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Abstract

The generalized Vickrey auction (GVA) is a strategy-proof
combinatorial auction, in which truthful bidding is the opti-
mal strategy for an agent. In this paper we address a fun-
damental problem with the GVA, which is that it requires
agents to compute and reveal their values for all combina-
tions of items. This can be very difficult for bounded-rational
agents with limited or costly computation. We propose an ex-
perimental design for aniterativecombinatorial auction. We
have a theoretical proof that the the auction implements the
outcome of the Vickrey auction in special cases, and initial
experimental results support our conjecture that the auction
implements the outcome of the Vickrey auction in all cases.
The auction has better information properties than the sealed-
bid GVA: in each round agents must only bid for the set of
bundles thatmaximizetheir utility given current ask prices,
which does not require agents to compute their exact values
for every bundle.

Introduction
A central problem in distributed open systems with self-
interested agents, each with private information, is to com-
pute optimal system-wide solutions to a global problem that
involves all the agents. Market-based methods have been
proposed to solve problems of this type; e.g., distributed
scheduling (Wellmanet al. 2000), supply-chain (Walshet
al. 2000), course registration (Graveset al. 1993), airport
scheduling (Rassentiet al. 1982), and air-conditioning for
an office building (Huberman & Clearwater 1995).

The Generalized Vickrey Auction (GVA) (Varian &
MacKie-Mason 1995) has received wide attention in the
literature, e.g. Wellmanet al. (2000) and Hunsberger &
Grosz (2000), because of its incentive properties; truthful
bidding is the optimal strategy for an agent in the GVA. The
GVA solves the combinatorial allocation problem (CAP)
(Rothkopfet al. 1998; de Vries & Vohra 2000), in which
there is a discrete set of items to allocate to agents that have
values for combinations of items, e.g. “I only want A if I
also get B”. The goal in the CAP is to compute the alloca-
tion that maximizes total value. Expressing contingencies of
this kind is important in many applications; for example, to
bid for a compatible pair of take-off and landing slots in an
airport scheduling problem.

In this paper we address a fundamental shortcoming of the
GVA, which is that it requires complete information from
agents, i.e. every agent must reveal its value for all pos-

sible combinations of items. This can be very difficult for
bounded-rational agents, with limited or costly computation
and hard valuation problems. The complete information re-
quirement arises because of thesingle-shotnature of the auc-
tion: every agent submits a sealed-bid to the auctioneer from
which the allocation is computed. Without an option to ask
an agent for more information a mechanism can only com-
pute the efficient allocation in every problem instance with
complete information up-front about agents’ valuation func-
tions.

In comparison, aniterative GVA can terminate with the
same outcome (allocation and payments) but with less in-
formation revelation. An iterative auction can elicit infor-
mation from agents dynamically, as required to determine
the efficient allocation. Terminating with the Vickrey out-
come provides an iterative procedure with much of the same
strategy-proofness as the sealed-bid GVA. The design of an
iterative GVA is stated as an important open problem in
the auction design literature (Bikchandani & Ostroy 1998;
Milgrom 2000). However, iterative Vickrey auctions are
only known for special cases (Kelso & Crawford 1982;
Demange, Gale, & Sotomayor 1986; Gul & Stacchetti 2000;
Ausubel 2000), with restrictions on agent valuation func-
tions.

We propose an experimental design for an ascending-
price combinatorial auction. We have a theoretical proof
that the auction terminates with the Vickrey outcome in spe-
cial cases, and initial experimental results support our con-
jecture that the auction implements the Vickrey outcome
in all cases. The auction extendsiBundle (Parkes 1999a;
Parkes & Ungar 2000b) and builds on the ideas introduced
in “proxy and adjust” (Parkes & Ungar 2000c). The goal is
to implement the Vickrey outcome with best-response agent
strategies, i.e. if agents bid in each round for the bundle(s)
that maximize their utility.

The auction has two distinct phases. The first phase is
used to determine the efficient (value-maximizing) alloca-
tion, while the second-phase is used to determine Vickrey
payments. However, this transition from Phase I to Phase
II is hidden from participants. The auction design is quite
novel:

1. First, we adjust agents’ payments after the auction termi-
nates, so that agents do not pay their final bid prices. This
allows the implementation of non-equilibrium solutions,
which is important because the GVA outcome can not al-



ways be supported in equilibrium (Bikchandani & Ostroy
1998).

2. Second, we introduce “dummy agents” during Phase II
to force continued bidding from winning agents and to
elicit enough information to adjust agent payments to-
wards Vickrey payments.

Our methodology is to construct an auction to implement
a primal-dual algorithm for the GVA with best-response
agent strategies. Best-response bids from agents provide in-
formation about the complementary-slackness conditions in
a primal-dual formulation, and can be used to adjust towards
an optimal solution. Bertsekas (1990) makes a similar con-
nection in hisAUCTION algorithm for the simple assignment
problem.

Outline
In the next section we provide a brief discussion of the con-
sequences of agent bounded-rationality on mechanism de-
sign. We also present an application of a combinatorial
auction with hard valuation problems, thepackage delivery
problem. We define the GVA, and show by example how it
is possible to compute the outcome of the auction without
complete value information. We discuss two methods to re-
duce information revelation in the GVA: bidding programs,
and dynamic methods. We then describe our new auction
procedure, and illustrate the mechanism on a couple of ex-
amples. We present initial experimental results that confirm
our conjecture that the auction implements the outcome of
the GVA. Finally, we present a brief theoretical justification
for the design of the auction. We close with conclusions and
suggestions for future work.

Mechanism Design with Bounded-Rational
Agents

We will begin with a brief discussion of the implications
of agentbounded-rationality on mechanism design. Nisan
& Ronen (2000) provide a good introduction to related
concerns that follow from the computational requirements
placed on themechanism infrastructure.

One very important consideration is the amount of value
information that is required by a mechanism. Single-shot
mechanisms, such as the GVA, can fail when it is too expen-
sive for agents to compute and reveal their value for every
combination of items. We describe an example below in
which agents have hard valuation problems. In comparison,
an iterative mechanism can solve realistic problems with less
information, eliciting only the minimal information required
to compute an efficient allocation.

In addition to solving problems without complete infor-
mation revelation it is also important that agents can partic-
ipate withoutcomputingexact values for all bundles. It is
not enough for an auction to require less information from
agents if the agents must still compute values for all bundles
to provide that information.

This focus on information revelation conflicts with a cen-
tral result in mechanism design, the “revelation principle”
(Green & Laffont 1977; Myerson 1981). The revelation

principle states that in the design of mechanisms we can re-
strict attention to “direct revelation” mechanisms which re-
quest complete information about an agent’s valuation func-
tion. However, the revelation principle assumes unlimited
computational resources, both for agents in submitting val-
uation functions, and for the auctioneer in computing the
outcome of a mechanism (Ledyard 1989).

Before we continue, it is interesting (and perhaps surpris-
ing) to note that there is one sense in which agent bounded-
rationality canhelp in mechanism design. Perhaps we can
design mechanisms that cannot be manipulated unless an
agent can solve an NP-hard computational problem. Nisan
& Ronen (2000) follow this line of reasoning, and describe
the concept of “feasible truthfulness” in mechanism design.

The Combinatorial Allocation Problem
In this paper we focus on mechanisms for the Combinatorial
Allocation Problem (CAP), which is a quite general resource
allocation problem in which agents have values for combi-
nations of items. Many resource allocation problems can
be modeled as a CAP, including the job-shop scheduling,
course registration and airport scheduling problems men-
tioned in the introduction.

Formally, letG represent a set of discrete items to allocate
to I agents. Each agent has a valuevi(S) � 0 for bundles
S � G of items. The CAP is to allocate items to maximize
total value over all agents:

max
S

X
i2I

vi(Si) (CAP)

s:t: Si \ Sj = ;; 8i; j 2 I; i 6= j

It is well known that the CAP is NP-hard, it is equivalent
to the maximum weighted set packing problem (Rothkopfet
al. 1998).

However, this straightforward statement of complexity
hides another very important computational problem in the
CAP, which arises in the case that a hardcomputational
problemmust be solved by each agent to compute its value
for each bundle. This is quite likely in many applications,
for example whenever an agent must solve a local optimiza-
tion problem to compute its value for different outcomes. As
an example, consider thepackage delivery problem.

Example: The package delivery problem. The package
delivery problem is an example of a distributed optimization
problem in which agents have hard valuation problems.

The problem can be modeled as a combinatorial alloca-
tion problem: itemsG represent packages for delivery, with
pick-up and delivery requirements (e.g. locations, times, pri-
ority, etc.); agentsI represent individual delivery compa-
nies, each with its own transportation resources, e.g. vans,
airplanes, trucks, etc.

An agent’s value,vi(S), for bundle of packagesS � G
is computed as thepaymentit receives for delivering the
package minus its cost. Assume that the payment is a lin-
ear sum of paymentsp(x) for packagesx 2 S, and denote
costCi(S).

vi(S) =
X
x2S

p(x)� Ci(S)



The global objective in the package delivery problem,
captured by this CAP formulation, is to determine an alloca-
tion that maximizes the total value across all agents. This is
equivalent to allocating packages at minimal cost and drop-
ping packages that cannot be delivered profitably.

It is reasonable to expect the cost to an agent for the pick-
up and delivery of a particular package to depend on fac-
tors such as: prior commitments (e.g. prescheduled pick-
ups and deliveries), van capacities, delivery locations and
times. For example, the additional cost to deliver a package
is much less if a van is already scheduled to make a pick-up
at the destination location. Formally, the cost for a partic-
ular set of packages (i.e. a commitment to perform a set
of deliveries) might perhaps be computed as amulti-vehicle
capacity-constrained traveling salesperson problem, which
is NP-hard.

This example should give a sense in which value infor-
mation can be hard to provide in distributed optimization
problems.

The GVA: Incentive-Compatibility with
Complete Revelation

In this section we define the generalized Vickrey auction
(GVA), which is an incentive-compatibleand efficient mech-
anism for the combinatorial allocation problem. We observe
that the GVA requires complete information revelation from
agents, and demonstrate that it is in fact often possible to
compute the outcome of the GVA (payments and allocation)
with less information from each agent.

We describe two approaches to reduce information reve-
lation but still compute the outcome of the GVA: (1) allow
agents to submitbidding programs, which the auctioneer can
query to determine values for particular bundles; (2) involve
agentsdynamicallyduring the execution of an algorithm to
compute the Vickrey outcome, and request additional infor-
mation on-the-fly as required. We state a number of draw-
backs with bidding programs, and suggest that iterative auc-
tions are a useful class of dynamic methods.

The Generalized Vickrey Auction
Each agenti 2 I submits a (possibly untruthful) valua-
tion function, v̂i, to the auctioneer. The auctioneer solves
the CAP with these reported values, computing allocation
S� = (S�1 ; : : : ; S

�
I ) with valueV �. This is the allocation

implemented by the auction.
The auctioneer also solves CAP without each agent in

turn, computing the best allocation(S�i)
� without agenti

for value(V�i)
�. The Vickrey payment to agenti is com-

puted as:

pvick(i) = (V�i)
� �

X
j 6=i

v̂j(S
�
j )

In words, an agent pays the marginal negative effect that
its participation has on the (reported) value of the other
agents. Equivalently, the Vickrey payment can be com-
puted as a discount�vick(i) from its bid price,v̂i(S�i ), i.e.
pvick(i) = v̂i(S

�
i )��vick(i), for Vickrey discount:

�vick(i) = V � � (V�i)
�

This interpretation is more consistent with the method to
compute Vickrey payments in the iterative GVA that we in-
troduce later in the paper.

It is quite straightforward to show that the optimal strategy
of an agent in the GVA is to bid its true valuation function,
v̂i = vi, whatever the bids of other agents.

Theorem 1. (Groves 1973) Truthful bidding is a dominant
strategy in the GVA.

Furthermore, becauseV � � (V�i)
� the discount is al-

ways non-negative and agents pay less than their bids, while
the discount is not so large that the adjusted price is ever
negative, because(V�i)

� � V � � v̂i(S
�
i ) implies that

�vick(i) � v̂i(S
�
i ).

Computational Problems
The GVA has unreasonable computational properties in
many interesting problems.

Problem 1. The GVA is intractable for the auctioneer.
Once the auctioneer has received bids from each agent
it must solve multiple CAP instances, once to compute
V �, and once to compute(V�i)

� for every agenti in the
optimal allocation.

Problem 2. The GVA is intractable for agents with hard
valuation problems.The GVA requires complete infor-
mation revelation from each agent. As soon as an agent
submits approximate or missing information: (i) there is
some probability that the agent will do worse– in terms
of its value for the bundle it receives and/or the price it
pays –than if it had revealed complete and accurate infor-
mation; and (ii) the allocation implemented in the GVA
might not be efficient.

The first problem has received some attention, but only
in the context of sealed-bid auctions, and without address-
ing the second problem. In general, introducing approxi-
mation algorithms for winner-determination can break the
incentive-compatibility of the GVA (Kfir-Dahav, Monderer,
& Tennenholtz 1998; Nisan & Ronen 2000). In compari-
son, the problem of information revelation in the GVA has
received little attention. One exception is the discussion of
bidding programs in Nisan (2000).

Solving the GVA without Complete Information
In this section we demonstrate how it is possible tocompute
andverify the optimality of a solution to the GVA without
complete information about agents’ values. We ignore for
the moment the question ofhow to elicit the required infor-
mation, and simply demonstrate that we can compute solu-
tions with incomplete information.

Example 1.Single-item auction with 3 agents, and valuesv1 =
16; v2 = 10; v3 = 4. The Vickrey outcome is to sell the item
to agent 1 for agent 2’s value, i.e. for 10. Instead of information
fv1; v2; v3g it is sufficient to knowfv1 � 10; v2 = 10; v3 � 10g
to compute this outcome.

Example 2.Consider the simple combinatorial allocation prob-
lem instance in Table 1, with itemsA, B and agents 1, 2, 3. The



A B AB
Agent 1 0 a b
Agent 2 10 0 10
Agent 3 0 0 15

Table 1:Agent values in Example 2.

values of agent 1 for itemB and bundleAB are stated asa � b
andb � 15, but otherwise left undefined. Consider the following
cases:

[a < 5] In this case the GVA assigns bundleAB to agent 3, with
V � = 15, (V�3)

� = max[10 + a; b], so that the payment for
agent 3 ispvick(3) = 15� (15�max[10+a; b]) = max[10+
a; b]. It is sufficient to knowfa � 5; b � 15;max[10 + a; b]g
to compute the outcome.

[a � 5] In this case the GVA assigns itemB to agent 1 and item
A to agent 2, withV � = 10 + a, (V�1)

� = 15, and(V�2)
� =

15. The payment for agent 1 ispvick(1) = a�(10+a�15) = 5
and the payment for agent 2 ispvick(2) = 10�(10+a�15) =
15 � a. It is sufficient to knowfa; b � 15g to compute the
outcome.

Note that it is not necessary to compute thevalueof the
optimal allocationS�; we only need to compute the alloca-
tion to each agent. Consider Example 1. We can compute
the optimal allocation (give the item to agent 1) with infor-
mationv1 � fv2; v3g, and without knowing the exact value
of v1.

Also, it is not even necessary to computeV � and(V�i)
�

to compute Vickrey payments because common terms can-
cel. In Example 1, it is enough to know the value ofv2 to
compute agent 1’s Vickrey payment because the value ofv1
cancels:pvick(1) = v1 ��vick(1) = v1 � (v1 � v2) = v2.

Methods to Reduce Information Revelation
We will consider two different methodologies to reduce in-
formation revelation but compute the GVA outcome: (1)
bidding programs, and (2) dynamic methods.

Bidding Programs. Instead of requiring agents to com-
pute and reveal their valuation functions we might ask agents
to provide a program (ororacle) that can be used by the
auctioneer to compute values for bundles on demand (Nisan
2000). This will reduce agent computation if it is easier for
an agent to construct the program than it is to compute its
explicit value for all bundles.

However, this approach may not be very useful in prac-
tice for a number of reasons: (1)trust, agents might be re-
luctant to reveal all the information that goes into assigning
a value to an outcome; (2)cost of constructing the program,
it might be costly to collect all necessary information to de-
fine such an autonomous program; (3)computational bur-
den, this merely shifts computation to the auctioneer.

Note, in particular, that if the only functionality provided
by the bidding program is to compute the exact value,vi(S),
for bundleS and agenti, the auctioneer must now compute
the complete the value of every agent for all possible bundles
to compute the GVA outcome. One can make a straightfor-
ward information theoretic argument that the value of every

agent for every bundle must be at leastconsideredto com-
pute the solution to a CAP instance. More usefully, the agent
might provide a program that can give approximate value
information to the auctioneer, or that allows richer query-
response modes.

Dynamic Methods. An alternative approach is to “open
up” the algorithm for computing the outcome of the GVA,
and involve agents dynamically in the computational pro-
cess.

The algorithm might ask agents for the following types of
information during its execution:

� Ordinal information, i.e. “which bundle has highest value
out ofS1, S2 andS3?”

� Approximate information, i.e. “is your value for bundle
S1 greater than 100?”

� Best-response information, i.e. “which bundle do you
want at pricesp(S)?”

� Equivalence-set information, i.e. “is there an item that is
substitutable forA?”

Notice that in all of these cases an agent can respond without
computing its exact value for all bundles.

Iterative price-directed auctions provide a useful class of
dynamic methods to implement mechanisms.

First, iterative auctions can solve realistic problems with-
out complete information from agents, and without agents
computing their exact values for all bundles. Consider the
classic English auction, which is an ascending-price auction
for a single item. It is sufficient to determine in each round
whether two or more agents have value greater than the ask
price; it is not necessary to know the exact value of every
agent for the item.1

Second, iterative auctions are quitetransparentmethods
to implement the outcome of a mechanism. For example,
the information requested from agents in each round of the
English auction is captured by a best-response to the current
ask prices, i.e. bidding for the item while the price is less
than the agent’s value.

Third, agents can follow myopic best-response strategies
in iterative price-directed auctions without computing exact
values for all bundles. For example, an agent can follow a
best-response bidding strategy in a price-directed iterative
auction with lower and upper bounds on its values for bun-
dles. Myopic best-response only requires that an agent bids
for the bundle(s) with maximum utility (value - price) in
each round. This utility-maximizing set of bundles can be
computed by refining the values on individual bundles until
the utility of one or more bundles dominates all other bun-
dles.2

1In earlier work, Parkes (1999b) demonstrates that iterative auc-
tions can compute better solutions than single-shot auctions for a
simple model of agent bounded-rationality.

2Standard algorithmic approaches can provide lower and up-
per bounds on values; e.g.anytime algorithmssuch as heuristic
search compute lower-bounds on optimal solutions to maximiza-
tion problems, while introducingproblem relaxationsand solving
easy special-cases can compute upper-bounds on value.



An Iterative Generalized Vickrey Auction
In this section we describe our experimental ascending-price
combinatorial auction. We have a theoretical proof that
the auction implements the outcome of the GVA in special
cases, and experimental results support our conjecture that
the auction implements the Vickrey outcome in all cases.
This is quite significant, because an iterative Vickrey auc-
tion inherits much of the strategy-proofness of the GVA but
with less information revelation from agents.

Although hidden from participants, the auction has two
distinct phases. Phase I is identical toiBundle, an ascending-
price combinatorial auction introduced in Parkes (1999a).
Phase I ends wheniBundle terminates, at which point the
auctioneer stores the provisional allocation and computes
initial price discounts, using methodAdjust* introduced
in Parkes & Ungar (2000c). The allocation at the end of
Phase I is implemented at the end of the auction. Then, the
auctioneer uses a simple test to determine whether to execute
Phase II, or terminate the auction immediately.

The purpose of Phase II is to collect enough additional
information to be able to compute Vickrey payments. At
the end of Phase II, or after Phase I if Phase II is skipped,
the agents’ payments are computed as their bid prices at the
end of Phase I minus the total discounts computed over both
phases.

We will first describe the theoretical properties of the auc-
tion, both proven properties and conjectures. Then, we de-
scribe the auction in some detail, and illustrate it with a cou-
ple of worked examples.

Auction Properties
Let us firstassumethat agents follow a truthful myopic best-
response bidding strategy:

Definition 1. A truthful myopic best-response bidding
strategyis to bid to maximize utility in the current round,
taking prices as fixed.

We will later claim that the auction implements the Vick-
rey outcome with truthful myopic best-response, which jus-
tifies this assumption by Theorems 4 and 5 (below).

The first result is that the allocation implemented in the
auction is efficient, at least for small enough bid incre-
ments. This result follows immediately from the efficiency
of iBundle with best-response strategies (Parkes & Ungar
2000b), because Phase I is identical toiBundle and the final
allocation is the allocation as computed at the end of Phase
I.

Theorem 2. (Parkes & Ungar 2000b)The auction termi-
nates with an allocation within3minfjGj; jIjg� of the op-
timal solution, for myopic best-response bidding strategies.

wherejGj is the number of items,jIj is the number of
agents, and� is theminimal bid incrementin the auction, the
rate at which prices are increased (see below). Clearly as
�! 0 the auction terminates with the optimal allocation.

The following unproved conjecture states that the auction

also implements Vickrey payments, and is therefore an iter-
ative GVA:

Proposition 1. The auction terminates with the outcome of
the GVA for agents that follow a myopic best-response bid-
ding strategy, as the minimal bid increment�! 0.

Initial experimental results support this conjecture. Our
belief in this statement also follows from the theoretical un-
derpinnings of the auction design, which we discuss later in
the paper.

The auction provably implements the outcome of the
GVA in the same cases thatiBundle withAdjust* com-
putes the Vickrey outcome. These special cases include:

Theorem 3. (Parkes & Ungar 2000c)The auction termi-
nates with the outcome of the GVA in the following special
cases: assignment problem with unit-demands; with multi-
ple identical items and subadditive valuation functions (i.e.
decreasing returns); with linear-additive valuation functions
in items.

From Proposition 1, one might think that myopic best-
response should be a dominant strategy in the iterative auc-
tion, because truthful bidding is a dominant strategy in the
GVA. In fact manipulation remains possible (if perhaps dif-
ficult), with some strategy other than best-response.

We can make the following statement about an iterative
auction thatmyopically implementsthe outcome of the GVA;
i.e. an auction that implements the outcome of the GVA with
agents that follow truthful myopic best-response strategies.

Theorem 4. (Gul & Stacchetti 2000)Truthful myopic bid-
ding is a sequentially rational best-response to truthful my-
opic bidding by other agents in an iterative auctionA that
myopically-implements the Vickrey outcome.

The proof follows quite directly from the incentive-
compatibility of the GVA. Basically, for any other strategy
the agent selects a GVA outcome for some non-truthful val-
uation function, which is less preferable than the GVA out-
come for its true valuation function.

To make a stronger claim about strategy-proofness we
must somehow restrict the strategies that agents can follow.
In particular, it would be useful to restrict agents to fol-
low a (possibly untruthful) best-response strategy (i.e. best-
response for somev0 6= v):

Theorem 5. Truthful myopic bidding is a dominant strat-
egy in an iterative auctionA that myopically-implements the
Vickrey outcome, if all agents are constrained to following a
(possibly untruthful) best-response bidding strategy.

We pursued this idea in Parkes & Ungar (2000c), with
the idea of “proxy bidding agents”. A proxy bidding agent
can sit between a participant and the auction and make only
best-response bids, based on value information provided by
participants. Crucially, participants can provide incremen-
tal information; proxy agents do not require complete in-
formation from agents. All that is required is that there is
enough information to compute a best-response to current



prices. The proxy agent checks that the information is con-
sistent over the course of the auction.

We can make the following claim about the strategy-
proofness of a proxied iterative Vickrey auction:

Theorem 6. Truthful dynamic information revelation is a
sequentially rational best-response to truthful dynamic in-
formation revelation by other agents in an iterative auction
A with best-response proxy bidding agents that myopically-
implements the GVA.

Unfortunately, it is still not quite true that truthful incre-
mental information revelation to proxy agents is a domi-
nant strategy. This is because agents do not commit to a
single valuation function at the start of the auction, but in-
stead report incremental value information during the auc-
tion. As long as the information is self-consistent, an agent
can condition the values it chooses to report based on bids
from other agents during the auction. There remains a slight
“gap” in strategy-proofness that, theoretically at least, an
agent might be able to squeeze through.

Auction Description
The auction is an ascending-price combinatorial auction in
which agents can bid for bundles of items. The auctioneer
increases prices on bundles as bids are received and com-
putes a provisional allocation in each round of the auction to
maximize revenue.

There are two distinct phases: Phase I, in which the fi-
nal allocation is determined, followed by Phase II, in which
final payments are determined. Intermediate computation
performed at the end of Phase I determines whether or not
Phase II can be safely skipped.

Both phases follow the price update rules, bidding
rules, and winner-determination rules ofiBundle(3) (Parkes
1999a), which is the version ofiBundle with separate ask
prices for each agent throughout the auction. The termina-
tion condition in Phase II, and the additional steps performed
at the end of each round in Phase II, are new.

Common Elements. First, let us describe the elements
that are common to both phases:

� Bids.Agents can place exclusive-or bids for bundles, e.g.
S1 XORS2, to indicate than an agent wants either all items
in S1 or all items inS2 but not bothS1 andS2. Each
bid is associated with abid price, pbid;i(S), from agenti
for bundleS. The bid price must either be within� of,
or greater than, theask price, pask;i(S), announced by
the auctioneer. Parameter� > 0 is theminimal bid in-
crement, the minimal price increase in the auction (see
below). Agents must repeat bids for bundles in the pro-
visional allocation, but otherwise are only committed to
bids for a single round.

� Winner-determination.The auctioneer computes apro-
visional allocationin each round, to maximize revenue
given agents’ bids.

� Price-update. The auctioneer maintains separateask
prices, pask;i(S), for each agent. The prices on bundles
to agenti are increased in any round that the agent bids

unsuccessfully, i.e. in any round that the agent does not
receive a bundle in the provisional allocation.
For every bundleS that received an unsuccessful
bid, the ask price in the next round is increased to
max [ pbid;i(S) + �; pask;i(S)], for minimal bid increment
�. The initial ask prices are zero.
Only bundles that have received unsuccessful bids are ex-
plicitly priced. However, an additional consistency rule
states that the ask price on all bundles is at least as high
as the greatest ask price of any bundle they contain, i.e.
pask(S

0) � pask(S) for all S � S0.

Phase I. The termination condition at the end of Phase I is
as follows:

� Phase I termination.Phase I terminates when: [T1] all
agents submit the same bids in two consecutive rounds,
or [T2] all agents that bid receive a bundle.

This is the end of Phase I. LetS� = (S�1 ; : : : ; S
�
I ) denote

the allocation at the end of Phase I,P � denote the auction-
eer’s revenue,W � � I denote the set of agents that receive
a bundle inS�, andp�bid = (p�bid;1; : : : ; p

�
bid;I) denote the

final bid price of each agent for the bundle it receives in the
final allocation, i.e.p�bid;1 = pbid;1(S

�
1 ).

Intermediate Computation. At the end of Phase I the
auctioneer performs some intermediate computation to de-
termine: (i) initial discounts to each agent, and (ii) whether
to enter Phase II or terminate immediately.

Let �init(i) � 0 denote the initial discount, computed at
this stage, and�extra(i) � 0 denote any additional discount
computed during Phase II. An agent’s final payment at the
end of the auction is its discounted bid price at the end of

Phase I:max
h
p�bid;i ��init(i)��extra(i); 0

i
.

We need the following definitions:

Definition 2. LetMAXREV(P�i) denote thesecond-best
revenue-maximizing allocationto the auctioneer at the cur-
rent ask prices; the revenue-maximizing allocation over
all allocations without agenti, i.e. MAXREV(P�i) =
maxS

P
j 6=i pask;j(Sj) for feasible allocationsS with Si =

;. Also, let(W�i)
� � (I n i) denote the set of agents that

receive a bundle in this allocation.

Definition 3. Thedependents�(i) of agenti are:
�(i) = W � n ( (W�i)

�
S
i ), if i 2W �

�(i) = ;, otherwise.

In other words, the dependents of agenti are agents that
receive a bundle in allocationS� but do not receive a bundle
in the revenue-maximizing allocation without agenti at the
current ask prices.

Definition 4. The setACTIVE � I of agents is the set
of active agents, all agents that are the dependent of some
agent at the current ask prices; i.e.i 2 ACTIVE )
9j s:t: i 2 �(j).

At the end of Phase I the auctioneer computes initial dis-
counts, the sets of dependents, and determines the active



agents:

1. Compute initial discount

�init(i) = P � �MAXREV(P�i)

for every agenti in allocationS�, or �init(i) = 0 other-
wise.

2. Compute dependents�(i) for every agenti 2 W �. If
�init(i) � p�bid;i then set�(i) = ; (i.e. remove all depen-
dents for the agent). Initialize the set ofACTIVE agents.

The following simple test is performed to determine
whether or not to enter Phase II.3

� Early Termination Test.Phase II is skipped if there are no
active agents.

If there is at least one active agent then more information
is required to compute Vickrey payments, and the auction
continues into Phase II.

Phase II. The purpose of Phase II is to compute an addi-
tional discount�extra(i) � 0 to each agent with dependents.

We introducedummy agentsto compete with agents in the
allocation at the end of Phase I. The auctioneer simulates the
dummy agents, generating bids in each round.

We say that an agentparticipatesin the auction if it is
either in the provisional allocation or bidding at least the
ask price for one or more bundles. Similarly, we say that
an agent hasdropped outof the auction if it neither in the
provisional allocation or submitting new bids.

At the start of Phase II the auctioneer initializes
�extra(i) = 0 for all agents, and introduces a dummy agent
for any agent that dropped out of the auction in the last round
of Phase I.

A simple method is used to construct dummy agents:

Definition 5. The valuation function of adummy agentfor
agentj is based on the ask prices of agentj: set v(S) =
pask;j(S)+L for bundlesS with pask;j(S) > 0, andv(S) =
0 for all other bundles, for some large constantL > 0.4

The auctioneer performs the following additional steps at
the end of each round of Phase II:

1. Update the dependents of agents. For example, if�(i) 6=
; then computeMAXREV(P�i) and(W�i)

�, restricting
the allocation to all real agents except agenti. (i.e. with-
out any dummy agents). Update�(i) based onW � from
the end of Phase I and(W�i)

�.

2. For each agenti 2 W � and with�(i) 6= ;, increment
�extra(i) by

P
j2�(i) �incr(j) where�incr(j) � 0 is the

increase in bid price by agentj for bundleS�j since the
previous round.

3. If �init(i) + �extra(i) � p�i , then set�(i) = ;

4. Update the set ofACTIVE agents.

3This is a reinterpretation of the Vickrey Test in Parkes & Ungar
(2000c).

4The valuation function will satisfy “free disposal” (v(S) �
v(S0) for all S0 � S) because of the price consistency maintained
across ask prices.

5. Introduce new dummy agents. First, for any agent that
has just dropped out of the auction.5 Second, if we detect
a state ofquiescencefor the active agents.6 In this case we
use a simple rule to choose the agent to receive a dummy
agent; select (1) an agent with no dummy that is not ac-
tive; or failing that (2) an active agent with no dummy; or
failing that (3) an active agent that already has at least one
dummy agent.

The termination condition is:

� Phase II termination.Terminate Phase II when all active
agents have dropped out of the auction, or when the set of
ACTIVE agents is empty.

Final Price Adjustment. Finally, when the auction termi-
nates: allocationS� as computed at the end of Phase I is
implemented; and agent payments

pi = max[0; p�bid;i ��init(i)��extra(i)]

are computed.

Worked Examples
We will illustrate the auction on Example 2, for different
values ofa andb.

Case (a = b = 3). Phase I:S� = (;; ;; AB), P � = 13,W � =
f3g, p�bid = (0; 0; 13). Intermediate Computation.(S�3)

� =
(B;A; ;),MAXREV (P�3) = 13, (W�3)

� = f1; 2g, �(3) = ;,
�init(3) = 13� 13 = 0. ACTIVE = ;. Skip Phase II. Outcome:
Allocate bundleAB to agent 3 forp3 = 13� (0 + 0) = 13. This
is the Vickrey payment:pvick(3) = 15� (15� 13) = 13.

Case (a = b = 10). Phase I:S� = (B;A; ;), P � = 15,W � =
f1; 2g, p�bid = (8; 7; 0). Intermediate Computation.(S�1)

� =
(;; ;; AB), MAXREV(P�1) = 15, (W�1)

� = f3g, �(1) =
f1; 2g n f3; 1g = f2g, �init(1) = 15 � 15 = 0, (S�2)

� =
(;; ;; AB), MAXREV (P�2) = 15, (W�2)

� = f3g, �(2) =
f1; 2g n f3; 2g = f1g, �init(2) = 15 � 15 = 0. ACTIVE =
f1; 2g.

Phase II. Introduce a dummy agent for agent 3, with values
v4 = (0; 0; 15 + L) for a largeL > 0. As prices increase agent
1 drops out first, whenp1(B) > 10. At this time�extra(2) = 2
because agent 1’s bid has increased by 2 since the end of Phase
I. A dummy agent is introduced for agent 1, with valuesv5 =
(0; 10 +L; 10 +L). Finally, agent 2 drops out whenp2(A) > 10,
at which time�extra(1) = 3 because agent 2’s bid has increased
by 3 since the end of Phase I.

Outcome:Allocate itemB to agent 1 forp1 = 8� (0 + 3) = 5
and itemA to agent 2 forp2 = 7 � (0 + 2) = 5. These are the
Vickrey payments:pgva(1) = pgva(2) = 10� (20� 15) = 5.

Case (a = b = 20). Phase Iand Intermediate Computation
is the same as in casea = b = 10. Phase II. Introduce a dummy
agent for agent 3 with valuesv4 = (0; 0; 15+L) for a largeL > 0.

5If a dummy agent already exists for this agent, then replace
with this new one.

6The precise definition of quiescence is not too important. We
consider that the auction is in quiescence if: (1) the same active
agents have participated in the auction for the past three rounds;
and (2) all participating active agents have been allocated the same
(non-empty) bundle in the provisional allocation in the past three
rounds, and for the same price.



As prices increase agent 2 drops out first, whenp2(A) > 10 and
�extra(1) = 3. Introduce a dummy agent for agent 2 with value
v5 = (10 + L; 0; 10 + L). Finally, agent 1 enters(S�2)

�, when
p1(B) = 15 and�extra(2) = 7. At this stage�(2) = ; and agent
1 is no longer active.

Outcome:Allocate itemB to agent 1 forp1 = 8� (0 + 3) = 5
and itemA to agent 2 forp2 = 7 � (0 + 7) = 0. These are the
Vickrey payments:pgva(1) = 20� (30� 15) = 5 andpgva(2) =
10� (30� 20) = 0.

Experimental Analysis
In this section we describe initial experimental results,
which support our conjecture that the ascending-price com-
binatorial auction computes the outcome of the GVA.

The auction is tested in a suite of problem instances: prob-
lems PS 1–12 from (Parkes 1999a), and also problems De-
cay, Weighted-random, Random and Uniform in Sandholm
(1999).7 Each problem set defines a distribution over agents’
values for bundles of items.

We measure the distance between agent payments in
the auction and GVA payments with anL2 norm, as�P

i(pi � pgva(i))
2
�1=2

. For a particular bid increment we
compute the average distance to Vickrey payments over the
instances in which the auction terminates with the optimal
allocation. As the bid increment gets small this fraction ap-
proaches 100%, and therefore the proportion of trials over
which we measure the distance to Vickrey payments ap-
proaches 100%.8

Figure 1 plots the distance between Vickrey payments and
auction payments against the “correctness” of the auction,
i.e. the fraction of instances in which the allocation at the
end of Phase I is the efficient allocation. As we reduce the
minimal bid increment correctness increases and we move
to the right in the plots. The corresponding allocative ef-
ficiency increases from around 90% at 23% correctness, to
almost 100% at correctness of 65% and above.

We plot the distance to GVA payments at the end of Phase
I, after the initial price discounts at the end of Phase I, and
at the end of Phase II. For comparison, we also compute the
average distance between minimal competitive equilibrium
(CE) prices and Vickrey payments (see the next section for
a discussion of the relevance of minimal CE prices).9

7Problem sizes (num agents, num items, num bundles) are set
to (8, 50, 120) in Decay, (20, 50, 400) in Uniform, (8, 30, 80) in
Random, and (15, 50, 300) in Weighted Random. Decay parameter
� = 0:85. The results are averaged over 40 trials.

8This provides a more useful measure of distance than com-
puting the average L2 distance over all trials, including those in
which the wrong agents are in the final allocation. As an alterna-
tive we might compute distance with an L1 norm over all trials; this
is equivalent to comparing the total revenue in the auction with the
revenue in the GVA.

9Additional statistics for PS 1-12: at 95% correctness the aver-
age number of rounds in Phase I is 149, compared to 18 in Phase
II; each round in Phase I takes an average of 0.5s, compared to 2.8s
in Phase II; the agent valuation information provided at the end of
Phase I is 77%, and increases to 83% at the end of Phase II, using
a metric introduced in Parkes (1999a); and approximately 1-in-3
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Figure 1:Distance to Vickrey Payments in PS 1–12.

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Fraction of Allocations Correct
L 2 D

is
ta

nc
e 

to
 G

V
A

 P
ay

m
en

ts

Phase I       
Initial Adjust
Phase II      
Min CE        

(a) Uniform.
0.2 0.4 0.6 0.8 1

0

1

2

3

4

Fraction of Allocations Correct

L 2 D
is

ta
nc

e 
to

 G
V

A
 P

ay
m

en
ts

(b) Decay.

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

Fraction of Allocations Correct

L 2 D
is

ta
nc

e 
to

 G
V

A
 P

ay
m

en
ts

(c) Random.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Fraction of Allocations Correct

L 2 D
is

ta
nc

e 
to

 G
V

A
 P

ay
m

en
ts

(d) Weighted Random

Figure 2:Distance to Vickrey Payments.

Figure 2 illustrates the performance of the auction in prob-
lems Uniform, Decay, Random, and Weighted Random.
In all problems allocative efficiency approaches 100% for
small bid increments, and the distance to GVA payments ap-
proaches zero.

Payments in the auction converge to GVA payments in all
problems that we examined, as the minimal bid increment
gets small and the correctness of the allocation in the auction
approaches 100%. The effect of Phase II is quite significant,
while the initial price adjustment at the end of Phase I has a
smaller effect.

It is also worth noting that the auction implements the
Vickrey outcome even in problems in which the outcome
is not supported in any competitive equilibrium; notice that
the distance between the minimal CE prices and the GVA
payments is non-zero in all experiments.

agents receive a dummy agent during Phase II.



Auction Design: Theoretical Motivation
In this section we briefly provide some theoretical justifica-
tion for the design of Phase I and Phase II of the auction.

Phase I. In Phase I we determine the efficient allocation,
based on myopic best-response bids from agents. Phase I is
equivalent toiBundle, which implements a primal-dual algo-
rithm for the CAP with best-response bids from agents, with
respect to linear program formulations LP(E3) and DLP(E3)
introduced by Bikchandani & Ostroy (1998).

In each round the provisional allocation is a feasible pri-
mal solution and the ask prices are a feasible dual solution.
The complementary-slackness conditions, which are neces-
sary and sufficient for optimality of the provisional alloca-
tion, can be given interpretations in the auction. In Parkes &
Ungar (2000b) we prove thatiBundle terminates with prices
and an allocation that satisfy complementary-slackness con-
ditions, and therefore with an efficient allocation.

Intermediate Computation. The intermediate computa-
tion determines the initial price discounts to each agent.
In Parkes & Ungar (2000c) we demonstrate that given
competitive-equilibrium prices(p1; : : : ; pI), prices(p1 �
�init;1; p2; : : : ; pI) are also in competitive-equilibrium
(CE). CE prices are any set of prices that satisfy comple-
mentary slackness with the optimal primal solution, i.e. any
optimal dual solution.Note that they are not unique.

Bikchandani & Ostroy (1998) prove that CE prices are
upper-boundson Vickrey payments, therefore adjusted price
p�bid;i��init;i is an upper-bound on an agent’s Vickrey pay-
ment. This is the adjusted payment computed in Intermedi-
ate Computation at the end of Phase I of the auction.

In addition, we prove in Parkes & Ungar (2000c) (see
Theorem 9) that a sufficient condition for the adjusted pay-
ments to equal Vickrey payments is that there are noactive
agents; i.e. that all agents in the allocation at the end of
Phase I are also in the revenue-maximizing allocation with-
out any single agent.

Phase II. The motivation for Phase II is to force ac-
tive agents to bid higher prices for bundles received in
the optimal allocation. The ask prices to all agents re-
main valid competitive equilibrium prices during Phase II.
Therefore, we can still compute discount�(i) = P � �
MAXREV (P�i) for agenti as the auction continues. This
is computed dynamically in the auction, as the sum of
�init(i) and�extra(i).

In Parkes & Ungar (2000c) we prove necessary and suf-
ficient conditions for this discount to compute Vickrey pay-
ments:

� The ask prices must leave every agent not in the optimal
allocation indifferent between receiving no bundle and
any bundle it receives in a second-best allocation.

� The ask prices must leave every agent in the optimal al-
location indifferent between the bundle it receives in the
optimal allocation and any bundle it receives in a second-
best allocation.

� Every agent in the final allocation must either: (a) have
an adjusted payment of zero; or (b) the ask price to all

dependentsof that agent for the bundle they receive in the
final allocation must equal their value for the bundle.

It is not hard to show that these conditions are all satisfied
(to within �) at the end of Phase II. We make agents inW �

but not in(W�i)
� continue to bid higher prices, and increase

their ask prices, until they enter(W�i)
� or drop out of the

auction.
The tricky part of the proof that we terminate with GVA

payments is to show that the competition from the dummy
agents is sufficient to make Phase II terminate, i.e. to push
up the bid prices high enough of all active agents. We be-
lieve that the current protocol for detecting quiescence dur-
ing Phase II and introducing new dummy agents is sufficient
for this purpose.

Example.
For example, consider case(a = b = 10) in Example 2. At the
end of Phase I we have the following CE prices:pask;1 = (0; 8; 8),
pask;2 = (7; 0; 7), andpask;3 = (0; 0; 15). During Phase II,
agents 1 and 2 bid continue to bid and face higher ask prices.
At the end of Phase II, we have the following additional sets of
CE prices: (i)pask;1 = (0; 10; 10), pask;2 = (7; 0; 7), and
pask;3 = (0; 0; 15), from which we can compute minimal CE
pricespask;1 = (0; 10; 10), pask;2 = (5; 0; 5), andpask;3 =
(0; 0; 15); and (ii) pask;1 = (0; 8; 8), pask;2 = (10; 0; 10), and
pask;3 = (0; 0; 15), from which we can compute minimal CE
pricespask;1 = (0; 5; 5), pask;2 = (10; 0; 10), andpask;3 =
(0; 0; 15). The first set of minimal CE prices supports the Vickrey
payment to agent 2. The second set of minimal CE prices supports
the Vickrey payment to agent 1.

Discussion
It is important that agents cannot identify the transition from
Phase I to Phase II of the auction because nothing that an
agent bids in Phase II will change either the final allocation
or its own final payment. The only effect of an agent’s bids
in Phase II is to reduce the final payment made by other
agents. If it is costly to participate in the auction an agent
would choose to drop out after Phase I. In addition, there are
opportunities for collusion between agents in Phase II (just
as the GVA itself is vulnerable to collusion).

Certainly, we must hide bids from dummy agents in
Phase I (or give the dummy agents false identities). Each
agent only needs information about its own ask prices, and
whether or not it is receiving a bundle in the provisional al-
location. Agents do not need any information about the bids,
prices, or allocations of other participants. We must also be
sure that agents cannot distinguish the competitive effects
of bids from dummy agents from the competitive effects of
bids from real agents. This is our reasoning for constructing
dummy agents to “clone” the real agents that compete for
items in Phase I of the auction.

Future Work
There are a number of interesting areas for future work.
First, it should be possible to reduce the computational de-
mands on the auctioneer. For example, it would be useful
to allow the auctioneer to recompute the dependent agents



in each round of Phase II without explicitly computing the
second-best revenue-maximizing allocations.

Second, we would like to reduce the level of price dis-
crimination in the auction. For example, in application to
the allocation of a single item, the current auction maintains
a separate ask price for each agent. In comparison, the En-
glish auction implements the Vickrey outcome with a single
ask price which is the same to all agents.

Looking ahead, proxy bidding agents, situated between
real agents and the auctioneer, suggest a method to integrate
rich preference semantics into the auction; e.g. with ordi-
nal, cardinal, and constraint-based information. This is an
interesting area for future work.

Conclusions
In this paper we have addressed the unreasonable informa-
tion demands that the generalized Vickrey auction can place
on agents. We introduce an experimental design for an itera-
tive combinatorial auction. The auction provably terminates
with the outcome of the GVA in special cases, and experi-
mental results support our hypothesis that the auction imple-
ments the outcome of the GVA in all cases. While prelim-
inary, the auction may lead to practical and strategy-proof
mechanisms with many interesting applications.
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