (face space), resulting in points fi,0
and displacements di,t =

(
fi,t − fi,0

)
. We achieve this by establish-

ing a correspondence function as described in Section 4.1.

The resulting displacements di,t in face space are then used as con-
straints for our physically inspired face deformation model. Notice
that a physically accurate face deformation — including the inter-
action of bones, muscles, and tissue — is too complex for our pur-
poses. From our experiments it turned out that the mocap points
capture the large-scale face behavior sufficiently well, so that we
can use a simplified deformation model that interpolates the mocap
points (see Section 4.2).

4.1 Mocap / Face Correspondence

In order to transfer the mocap displacements
(
mi,t −mi,0

)
to dis-

placements di,t =
(
fi,t − fi,0

)
in face space we have to establish a

correspondence map between the mocap points and the 3D face
mesh. For that we pick the mocap frame most similar in facial ex-
pression to the face scan. Let us assume without loss of generality
that this is the first frame, consisting of the points mi,0.

The user first manually selects the corresponding vertex positions
fi,0 ∈ F by clicking on the face mesh. Given this coarse set of corre-
sponding points, position, orientation, and scaling of the face mesh
could in principle be adjusted using Horn’s shape matching method
[1987]. Since the mocap points and the face mesh were captured
from the same person, the resulting rigid registration would be quite
accurate. However, subtle variations in facial expression, e.g., in the
opening angle of the mouth, would not be accounted for.



Therefore, we use a non-rigid registration technique that interpo-
lates the discrete point correspondences over space in order to
achieve a smooth correspondence space warp c : IR3 → IR3. Similar
to [Noh and Neumann 2001], we use radial basis functions (RBFs)
for this scattered data interpolation problem, which represents the
function c as

c(x) =
n

∑
i=1

wi ·φ(‖x− ci‖)+q(x) , (1)

where φ : IR → IR is a scalar basis function, wi,ci ∈ IR3 are the
weights and centers of the RBF, and q : IR3 → IR is a quadratic
trivariate polynomial. In order to find the RBF that interpolates the
constraints, i.e.,

c
(
mi,0

)
= fi,0 , i = 1, . . . ,n ,

the centers are chosen to coincide with the constraints, i.e., ci =
mi,0. This results in a symmetric linear system to be solved for
the weights wi and the coefficients of the quadratic polynomial q
[Carr et al. 2001]. In contrast to [Noh and Neumann 2001] we
use the triharmonic RBF basis function φ(r) = r3, which yields
a smooth C2 function of provable global fairness [Duchon 1977;
Botsch and Kobbelt 2005]. Although the resulting linear system is
dense, it can be solved efficiently since the number of constraints
n is < 100. Notice that because of the polynomial term q(x), the
function c can exactly reproduce affine motions, which makes a
rigid pre-registration unnecessary.

Given the space warp c, we now have to transform the mocap dis-
placements

(
mi,t −mi,0

)
into face space. For a similar setting,

[Noh and Neumann 2001] proposed a heuristic to transfer displace-
ment vectors from one mesh onto another by adjusting the dis-
placements’ scaling and orientation based on local frames and local
bounding boxes associated with mesh vertices. In contrast, we want
to transform displacements from only a coarse point cloud mi,0 to a
face mesh, and hence cannot use their surface-to-surface heuristic.

However, the space warp c already contains all the required infor-
mation to transfer the mocap displacements: We simply use c to
transfer the displaced mocap points mi,t , which yields fi,t . From
those points we compute the face-space displacements as

di,t = c(mi,t)− fi,0 .

4.2 Linear Deformation Model

After transferring the mocap displacements into face space, we de-
form the initial face mesh based on these displacement constraints.
This requires a deformation function dt : F → IR3 that is smooth and
physically plausible while interpolating the constraints of frame t:

dt
(
fi,0
)

= di,t , ∀ i = 1, . . . ,n , (2)

such that fi,0 + dt
(
fi,0
)

= fi,t . Note that another RBF-like space
deformation is not suitable, since the desired deformation might be
discontinuous around the mouth and eyes, whereas an RBF would
always yield a C2 continuous deformation.

For the global large-scale face deformation we propose using a lin-
ear shell model, since this allows for efficient as well as robust ani-
mations, even for our complex meshes of about 700k vertices. The
missing medium-scale nonlinear effects, i.e., wrinkles and bulges,
are added later on as described in Section 5.3.

Our linearized shell model incorporates the prescribed displace-
ments di,t as boundary constraints, and otherwise minimizes sur-
face stretching and bending. After linearization, the required

stretching and bending energies can be modeled as integrals over
first- and second-order partial derivatives of the displacement func-
tion dt [Celniker and Gossard 1991]:∫

F
ks

(∥∥∥∥ ∂dt

∂u

∥∥∥∥2

+
∥∥∥∥ ∂dt

∂v

∥∥∥∥2
)

︸ ︷︷ ︸
stretching

+ kb

(∥∥∥∥ ∂ 2dt

∂ 2u

∥∥∥∥2

+2
∥∥∥∥ ∂ 2dt

∂u∂v

∥∥∥∥2 ∥∥∥∥ ∂ 2dt

∂ 2v

∥∥∥∥2
)

︸ ︷︷ ︸
bending

dudv.

(3)
The deformation dt that minimizes this energy functional can be
found by solving its corresponding Euler-Lagrange equations

−ks ∆dt + kb ∆
2dt = 0 (4)

under the constraints (2). Since our displacement function dt is de-
fined on the initial mesh F , i.e., on a triangulated two-manifold,
∆ represents the discrete Laplace-Beltrami operator as defined in
[Meyer et al. 2003]. With this discretization, the above PDE leads
to a sparse linear system to be solved for the displacements at all
mesh vertices, similar to [Botsch and Kobbelt 2004]. Notice, how-
ever, that in contrast to the latter paper, we compute a smooth de-
formation field instead of a smooth surface. As a consequence, all
small-scale details of F , such as pores and fine aging wrinkles, are
retained by the deformation.

This linear system has to be solved for every frame of the mocap
sequence, since each set of transferred mocap displacements di,t
yields new boundary constraints, i.e., a new right-hand side. Al-
though the linear system can become rather complex — its dimen-
sion is the number of free vertices — it can be solved efficiently
using either a sparse Cholesky factorization or iterative multigrid
solvers [Botsch et al. 2005; Shi et al. 2006]. All animations in this
paper were computed with the parameters ks = 1 and kb = 100.

Since the global face motion does not contain significant local rota-
tions, there is no need to explicitly rotate small-scale details, e.g., by
multi-resolution decomposition or differential coordinates [Botsch
and Sorkine 2007]. Although the deformation of the human face
is the result of complex interactions between skull, muscles, and
skin tissue, the linear deformation model yields visually plausible
results because the motion-capture markers provide sufficient geo-
metric constraints. While the resulting animations are of high visual
quality, nonlinear effects such as expression wrinkle formation ob-
viously cannot be produced by the linearized deformation model.
The next section describes how we enhance the large-scale facial
animation with medium-scale expression features extracted from
video data.

5 Medium-Scale Animation

In this section, we first describe an image-based algorithm for track-
ing wrinkles in video data, fitting 2D B-splines to them, and es-
timating their cross-section shapes from self-shadowing effects.
Then, we describe a physically-inspired nonlinear shell deforma-
tion model that, with the 2D data as input, allows us to synthesize
medium-scale 3D expression wrinkles and bulging onto the large-
scale animation.

Skin is a multilayer, anisotropic, viscoelastic tissue, whose mechan-
ical behavior is dominated by collagen fibers present in the der-
mis [Lanir 1987]. Hence, accurate simulation of skin folding would
require a complex volumetric representation with carefully chosen
model parameters [Magnenat-Thalmann et al. 2002; Sifakis et al.
2005]. For the purpose of simulating wrinkle bulge formation due
to facial expressions, however, we found our nonlinear shell model
to be sufficient.



Figure 4: For each wrinkle marked in the video (left) a B-spline
curve v(x) is fitted (top right) and corresponding cross-section
shapes S(w,d, p) are extracted (bottom right).

5.1 Wrinkle Tracking

In the spirit of shape-from-shading, we exploit self-shadowing ef-
fects to track wrinkles and estimate their properties. In the acqui-
sition process, wrinkles are marked with a diffuse color, as shown
in Figure 4. It masks the underlying skin, making the depth estima-
tion more robust and independent of skin type and pigmentation,
e.g., freckles. Furthermore, to simplify the tracking we choose col-
ors that are clearly silhouetted against skin albedo. Neighboring
wrinkles that are close to each other are marked with different col-
ors. Our lighting setup produces approximately uniform ambient
illumination.

The first step in wrinkle tracking is to find image pixels associated
with each predefined wrinkle. We use a binary support vector ma-
chine (SVM) with L2 soft margin and RBF kernel [Cortes and Vap-
nik 1995] to classify the video images into wrinkle and non-wrinkle
patches. It turned out that training the machine was easy. In most
cases it was sufficient to create a binary mask for the first image
in the video, and use this as training data for estimating the sup-
port vectors that were then used for classifying the remaining video
images. In case of multiple wrinkles and thus multiple marker col-
ors, the binary support vector machine is trained and applied for
each color independently. We apply morphological operations (e.g.,
erosion and dilation) to remove possible pixel classification errors
caused by noise.

For wrinkle patches, we represent each wrinkle valley in a compact
and smooth way using a uniform B-Spline curve v : IR → IR2. For
each patch of wrinkle pixels {p1, . . . ,pk}, we perform a PCA, re-
sulting in a mean pixel position p̄ and the patch’s principal axis a.
We parameterize the pixels pi by their position xi along the axis a,
i.e.,

xi := x(pi) = (pi− p̄)T a.

Since wrinkles do not deviate too much from straight lines, this kind
of parameterization does not cause any problems. The number of
control points is chosen between 5–12, depending on the length of
the wrinkle.

The spline v(x) is fitted in a weighted least-squares sense, minimiz-
ing an energy

Espline =
k

∑
i=1

wi ‖pi−v(xi)‖2 (5)

that measures the Euclidean distance from the pixels pi to the val-
ley curve v(x). We weight each pixel pi with a value wi inversely
proportional to its gray-scale intensity gi, wi = (gmax−gmin)/(gi−

Figure 5: Left: Wrinkle cross-section function S(w,d, p). At point
m the observed intensity Iobs(m) is maximal because no incoming
light is blocked, in contrast to points p ∈ [−m,m]. Right: The ob-
served intensity Iobs(p) at an arbitrary point p of the wrinkle is
computed by integrating the incoming light over the hemisphere.
The two angles α and β determine the area of the spherical wedge
of incoming (blue) and blocked (gray) light.

gmin), where gmax and gmin are the maximum and minimum of the
observed gray-scale intensities in the wrinkle segment. Due to self-
shadowing effects, wrinkle valleys are darker than their surround-
ings, and our weighting strategy favors the B-spline curve that fol-
lows the wrinkle valley.

5.2 Cross-Section Shape Estimation

A wrinkle cross-section can be classified into two characteristic
parts: the wrinkle valley and the bulges, one on each side. We
have designed a method for locally estimating the gradient of wrin-
kle valleys from the ratio of observed image intensity on the bulges
and the valley. Our method exploits the self-shadowing effect of
wrinkles, assuming a Lambertian surface (thanks to the use of a
diffuse marker color) and uniform but unknown ambient illumina-
tion. We define wrinkle gradient through width w(x) and depth d(x)
in image space, varying along the parameterization x of each valley
spline v(x). Later, in 5.3, we describe the projection of image space
wrinkles onto the large-scale facial animation. Following Bando et
al. [2002], we use an analytic function to model the cross-section of
a wrinkle valley. The wrinkle bulge is a more complex phenomenon
involving neighboring wrinkles and, unlike Bando et al., we model
it separately as described in the next subsection. With p the dis-
tance orthogonal to the spline v(x), the wrinkle cross-section at x is
modeled by the function

S(p) = S(w,d, p) = d ·
( p

w
−1
)
· e−p/w.

Then, the intensity at a point (p,S(p)) on this cross-section (under
ambient illumination Iambient) can be locally estimated by employ-
ing a 2.5D model (Figure 5) to integrate the incoming light over a
hemisphere Ω:

I(p) =
1
π

∫
Ω

V (p, ω) ·
(

n(p)T
ω

)
· Iambient dω, (6)

where n(p) is the normal vector to the curve S(p) and V (p,ω) is the
visibility function, which is 1 if (p,S(p)) is visible from direction
ω and 0 otherwise. Notice that if no incoming light is blocked, i.e.,
V (m,ω) = 1, ∀ω , the intensity is maximum, Imax(p) = Iambient.

For a given wrinkle shape S(p) = S(w,d, p), the visibility function
V (p,ω) can be computed from the apex angles α and β of the
spherical wedge (Figure 5), representing all directions of incoming
light. These angles are given by the tangent at point (p,S(p)) of the
wrinkle shape and the tangent at the opposite valley shape going
through (p,S(p)). Once α and β are computed, the hemisphere in-
tegral (6) turns into a 2.5D integral over the visible spherical wedge

I(p) =
1
π

∫
β

−α

∫
π

0

(
n(p)T

ω

)
· Iambient dω.



Our goal is to find the cross-section parameters d and w such that
the computed intensities I(p) match the intensities Iobs(p) observed
in the image.

Assuming that there is a point m on the wrinkle bulge without self-
shadowing, we can estimate the ambient illumination, Iambient ≈
Iobs(m). Then, we can work with the ratio I(p)/I(m), which is in-
dependent of Iambient, and compute the wrinkle-shape parameters
without measuring or calibrating the light-source intensity. We ob-
tain the intensity values of a cross-section Iobs(p) by extracting the
pixel values perpendicular to the valley spline v(x) in 2D image
space. Then, we compute d and w by minimizing the nonlinear
least-squares problem (using Matlab’s Gauss-Newton optimization)

min
d,w

∑
p

∥∥∥∥∥∥ Iobs(p)
Iobs(m)

−

∫
Ω

V (p,ω)
(

n(p)T
ω

)
dω

π

∥∥∥∥∥∥
2

. (7)

If no wrinkle is present, the fitted depth d is 0.

5.3 3D Wrinkle Synthesis

In Section 4.2 we employed a linear shell model for the large-scale
face animation. We now refine this result by synthesizing medium-
scale wrinkles onto the large-scale facial animation based on a non-
linear shell energy minimization.

We employ the nonlinear discrete shell energy of [Grinspun et al.
2003] to measure the difference between the initial mesh F and its
deformed version. Their energy is defined in terms of geometric
quantities of the triangle mesh, and measures the change of edge
lengths ‖ei‖, dihedral angles θi, and triangle areas ‖ti‖, over all
edges ei and triangles ti.

Eshell = ∑
ei

ke ·
(‖ei‖−‖ēi‖)2

‖ēi‖
+ kb ·

‖ēi‖
(
θi− θ̄i

)2

h̄i
(8)

+ ∑
ti

ka ·
(‖ti‖−‖t̄i‖)2

‖t̄i‖
,

where the “barred” terms ‖ēi‖, ‖t̄i‖, and θ̄i denote the edge length,
triangle area, and dihedral angle in the undeformed rest state F . The
angle weighting by edge length ‖ēi‖ and triangle height h̄i accounts
for irregular triangulations [Grinspun et al. 2003].

The geometric constraints for the nonlinear energy minimization
are constituted by the locations and cross-section profiles of the
wrinkle valleys extracted from video data. We map the linearly de-
formed face F into mocap space using the inverse correspondance
map c−1, project all 2D wrinkle splines v(x) onto it based on the
camera parameters, and map the result back to face space using c.

Then, we evaluate the wrinkle shape function S(p) in the valley
−w < p < w for all cross-sections x along the spline v(x), and off-
set the affected mesh vertices along their (smoothed) normals (see
Section 5.4). This procedure provides absolute positions for ver-
tices corresponding to the wrinkle valley. Recall that we work with
two cameras in order to cover the whole facial area. If a wrinkle is
tracked by both cameras, we merge the detected segments by simple
snapping and linear blending.

With wrinkle valleys constituting the geometric constraints, we per-
form a minimization of the shell energy (8). This updates the ver-
tices of the face mesh, such that surface area and curvature of the
initial scan F are approximately preserved, which then leads to the
required bulging between neighboring wrinkles.

We solve the minimization problem, and thus compute the final
face animation, using Gauss-Newton optimization. We initialize

Figure 7: In a preprocess we remove wrinkles that already exist in
the initial, relaxed-pose face scan (left). Our multi-scale smoothing
eliminates medium-scale wrinkles, but at the same time preserves
large-scale geometry as well as small-scale details (right).

vertex positions at the configuration obtained by the large-scale lin-
ear deformation. All animations in this paper were rendered with
the parameters kb = 2, ke = 300, and ka = 30k. As we are dealing
with high-resolution meshes, a global Gauss-Newton optimization
would be computationally too expensive. Therefore, as a heuris-
tic, we determine the influence region of the wrinkles by using a
predefined maximum influence distance. By merging overlapping
regions, we obtain an automatic segmentation of the face into wrin-
kling and non-wrinkling areas. For each wrinkling area, we opti-
mize (8) independently, while keeping the remaining vertices fixed.

5.4 Wrinkle Removal

The framework presented so far detects wrinkles from video data,
projects them onto the linearly deformed face mesh, and recovers
bulges between wrinkles by a nonlinear energy minimization. If the
initial face scan (relaxed pose) already contains noticeable wrin-
kles, however, they would be detected and erroneously amplified
by our technique. We therefore remove existing wrinkles from the
static face scan in a preprocess.

We employ a three-step multi-scale smoothing to wrinkle regions in
order to remove only the medium-scale wrinkles, but preserve both
the large-scale face geometry and the small-scale details.

1. First we subtract the fine-scale details by a small amount of
Laplacian smoothing [Desbrun et al. 1999], and store them as
local-frame displacements [Kobbelt et al. 1999].

2. We eliminate the medium-scale wrinkles by minimizing cur-
vature energies. This is equivalent to computing the steady
state of bi-Laplacian smoothing [Desbrun et al. 1999], but
only requires solving a bi-Laplacian linear system.

3. The resulting surface patch is smooth and blends with the sur-
rounding non-wrinkle mesh in a tangent-continuous manner.
Consequently, it preserves the global, large-scale geometry.
On top of this smooth patch we finally add back the fine-scale
details as normal displacements to get the desired result.

The effect of this multi-scale smoothing is depicted in Figure 7.

6 Results

This section presents still images from various animation sequences
computed with our model. To see the full model performance
please see the accompanying video. All images and animations in
this paper were rendered using an extended version of PBRT3 that
supports skin subsurface scattering. The facial reflectance data as
well as the high-resolution facial geometry were acquired using the
hardware described in [Weyrich et al. 2006].

3http://www.pbrt.org/



Figure 6: The synthesis of medium-scale wrinkles start from the large-scale linearly deformed mesh (left), on top which wrinkle valleys are
added as normal displacements, based on the projected wrinkle functions extracted from the video (center). Our nonlinear minimization of
surface stretching and bending finally gives the missing bulging between neighboring wrinkles (right).

6.1 Performance

In this section we give timings for the different stages of processing
the video data and animating the face mesh. Since the processing
times are almost equal for the different subjects we list only average
timings. All computations were carried out on a standard PC with
an Intel Pentium 2.8 GHz and 1 GByte of main memory.

The large-scale linear animation involves the computation of the
correspondence RBF (Equation 1) and the solution of the bi-
Laplacian linear system (Equation 4) for the actual surface defor-
mation. The RBF interpolation can be solved within milliseconds
due to its small size. After a pre-factorization of about 120s, the sur-
face deformation can be performed at a rate of about 3s per frame.

For each video frame, the wrinkle-capture process takes about 5s
for image segmentation and spline fitting, and about 8min for the
nonlinear cross-section estimation, which currently is implemented
in Matlab. The medium-scale wrinkle synthesis projects the ex-
tracted 2D wrinkles onto the large-scale animation and solves a
nonlinear minimization of stretching and bending, which is the
dominant cost of about 20min. The final rendering takes about
10min per frame in high quality mode.

6.2 Expression Replay and Wrinkle Editing

Figure 8 depicts a sequence of still images with varying facial ex-
pressions for two different subjects. The images were taken from
the video animation and show replays of facial expressions ani-
mated with our model. For all facial animations, we cut out the
subjects’ eyes, and the meshes were clipped along the hair and ear
lines of the persons. In the second column from left, we show the
deformed facial geometry as computed by our large-scale linear
deformation model. Note that at this stage, the faces do not con-
tain any expression wrinkles. The third (geometry only) and fourth
(skin rendering) columns show the results after adding wrinkles to
the deformed model. The facial expression of the female subject in
the upper row has large forehead wrinkles that are modeled and ani-
mated very realistically by our model. The performance of the male
subject primarily leads to wrinkle formations around the eyes, and
our model captures the resulting deformations very convincingly.

Figure 9 presents two standard facial expressions, “astonished” and
“angry,” which lead to different wrinkle formation. Despite the lack
of self-collision detection, our model replays these deformations
very well. An illustration of our editing capabilities is given in Fig-
ure 10. In this sequence, we gradually scaled the wrinkle depth to
weaken or enhance the effect of the forehead wrinkles. The skin

bulges created by our wrinkle model provide a realistic deforma-
tion of the facial skin in all images of this sequence. The figure also
shows the flexibility of our multi-scale model on (per-frame) man-
ual edits. The rightmost image shows a single frame edit, where the
nasolabial wrinkles were added manually simply by drawing their
valley splines into the video frame and specifying depth and width
parameters.

7 Discussion and Future Work

By design, our model model is suited only for performance capture
and replay. In its current form it does not provide intuitive param-
eters for animation control. A further limitation of our model is its
lack of facial anatomy and physics. This includes eyes and teeth,
but also skin and muscle layers, or self-collision. If needed, such
features could be imported by combining our model with other ex-
isting ones, such as [Sifakis et al. 2005]. The acquisition and hence
the ultimate quality is currently limited by the frame rate of the
cameras and by the homemade motion tracker we utilized to pro-
duce our results. However, this is not an inherent limitation of the
model, because it could easily be alleviated by taking commercially
available high-speed cameras and motion-tracking systems.

The lack of a strict vertex correspondence between wrinkles and
mesh over time could potentially lead to minor drifts of the wrin-
kles, but we have not observed this issue in practice. Another im-
portant extension of our approach is an explicit representation of
small wrinkles. The finite camera resolution and the explicit col-
oring of wrinkles artificially limits their actual minimum size. We
plan to extend our multi-scale model to explicitly represent and an-
imate small-scale wrinkles. Finally, we are interested in wrinkle
animation transfer between individuals, an issue of high practical
relevance for applications in the special-effects industry.
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Figure 8: Performance replay of captured video sequences (left) of two different subjects. The large-scale linear animation first deforms the
high-resolution face mesh based on tracked mocap markers (center left). The missing medium-scale expression wrinkles are synthesized by a
nonlinear energy minimization (center right). The rightmost column shows high-quality skin rendering including subsurface scattering.

Figure 9: Two more examples showing facial expressions for the standard emotions “astonished” (left) and “angry” (right).



50% 100% 200% Edit

Figure 10: Our multi-scale face model enables wrinkle processing by scaling the depth parameters extracted from video. This allows us to
either weaken (50%) or enhance (200%) the original wrinkles (100%). The rightmost image shows a single frame edit, where the nasolabial
wrinkles were added manually simply by drawing their valley splines into the video frame and specifying depth and width parameters.
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