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Abstract

A simple characterization of the equilibrium conditions required to
compute Vickrey payments in the Combinatorial Allocation Problem leads
to an ascending price Generalized Vickrey Auction. The ascending auc-
tion, iBundle Extend & Adjust (iBEA), maintains non-linear and perhaps
non-anonymous prices on bundles of items, and terminates with the ef-
ficient allocation and the Vickrey payments in ex post Nash equilibrium.
Crucially, iBEA is able to implement the Vickrey outcome even when the
Vickrey payments are not supported in a single competitive equilibrium.
The auction closes with Universal competitive equilibrium prices, which
provide enough information to compute individualized discounts to adjust
the final prices and implement Vickrey payments.

1 Introduction

In a combinatorial allocation problem (CAP) there is a set of discrete hetero-
geneous items to allocate to a group of agents, and each agent may have quite
general preferences across items, including both complements and substitutes.
The CAP has many interesting applications: in logistics [32, 50]; in job-shop
scheduling [53]; for airport slot allocation [47]; bandwidth allocation [21]; multi-
agent planning [27]; class registration [22]; and resource allocation [31]. Combi-
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natorial auctions allow agents to bid for bundles of items, and express complex
preferences that may include both synergies and complements.

This paper proposes an allocatively-efficient ascending-price combinatorial
auction. The proposed auction, iBundle Extend&Adjust (iBEA), implements
the outcome of the Vickrey-Clarke-Groves mechanism for the CAP, the so-called
Generalized Vickrey auction (GVA). Myopic best-response, or straightforward
bidding, is an ex post Nash equilibrium of the auction, maximizing the payoff to
an agent given MBR strategies of every other agent over all feasible strategies.
In particular, the free-riding problem that characterizes equilibrium strategies
in other ascending combinatorial auctions [8, 12, 36] is not a problem in iBEA.
A number of efficient ascending price auctions have been proposed in the lit-
erature for special cases of the combinatorial allocation problem; for example,
by Demange et al. [19] for the unit-demand case, by Ausubel [5] for homoge-
neous items with diminishing marginal returns, and recently by Parkes [42] and
Ausubel & Milgrom [4] for an agents are substitutes condition. In this paper
we place only a free-disposal requirement on agent preferences. iBEA extends
iBundle [40, 44], that was efficient for straightforward agent strategies, but for
which straightforward bidding was not in equilibrium.

Prices in iBEA are both non-linear and non-anonymous, with non-anonymous
prices introduced dynamically as necessary to compute the outcome of the GVA.
The bidding language allows agents to submit exclusive-or bids across bundles of
items, e.g. “I only want bundle S1 or bundle S2 but not both”. The provisional
allocation in each round is selected to maximize revenue given agent bids, and a
simple rule determines ask price increases across rounds based on unsuccessful
bids. iBEA terminates in competitive equilibrium, and elicits enough preference
information from agents to compute individualized discounts at the end of the
auction and implement Vickrey payments. If Vickrey payments are supported
in a single set of competitive equilibrium prices then iBEA terminates as soon as
competitive equilibrium is achieved; otherwise, iBEA remains open long enough
to elicit the additional information about agent preferences that is required to
make the auction incentive-compatible.

The theoretical properties of iBEA are established via linear-programming
duality theory. The auction maintains a feasible primal (the provisional al-
location) and a feasible dual (the ask prices) solution to an extended linear
program formulation of CAP [11]. Termination in competitive equilibrium is
equivalent, for agents with myopic best-response strategies, to termination with
an allocation that satisfies complementary slackness conditions with the prices,
which implies allocative efficiency. Crucially, we also characterize necessary and
sufficient conditions for competitive equilibrium (CE) prices to provide enough
information to compute the Vickrey payments, in addition to the efficient allo-
cation. Vickrey payments can be computed from CE prices if and only if they
are Universal CE prices, which means that the prices are CE in the combinato-
rial auction with all agents and in the subproblems induced by removing each
agent from the auction in turn.

Ascending-price auctions can avoid the high cost of information revelation
that is required in efficient sealed-bid mechanisms [41, 44, 6, 14]. In many
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interesting problems there is a cost associated with determining the value for
a set of items [4]: perhaps the bidder in the wireless spectrum auction must
determine a new business plan to understand the value of any particular com-
bination of licenses; perhaps the bidder in the procurement problem must run
a new optimization problem to determine an optimal manufacturing plan given
a particular delivery schedule [50]. Ascending-price auctions allow bidders to
compute optimal strategies with approximate preference information [42, chap-
ter 7]. Secondary reasons to prefer ascending-price over sealed-bid auctions
include reduced information revelation [48] and better performance in common-
value settings [16, 46].

As a general methodology, iBEA suggests a new paradigm for the design
of efficient ascending-price Vickrey auctions. The method requires a suitable
extended linear program formulation of the underlying allocation problem, such
as that provided by Bikchandani & Ostroy [11] for the CAP, and a characteri-
zation of the information required to compute Vickrey payments. Interestingly,
even though the extended formulation itself can be very (perhaps exponentially
large), the primal-dual method only explicitly constructs as much of the formu-
lation as is necessary to solve the problem at hand.

1.1 Outline

Section 2 contains preliminaries. We present assumptions about agent prefer-
ences; introduce the combinatorial allocation problem (CAP) and the General-
ized Vickrey auction; and present an extended linear program formulation due
to Bikchandani & Ostroy [11], with a dual solution that computes non-linear and
non-anonymous competitive equilibrium prices. We define Universal-, Quasi-,
and Quasi-Universal CE prices, and individual- and group-minimal CE prices,
and introduce sufficient and almost necessary conditions on agent preferences
for Vickrey payments to be supported in competitive equilibrium.

Section 3 characterizes the relationship between minimal CE prices and Vick-
rey payments. First, in Section 3.1 we show that Universal CE prices are both
necessary and sufficient to adjust to individual-minimal CE prices, and there-
fore Vickrey payments. Then, in Section 3.2 we show that Quasi-CE prices on a
chain of subproblems are sufficient to adjust prices to group-minimal CE prices,
and derive a useful characterization for the special-case that Vickrey payoffs
to every agent are supported in a single competitive equilibrium, which at the
group-minimal CE prices. Section 3.3 gives some illustrative examples.

Section 4 introduces the iBEA auction, and presents an extended example.
We also propose a variation in which price increases are implemented based on
a subset of bids from agents. In Section 5 we prove that iBEA is allocatively-
efficient, and that myopic best-response is an ex post Nash equilibrium of the
auction, which terminates with the VCG outcome. Section 6 places iBEA in
the context of existing ascending auction theory, and discusses the incentive
properties of iBEA in comparison with the GVA, and in comparison to a related
non-VCG ascending-price auction design. Section 7 concludes.
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2 Preliminaries

Combinatorial auctions, in which bidders can submit bids on bundles of items,
are important when items are complements and/or substitutes and agents have
quite general preferences [49]. Our primary goal is allocative efficiency, to al-
locate items across agents to maximize total utility. In some cases this goal
is compatible with revenue maximization, for example when there is a perfect
resale market [7], but in general it is well-known that revenue maximization is
incompatible with efficiency [37]. A brief discussion of the revenue properties
of iBEA vis-a-vie competing ascending-price combinatorial auction designs is
made in Section 6.

In this section we first define the combinatorial allocation problem (CAP),
and state our assumptions about agent preferences. Then, we define Quasi-
, Universal, and Quasi-Universal CE prices, and relate minimal CE prices to
Vickrey payments.

2.1 The Combinatorial Allocation Problem

We consider a finite set, G, of discrete items to allocate to a set I of agents. Let
m = |G| and n = |I|. Each agent i ∈ I has a valuation function, vi : 2G → R+,
that defines its value vi(S) ≥ 0 for every bundle of items, S ⊆ G. We make the
following assumptions about agent preferences:

(i) private values, each bidder has a method to determine its own value for
bundles of items, and this value does not depend on the values of other agents

(ii) quasi-linear utility, the net payoff or utility to agent i for bundle S is
ui(S, p) = vi(S)− p, where it pays price p

(iii) no externalities, an agent’s utility does not depend on the items allocated
to other agents

(iv) free-disposal, vi(S) ≤ vi(S
′) for all S ⊆ S′.

(v) zero seller values, the seller has no value for the items.
Beyond this, we make no additional assumptions about agent preferences;

for example, we do not need to assume that agents values are submodular, which
is a generalized form of decreasing marginal-returns.

Assumption (i) rules out common-value preferences, in which agents learn
about the value of items from the revealed preferences of other agents. Assump-
tion (ii), quasi-linear utilities, is tantamount to assuming risk-neutral agents.
Assumption (iii), no externalities, rules out auctions in which agents interact
over an extended period of time, for example in a long-term competitive re-
lationship [2, 28]. Assumption (iv) is quite reasonable in most settings. It
is impossible to assumption (v) and maintain efficiency and budget-balance in
equilibrium, unless one is willing to accept either a budget deficit or a loss of
interim individual-rationality [3, 17, 38].

Let S = (S1, . . . , Sn) define an allocation of items across agents, such that
agent i receives bundle Si ⊆ G. The ex post efficient allocation, S∗, maximizes
the total value over all agents. Let Γ denote the set of feasible allocations, such
that k ∈ Γ defines a partition of items and an assignment of bundles in the
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partition to agents. We write [i, S] ∈ k to indicate that bundle S is assigned to
agent i in allocation k. The CAP for I agents, is:

V (I) = max
k∈Γ

∑

[i,S]∈k

vi(S) [cap(I)]

Later, cap(I\i), is used to denote the combinatorial allocation problem without
agent i, with V (I \ i) the value of the efficient allocation to the subproblem.

The computational properties of CAP are quite well-understood. The gen-
eral problem is NP-hard [49], equivalent to the maximal weighted clique prob-
lem, but a number of tractable special-cases have been identified by considering
special properties of linear program formulations [49, 18, 33]. In addition, fast
algorithms are known for particular distributions of problem instances, using
variants on branch-and-bound search [51, 1], while fast linear-program based
approximation algorithms are also proposed [56].

In Bikchandani & Ostroy [10] a hierarchy of linear program (LP) formula-
tions are introduced for CAP. The formulations are interesting because their
duals correspond to linear prices, non-linear prices, and non-linear and non-
anonymous prices as we move up the hierarchy. Each successive formulation
introduces additional valid inequalities and auxiliary variables to lift the LP
formulations and better approximate the optimal solution to the underlying
CAP. The strongest formulation, LP3, has the integrality property, such that all
solutions are integral and solve the CAP. iBEA implements a primal-dual al-
gorithm, in equilibrium with agent best-response strategies, for LP3. Although
the extended formulations introduce an exponential number of additional vari-
ables and constraints and are of limited value for centralized computation, the
duality properties are invaluable to prove formal properties in ascending-price
combinatorial auction design.

2.1.1 The Extended LP Formulation

Let xi(S) ≥ 0 denote the weight with which bundle S is allocated to agent
i, and variable, y(k) ≥ 0, indicate the level with which allocation k ∈ Γ is
selected, where as before Γ is the set of all feasible allocations. Formulation
LP3 is integral for the CAP.

max
xi(S),y(k)

∑

S⊆G

∑

i∈I

xi(S)vi(S) [LP3]

s.t.
∑

S⊆G

xi(S) ≤ 1, ∀i ∈ I (LP3-1)

xi(S) ≤
∑

k∈Γ,[i,S]∈k

y(k), ∀i ∈ I, S ⊆ G (LP3-2)

∑

k∈Γ

y(k) ≤ 1 (LP3-3)

xi(S), y(k) ≥ 0, ∀i ∈ I, S ⊆ G, k ∈ Γ
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Constraints (LP3-1) ensure that each agent receives at most one bundle,
constraints (LP3-3) ensure that the total weight allocated to allocations is at
most one, and constraints (LP3-2) ensure that the bundles allocated to agents
are consistent with the selected allocations.

In the dual, we associate each constraint (LP3-1) with variable πi, which can
be interpreted as agent i’s surplus. Each constraint (LP3-2) is associated with
variable pi(S), which can be interpreted as the ask price to agent i for bundle
S. Constraint (LP3-3) is associated with variable πs, which can be interpreted
as the seller’s surplus. The dual objective is to compute a set of non-linear and
non-anonymous prices to minimize the sum of agent surplus and seller surplus.

min
πi,pi(S),πs

∑

i∈I

πi + πs [DLP3]

s.t. πi + pi(S) ≥ vi(S), ∀i ∈ I, S ⊆ G (DLP3-1)

πs −
∑

[i,S]∈k

pi(S) ≥ 0, ∀k ∈ Γ (DLP3-2)

πi, pi(S), πs ≥ 0, ∀i ∈ I, S ⊆ G

Given a set of prices pi(S), then the optimal dual solution is πi = maxS⊆G πi(S)
and πs = maxk∈Γ πs(k), where πi(S) = [vi(S)−pi(S)]+ and πs(k) =

∑

[i,S]∈k pi(S),

and vi(∅) − pi(∅) = 0 and πs(∅) = 0 by definition. Throughout the paper we
use x+ to denote max(0, x).

This extended formulation is integral, essentially by formulating away the
problem with the introduction of an exponential number of constraints, one
associated with each element of Γ.

2.2 Competitive, Quasi-Competitive, and Universal-Competitive

Equilibrium Prices

By strong LP duality, an optimal dual solution defines competitive equilibrium
prices. A feasible primal solution, S∗, and a feasible dual solution, p∗, is optimal
if and only if they satisfy complementary slackness (CS) conditions. The non-
trivial CS conditions1 for primal-dual formulation LP3/DLP3 are:

1We ignore pi(S) > 0 ⇒ xi(S) =
∑

k∈Γ,[i,S]∈k y(k) because the RHS holds for all feasible

and optimal solutions of LP3. We also reformulate πi > 0 ⇒
∑

i xi(S) = 1 as
∑

i xi = 0 ⇒
πi = 0, taking advantage of the integrality property of optimal solutions. Finally, we ignore
πs > 0 ⇒

∑

k y(k) = 1 because this is trivially satisfied in any integral feasible solution to
LP3 in which some allocation is selected.
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xi(S) > 0⇒ πi + pi(S) = vi(S), ∀i ∈ I, S ⊆ G (CS1a)
∑

i∈I

xi(S) = 0⇒ πi = 0 (CS1b)

y(k) > 0⇒ πs −
∑

[i,S]∈k

pi(S) = 0, ∀k ∈ Γ (CS2)

Equivalently, CS conditions are nothing more than a statement of compet-
itive equilibrium, such that both the agents and the seller maximize surplus
given the prices and the allocation. Formally, allocation S∗ and prices p∗ are in
competitive equilibrium if and only if:

• (CS1a and CS1b) Bundle S∗
i solves maxS⊆G πi(S) for every agent i, with

πi(S) = [vi(S)− pi(S)]+.

• (CS2) Allocation S∗ solves maxk∈Γ πs(k) for the seller, with πs(k) =
∑

[i,S]∈k pi(S).

From the integrality of LP3, competitive equilibrium (CE) prices (perhaps
non-linear, and perhaps non-anonymous) exist in the CAP, and always sup-
port the efficient allocation. In special cases, the general non-linear and non-
anonymous prices can be represented as linear-additive prices, pj on each item
j ∈ G, with pi(S) =

∑

j∈S pj for all i ∈ I. Gross-substitutes preferences [29]
defines the largest set of preferences that contain unit-demand preferences for
which the existence of linear competitive equilibrium prices can be shown [25].
In other cases, prices can be represented as anonymous but non-linear prices,
p(S) for all bundles S ⊆ G, with pi(S) = p(S) for all i ∈ I. In all cases, whenever
prices support an allocation in equilibrium, then the allocation is efficient.

Definition 1 (Universal CE prices). Prices, puce, are Universal competitive
equilibrium (UCE) prices if and only if they are in competitive equilibrium in
problem cap(I) and in each subproblem cap(I \ i) induced by removing agent
i ∈ I.

Universal CE prices exist in every CAP instance. Consider prices pi(S) =
vi(S) for every agent i and bundle S, these prices are UCE by construction.
In Section 3.1, we show that UCE prices provide necessary and sufficient in-
formation to compute Vickrey payments in CAP. Later, in Section 5, we prove
that iBEA terminates with prices that are Universal CE prices, and use this to
derive the VCG outcome.

Quasi-CE prices, defined with respect to a subproblem cap(K), allow a char-
acterization of a set of weaker conditions on prices that are sufficient to compute
group-minimal CE prices. Let Γ(K) denote the set of allocations restricted to
agents K, such that Γ(K) = {k ∈ Γ : [i, S] ∈ k ⇒ i ∈ K}.

Definition 2 (Quasi-CE Prices). Prices, pqce, are Quasi-CE prices in sub-
problem cap(K), for some K ⊆ I, if and only if there is an allocation, Sqce,
that satisfies:
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(CS1a) for every i ∈ K, if Sqce,i 6= ∅ then Sqce,i solves maxS⊆G πi(S), with
πi(S) = [vi(S)− pi(S)]+.

(CS2) for the seller, allocation Sqce solves maxk∈Γ(K) πs(k), with πs(k) =
∑

[i,S]∈k pi(S).

Notice that Quasi-CE prices do not need to satisfy (CS1b), i.e. some agents
that receive no bundle might have positive surplus. This weaker requirement
differentiates Quasi- from full CE prices.

Definition 3 (Universal Quasi-CE Prices). Prices, p, are Universal Quasi-
CE prices if and only if they are CE prices in problem cap(I) and quasi-CE
prices in each subproblem cap(I \ i) induced by removing agent i.

Since CE prices in subproblem cap(I \ i) are also Quasi-CE prices, clearly
Universal CE prices are also Universal Quasi-CE prices.

Definition 4 (individual-minimal CE prices). The individual-minimal CE
prices to agent j, pmin,j, maximize the surplus across all third-order CE prices.

Given individual-minimal prices, pmin,j , the prices to agent i are denoted, pmin,j
i .

Let πj denote the surplus to agent j in the individual-minimal CE for agent j.
The following restriction of dual LP, [DLP3], computes this individual-minimal
equilibrium.

πj = max
πi,pi(S),πs

πj [RD(j)]

s.t. πs +
∑

i∈I

πi = V (I) (*)

πi + pi(S) ≥ vi(S), ∀i ∈ I, S ⊆ G (RD-1)

πs −
∑

[i,S]∈k

pi(S) ≥ 0, ∀k ∈ Γ (RD-2)

πi, pi(S), πs ≥ 0, ∀i ∈ I, S ⊆ G

Constraint (*) ensures that the solution to this restricted dual is an optimal
solution to [DLP3], with V (I) equal to the value of the efficient allocation.
Constraints (RD-1) and (RD-2) ensure that the solution is feasible in [DLP3].

Definition 5 (group-minimal CE prices). Group-minimal CE prices, pmin,
are third-order CE prices that maximize the total surplus to the agents.

Let (π1, . . . , πn) denote the payoff to each agent in a group-minimal CE
price solution. The following restriction of dual LP [DLP3] computes the group-
minimal equilibrium.

8



(π1, . . . , πn) = arg max
πi,pi(S),πs

∑

i∈I

πi [RD]

s.t. πs +
∑

i∈I

πi = V (I) (*)

πi + pi(S) ≥ vi(S), ∀i ∈ I, S ⊆ G (RD-1)

πs −
∑

[i,S]∈k

pi(S) ≥ 0, ∀k ∈ Γ (RD-2)

πi, pi(S), πs ≥ 0, ∀i ∈ I, S ⊆ G

The constraints in [RD] are identical to the constraints in [RD(j)], it is only
the objective function that is different. We revisit these formulations in Sec-
tion 3, presenting alternative formulations in terms of complementary slackness
conditions, from which we derive methods to adjust CE prices to minimal CE
prices and Vickrey payments.

2.3 Vickrey Payoffs

In this section we demonstrate that the payoff to an agent in the VCG mecha-
nism, its Vickrey payoff, is always supported at the minimal CE prices defined
for that agent. In comparison, CE prices will only simultaneously support the
Vickrey payoff to every agent when agents are more like substitutes than comple-
ments. We care about this relationship between CE prices and Vickrey payoffs
because CE prices provide a useful certificate that the outcome of an ascending-
price auction is efficient, and implementing Vickrey payoffs allows ascending-
price auctions to inherit useful incentive-compatibility properties from VCG
mechanisms.

The Vickrey-Clarke-Groves [52, 13, 24] mechanism for the CAP, sometimes
called the Generalized Vickrey Auction (GVA), is a strategyproof, ex post individual-
rational, and efficient direct-revelation mechanism.

Let v̂i : 2G → R+, denote the reported valuation function of agent i,
V̂ (I), denote the reported value of the allocation that maximizes the reports,
and V̂ (I \ i) denote the reported value of the allocation that maximizes the
reports without agent i. The VCG computes allocation, Ŝ, to solve V̂ (I) =
maxk∈Γ

∑

[i,S]∈k v̂i(S) and also computes V̂ (I \ i) = maxk∈Γ(I\i)

∑

[i,S]∈k v̂i(S)

for every i with Ŝi 6= ∅. Allocation, Ŝ, is implemented, and agent i makes
payment v̂i(S

∗
i )− (V̂ (I)− V̂ (I \ i)) to the auctioneer, which is exactly zero for

agents not in the final allocation.
The dominant strategy, for every agent i, is truth-revelation, with v̂i = vi

[24]. Given this, the VCG mechanism is a strategyproof and truthful imple-
mentation of the efficient allocation, S∗. In equilibrium, agent i makes payment
pvick,i = vi(S

∗
i )− (V (I)− V (I \ i)), and receives its Vickrey payoff.

Definition 6 (Vickrey payoff). The Vickrey payoff,

πvick,i = V (I)− V (I \ i)
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is the utility to agent i in the equilibrium outcome of the GVA.

The VCG mechanism is an interesting special case of the family of Groves
mechanisms, which includes all strategyproof mechanisms for the class of effi-
cient allocation problems with quasi-linear preferences [23].

Proposition 1. [30] The VCG mechanism maximizes surplus to the seller out
of all efficient, strategy-proof, and interim individual-rational mechanisms.

To demonstrate the correspondence between individual-minimal CE prices
and Vickrey payments, let T ∗ denote the set of agents in the efficient allocation,
and restate LP, [RD(j)], as a combinatorial optimization problem, [RD(j)’],
defined over payoffs (π1, . . . , πn). In constructing [RD(j)’], πs is expressed as
πs = V (I) −

∑

i πi, which satisfies (*) in [RD(j)], and prices pi(S) = [vi(S) −
πi]

+ satisfy (RD-1), which by substitution into (RD-2) and simplification gives
constraints (RD-3) in [RD(j)’].2

πj = max
(π1,...,πn)

πj [RD(j)’]

s.t.
∑

i∈L

πi ≤ V (I) − V (I \ L), ∀L ⊆ T ∗ (RD-3)

πi = 0, ∀i /∈ T ∗, πi ≥ 0, ∀i ∈ T ∗

The individual-minimal CE prices are computed from the solution, πj , as:

pmin,j
i (S) =

{

vj(S)− πj , if i = j
vi(S) , otherwise.

Proposition 2. [45, Theorem 6] The Vickrey payoff to agent j is supported at
individual-minimal CE prices for that agent.

Proof. Solution πj = V (I) − V (I \ j) = πvick,j , with πi = 0 for all i 6= j, is
feasible and optimal. Feasible, because constraint (RD-3) holds with equality
for K = {j}, and constraint (RD-3) holds with weak inequality for all K ⊃ {j},
since the value V (I \ K) is weak-monotonic decreasing as agents are added to
K. Optimal, because constraint πj ≤ V (I) − V (I \ j) is tight. ut

As an immediate implication, we have that the payoff to agent j in any CE
outcome is weakly bounded-above by its payoff at the Vickrey outcome.

In comparison, the Vickrey payoff is only supported simultaneously to every
agent in competitive equilibrium when agents are substitutes.

Definition 7 (agents are substitutes).

V (I)− V (K) ≥
∑

l∈I\K

[V (I)− V (I \ l)] ∀K ⊆ I

2Constraints (RD-3) have an equivalent interpretation as constraints for a vector of payoffs
to be in the core [4]. Computing individual-minimal CE prices is equivalent to computing a
buyer-optimal core outcome.
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where V (K) denotes the value of the optimal solution to cap(K), the combina-
torial allocation problem defined only over the set K ⊆ I of agents.

Proposition 3. [11] The Vickrey payoff can be supported simultaneously to
every agent in a group-minimal competitive equilibrium if and only if agents are
substitutes.

The substitutes condition was introduced by Ausubel [6], as a necessary and
sufficient condition to support Vickrey payoffs in the core of the coalitional game
defined by the combinatorial allocation problem, and by Bikchandani & Ostroy
[11] in the present context of minimal CE prices and Vickrey payments.

Perhaps the easiest way to understand the agents are substitutes condition is
through a combinatorial formulation of the restricted dual, [RD], for the group-
minimal CE prices, that parallels formulation [RD(j)’] of the individual-minimal
restricted dual, [RD(j)]:

(π1, . . . , πn) =arg max
(π1,...,πn)

∑

i∈I

πi [RD’]

s.t.
∑

i∈L

πi ≤ V (I)− V (I \ L), ∀L ⊆ T ∗ (RD-3)

πi = 0, ∀i /∈ T ∗, πi ≥ 0, ∀i ∈ T ∗

Group-minimal prices, pmin(S), are computed as pmin
i (S) = vi(S) − πi for

all i ∈ I, given solution (π1, . . . , πn). Proposition 3 immediately follows, with
substitution πvick,i = V (I)− V (I \ i), since agents are substitutes is equivalent
to constraint set (RD-3).

In fact, agents are substitutes exactly captures a condition on preferences
required for the uniqueness of group-minimal CE prices. Uniqueness is defined
with respect to the payoffs of agents in equilibrium, prices pce and p′ce are equiv-
alent if they provide the same surplus, πi, to every agent i in equilibrium.

Proposition 4. [42, 4] Group-minimal CE prices are unique if and only if they
support Vickrey payoffs simultaneously to every agent.

Proof. (⇐) Assume that πi = πvick,i for every i, but that group-maximal CE
payoffs are not unique. Any alternative group-maximal payoff vector must pro-
vide more payoff to at least one agent, but πi = πvick,i. (⇒) Assume that
πj 6= πvick,j for some agent, j. Then, the constraint πj ≤ V (I) − V (I \ j)
in [RD’] must not be binding, and some constraint involving j and at least
one other agent, say k, must be binding. From this, we can construct multiple
equivalent group-maximal payoff vectors from different distributions of marginal
product across agents j and k. ut

Intuitively, if agents are substitutes then all individual-minimal CE prices in-
tersect and agents can all agree on the same equilibrium, which supports the
Vickrey payoff to every agent.

11



The substitutes condition is a little hard to interpret because it is defined
over the characteristic function, V (I), of the coalitional game and not in terms
of individual agent preferences. One necessary condition is that the total value
to the buyers of the efficient allocation must be at least the sum of the marginal
products of each agent; i.e., V (I) ≥

∑

i∈I V (I)− V (I \ i).
In recent analysis, Ausubel & Milgrom [4], relate agents are substitutes to

a disaggregated condition on agent preferences, and show that gross-substitutes
(GS) preferences is a sufficient condition for agents are substitutes. GS is defined
in terms of the demand function of an agent given a set of linear prices, and
essentially states that an agent that demands bundle S at prices p continues to
demand the items in S that do not increase in price if some of the prices on items
in S increase [29]. GS preferences are submodular, but there are preferences that
are submodular but not GS.

In fact, if agent preferences also include all linear-additive preferences then
GS preferences are also necessary for agents are substitutes [4]. This is quite
a negative result, because GS preferences are the largest set of preferences for
which linear CE prices exist [25]. This implies that Vickrey outcomes are not
supported in competitive equilibrium by non-linear and non-anonymous prices
in the very problems for which non-linear and non-anonymous prices are neces-
sary to support efficient outcomes in competitive equilibrium.

Finally, it is useful to consider the relationship between agents are substitutes
and a typical characteristic of CAP problem instances in which free-riding is
observed in ascending combinatorial auctions [35, 12]. Let T ∗ ⊆ I denote the
winning coalition of agents, the agents that receive items in that allocation, and
let V (I \T ∗) denote the value of the efficient allocation computed for the agents
in the losing coalition. We say that an agent in the winning coalition is critical
if the losing coalition’s allocation is efficient without the agent.

Definition 8 (critical). An agent l in the winning coalition is critical if V (I) >
V (I \ l), and V (I \ l) = V (I \ T ∗), where T ∗ are the agents in the winning
coalition.

Proposition 5. Agents are substitutes fails whenever at least two agents in the
winning coalition, T ∗, are critical, and I \ T ∗ 6= ∅.

Proof. Let K = (I \ T ∗), the losing coalition of agents. Let b = V (I) and c =
V (K). Then, we have V (I)−V (K) = b−c < N(b−c) =

∑

l∈I\K V (I)−V (I\l),

where N = |T ∗| > 1 is the number of critical agents in the winning coalition. ut

Free-riding occurs when there are two or more agents that must coordinate
their bids to out-bid another coalition of agents, and the minimal group CE
prices are not unique. This non-uniqueness creates a bargaining problem, each
agent wants to implement the CE outcome in which their individual price is
minimized. In turn, this leads to free-riding, with each agent preferring the
other agents to bid up the price on the bundles that will fit with its own bun-
dle. It is a reasonable hypothesis that typical ascending combinatorial auctions

12



will tend to suffer from free-riding when agents are substitutes fails. By imple-
menting the Vickrey outcome, iBEA is protected against this efficiency-reducing
coordination game.

3 Adjusting to Vickrey Payoffs

The novel and fundamental connections between equilibrium solutions and Vick-
rey payoffs presented in this section are a crucial step in the development of an
ascending-price GVA. The process of computing Vickrey payments from equilib-
rium information without requiring that the payments correspond to any single
equilibrium represents the main departing point from earlier studies [11, 10].

Assuming that equilibrium prices and the efficient allocation represent the
only information available about the preferences of agents, we demonstrate that
Universal CE prices are necessary and sufficient to compute individual-minimal
CE prices. A simple method is proposed to compute individual-minimal CE
prices, and Vickrey payments, from Universal CE prices. This method is used
to adjust prices toward Vickrey payments after iBEA terminates.

3.1 Adjusting CE Prices to Individual Minimal-CE Prices

The first step is to reformulate [RD(j)] to remove explicit information about
agent values, and replace with complementary-slackness conditions to ensure
allocative-efficiency. Let pce,i(S) denote competitive equilibrium prices, and
introduce variables ∆i ≥ 0 to denote a discount to agent i from its current
CE prices. Consider LP formulation [RD-CS(j)], that computes discounts to
adjust CE prices towards the individual-minimal CE prices for agent j while
maintaining CS conditions with the efficient allocation, S∗.

∆adjust,j = max
pi(S),(∆1,...,∆n)

∆j [RD-CS(j)]

s.t. pi(S
∗
i ) ≤ pce,i(S

∗
i )−∆i, ∀i ∈ T ∗ (rdcs-1)

pi(S) ≥ pce,i(S)−∆i, ∀i ∈ I, ∀S ⊆ G (rdcs-2)

∆i = 0, ∀i /∈ T ∗ (rdcs-3)
∑

i

pi(S
∗
i ) ≥

∑

[i,S]∈k

pi(S), ∀k ∈ Γ (rdcs-4)

pi(S) ≥ 0, ∀i, ∀S, ∆i ≥ 0, ∀i

Without explicit information about the value of the efficient allocation, V (I),
but with information about the identity of the efficient allocation, constraint
(*) in [RD(j)] is replaced with constraints (rdcs-1,rdcs-2,rdcs-3) that main-
tain (CS1a) and (CS1b) and constraints (rdcs-4) maintain (CS2). Dual vari-
ables πi and πs are implicit in this formulation; agent surplus, πi, increases
by ∆adjust,i, and seller surplus, πs, falls by

∑

i ∆adjust,i, but remains positive
because ∆adjust,i ≤ pce,i(S

∗
i ) for each agent.

13



In turn, it is useful to reformulate [RD-CS(j)] as a combinatorial optimiza-
tion problem, [RD-CS(j)’]:

∆adjust,j = max
(∆1,...,∆n)

∆j [RD-CS(j)’]

s.t.
∑

i∈L

∆i ≤ P (I)− P (I \ L), ∀L ⊆ T ∗

∆i ≥ 0, ∀i, ∆i = 0, ∀i /∈ T ∗

with P (K) = maxk∈Γ(K)

∑

[S,i]∈k pi(Si), the maximal surplus to the seller given

prices, pi(S), over allocations restricted to agents in set K ⊆ I.
The adjusted prices are computed as padjust,j(S) = pce,j −∆adjust,j to agent

j, with the prices unchanged to other agents.

Proposition 6 (upper-bound). Price adjustment, ∆adjust,j = P (I)−P (I \
j), solves [RD-CS(j)’], computing the maximal price adjustment to agent j that
maintains conditions for CE prices.

Proof. ∆adjust,j is a feasible solution, because P (I\L) is monotonically decreas-
ing in L, and optimal because constraint ∆j ≤ P (I)−P (I \ j) is tight. Again,
∆adjust,j = P (I)− P (I \ j) ≤ pce,j(S

∗
j ). ut

Discount ∆adjust,j is an information-theoretic upper-bound on the additional
surplus that agent j can receive in competitive equilibrium. After the price
adjustment, (CS1a) continues to hold for agent j, and (CS2) is binding for the
seller, with P (I)−∆adjust,j = P (I \ j). Implementing a smaller price to agent
j while maintaining (CS2) requires a change in price to one of the other agents
that might violate either (CS1a) or (CS1b) to that agent.

Theorem 1 (sufficient). Given prices, pce, and efficient allocation, S∗, then
it is sufficient that prices are Universal to compute Vickrey payments.

Proof. Consider agent j. Universal CE prices are CE in subproblem cap(I \ j),
and therefore V (I\j)+

∑

i6=j πi = P (I\j), and the adjusted surplus, πadjust,j =
vj(S

∗
j )− pce,j(S

∗
j ) + (P (I)− P (I \ j)) = vj(S

∗
j )− pce,j(S

∗
j ) + [V (I)−

∑

i πi]−
[V (I \ j) −

∑

i6=j πi] = πvick,j , because vj(S
∗
j ) − pce,j(S

∗
j ) = πj and all terms

except V (I) − V (I \ j) cancel. ut

The efficient allocation, S∗, is used to know how to break ties in the case of
two allocations with the same surplus to the seller. Notice that the standard
VCG payment is recovered as a special case because equating prices to agent
valuation functions is a trivial method to generate Universal CE prices. Notice
also that pvick,j = 0 iff P (I) = P (I \ j) + pce,j(S

∗
j ), which corresponds with

V (I) = V (I \ j) + vj(S
∗
j ).

Theorem 2 (necessary). If the Vickrey payments can be computed from CE
prices and the efficient allocation, S∗, then prices must be Universal CE.
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Proof. Given Proposition 6, this is proved with respect to adjusted prices com-
puted with discount, ∆adjust,j . Without Universal CE prices there must always
remain residual uncertainty in the maximal discount that could be computed
across all CE prices. Let pce denote the initial CE prices, and assume a violation
of either (CS1a,CS1b) or (CS2) in subproblem cap(I \ j). Case (a), in which
(CS1a) fails for an agent i 6= j that is in T ∗ but not in T ∗

−j . Agent i still has
positive surplus for some bundle, S ′, pce,i(S

′) = vi(S
′) − δ, for some δ > 0;

then, since prices are CE, it must be the case that pce,i(S
∗
i ) ≤ vi(S

∗
i ) − δ, and

that equilibrium surplus πi ≥ δ > 0. Then, higher prices p′ce,i(S) = pce,i(S) + ε,
for some ε > 0, maintain (CS1a) for agent i, while also increasing the discount,
∆adjust,j computed to agent j. Finally, there is not enough information to de-
termine the maximal increase, ε, presenting a contradiction. Similar arguments
can be constructed when (CS1a) or (CS1b) fails in subproblem cap(I \ j) for
an agent i 6= j that is: (b) in T ∗ and in T ∗

−j ; (c) not in T ∗ but in T ∗
−j . A trivial

contradiction follows in the case that (CS1a) and (CS1b) hold for all agents
i 6= j, but (CS2) fails. ut

Proposition 7 (anonymous prices). If anonymous CE prices are Universal
then agents are substitutes.

Proof. Immediate, because P (I) = P (I \ i) = 0 and ∆adjust,i = 0 for all agents
i, and therefore the CE prices already support Vickrey payoffs. ut

In situations in which agents are not substitutes, then only non-anonymous
CE prices can extract enough information about agent preferences to implement
the Vickrey outcome.

3.2 Adjusting CE Prices to Group-Minimal CE Prices

In the special case that agents are substitutes, we can characterize simpler
conditions to compute Vickrey payments in terms of the conditions required
to adjust to group-minimal CE prices. In addition, recent analysis suggests
that auctions that terminate in group-minimal CE prices with straightforward
bidding have interesting incentive and reputation properties [4], even when these
prices do not support Vickrey payments.

Again, we reformulate the restricted dual LP, [RD], to compute the group-
minimal CE prices in terms of complementary-slackness conditions, and then as
a combinatorial optimization problem, [RD-CS’].

(∆g
adjust,1, . . . , ∆

g
adjust,I) = arg max

(∆1,...,∆n)

∑

i∈I

∆i [RD-CS’]

s.t.
∑

i∈L

∆i ≤ P (I)− P (I \ L), ∀L ⊆ T ∗

∆i ≥ 0, ∀i, ∆i = 0, ∀i /∈ T ∗

It is useful to define prices that are a simple translation of an agent’s valu-
ation function.
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Definition 9 (negative translation). Prices, pntv, are negative translation
of agent value (NTV) prices if and only if pntv,i(S) = [vi(S)−ci]

+ for all S ⊆ G
and i ∈ I, for some constant, ci ≥ 0.

Let cce,i ≥ 0 denote the parameterization of a set of NTV and CE prices,
with cce,i = 0 for all i not in the efficient allocation. These prices must satisfy
P (I) = V (I)−

∑

i∈T ∗ cce,i from basic duality.

Lemma 1 (ntv 1). If CE prices are NTV then there is enough information to
adjust prices to group-minimal CE prices.

Proof. The special structure provided by NTV prices allows a simplification of
the combinatorial constraints in [RD-CS’], from which the connection between
adjusted CE prices and Vickrey payments is immediate. The full proof is in the
Appendix. ut

This explains why iBundle(3) [41, 44] and Ausubel & Milgrom’s ascending-
proxy auction can compute the Vickrey outcome when agents are substitutes. In
both auctions agents’ bid prices are approximate NTV prices, and both auctions
terminate in competitive equilibrium.

The surplus from NTV prices is related to the surplus from Quasi-CE prices,
which leads sufficient conditions for Quasi-CE prices to provide enough infor-
mation to adjust to group-minimal CE prices. Let C denote a set of subsets of
agents.

Lemma 2 (ntv 2). For any CE prices pce that are Quasi-CE in subproblems
cap(K) defined over sets of agents K ∈ C, there is a set of NTV and CE prices,
pntv, such that the seller has the same maximal surplus in problem cap(I) and
all subproblems cap(K), for K ∈ C, and prices are unchanged on bundles in the
efficient allocation.

Proof. See the appendix. ut

The following property is used in the analysis of iBEA to show that the
auction terminates immediately at the end of Phase I, and as soon as a single
set of CE prices have been discovered, when agents are substitutes.

Proposition 8. If agents are substitutes, then Universal Quasi-CE prices are
also Universal CE prices, and provide enough information to compute Vickrey
payments.

Proof. Consider a set of NTV and CE prices, pntv. By Lemma 1, these prices
provide enough information to compute group-minimal CE prices. Because
agents are substitutes, the group-minimal CE prices are also individual-minimal
CE prices, and can be computed with discount ∆adjust,j = P (I)−P (I \ j). Fi-
nally, by Lemma 2, given Universal Quasi-CE prices, that are Quasi-CE for each
subproblem cap(I \ j), one can construct NTV prices with the same ∆adjust,j

and adjusted prices as would be computed directly with the Universal Quasi-
CE prices. Universal Quasi-CE prices provide enough information to adjust to
Vickrey payments, and must also be Universal CE prices by Theorem 2. ut
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We isolate another interesting special case for group-minimal CE prices,
when agents are complements. Agents are complements is slightly stronger
than the negation of agents are substitutes.

Definition 10 (agents are complements).

V (j ∪ T )− V (T ) ≥ V (j ∪ S) − V (S)

for every S ⊆ T ⊆ T ∗, and agent j /∈ S, where T ∗ is the set of agents in the
efficient allocation.

If agents are complements, the combinatorial formulation, [RD’], of the
group-minimal CE price problem is a submodular optimization problem, with
constraints (RD-3) written as

∑

i∈L πi ≤ f(L), ∀L ⊆ T ∗, for submodular
f(L) = V (I) − V (I \ L). In turn, this special structure allows a greedy al-
gorithm to compute a set of payoffs compatible with group-minimal CE prices
[54]:

(i) Select an arbitrary order for the agents in the efficient allocation, w.o.l.g.
1, 2, . . . , m where m = |T ∗|.

(ii) Set π1 = V (I) − V (I \ 1), π2 = V (I \ 1) − V (I \ {1, 2}), π3 = V (I \
{1, 2})− V (I \ {1, 2, 3}), etc. and πi = 0 for all i /∈ T ∗.

Proposition 9. The Vickrey payoff to any agent i is supported in some set of
group-minimal CE prices when agents are complements.

Proof. Constructive. The adjusted payoff, π1 = V (I) − V (I \ 1) = πvick,1, for
the first agent, and any agent can be selected as the first agent in the greedy
algorithm. ut

In the special case of NTV and CE prices and agents are complements, the
corresponding price-based formulation of the group-minimal CE prices prob-
lem is also submodular (see [RD-NTV] in the Appendix). The same greedy
algorithm can be used to compute group-minimal CE prices from NTV prices;
this time computing ∆g

adjust,1 = P (I) − P (I \ 1), ∆g
adjust,2 = P (I \ 1) − P (I \

{1, 2}), . . ., for some order of agents in T ∗, with ∆g
adjust,i = 0 for i /∈ T ∗. From

this, we can derive a sufficient condition to compute group-minimal CE prices
when agents are complements, in terms of Quasi-CE prices.

Let ξ ∈ Ξ(K) define some permutation ξ = (ξ1, . . . , ξm), or order, over agents
in set K, m = |K|, with set Ξ(K) used to denote all possible permutations. Let
Sj(ξ) = {ξ1, . . . , ξj} ⊆ K contain the first j agents in an order ξ.

Definition 11 (chain). Given order ξ ∈ Ξ(K) define a chain of sets of agents
as Cξ = {(I \ Sj(ξ)) | j ∈ {1, . . . , m} }, where m = |K|, and Sj(ξ) is the first j
agents in order ξ.

For example, ξ = (1, 2, 3), is a valid ordering for set {1, 2, 3} ⊆ I, with chain
Cξ = {(I \ {1}), (I \ {1, 2}), (I \ {1, 2, 3})} and S1(ξ) = {1}, S2(ξ) = {1, 2}, etc.
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A B AB
Agent 1 1 1 6∗

Agent 2 4 4 5

Example 1.

A B AB
Agent 1 8∗ 9 12
Agent 2 6 8∗ 14

Example 2.

Figure 1: Motivating examples for Combinatorial Auctions. In Example 1, no linear
CE prices exist, while in Example 2, no linear CE prices exist that support Vickrey
payments. The efficient allocation is indicated ∗.

Theorem 3 (sufficient). If agents are complements, any CE prices that are
also Quasi-CE on subproblems cap(K) defined on sets K ∈ Cξ, where chain
Cξ is defined for some ordering, ξ ∈ Ξ(T ∗), of the agents, T ∗, in the efficient
allocation are sufficient to compute group-minimal CE prices.

Proof. Immediate from Lemma 2, as long as the greedy algorithm is used in the
same order as the chain of subproblems for which Quasi-CE holds. ut

As an example, suppose T ∗ = {1, 2, 3} and the set I = {1, 2, 3, 4, 5}. Then,
if agents T ∗ are complements it is sufficient that CE prices are also Quasi-CE for
subproblems cap({2, 3, 4, 5}), cap({3, 4, 5}) and cap({4, 5}), with ∆g

adjust,1 =

P (I)− P ({2, 3, 4, 5}), ∆g
adjust,2 = P ({2, 3, 4, 5})− P ({3, 4, 5}), etc.

3.3 Examples: Competitive Equilibrium Analysis and Vick-

rey Payoffs

The following examples are selected to illustrate the competitive equilibrium
analysis and price-adjustment methods introduced in this section.

Examples 1 and 2 motivate the combinatorial auction problem. In Example
1 there are no single-item (linear) CE prices, and non-combinatorial auctions
suffer from the exposure problem [36]. In Example 2, while linear CE prices exist,
the prices cannot support Vickrey payments, and straightforward bidding is not
an equilibrium [26]. Not only do non-linear (perhaps non-anonymous) CE prices
always exist, but in these problems agents are substitutes, and group-minimal
CE prices support Vickrey payments.

In Example 3, which is used to motivate iBEA, the agents are substitutes
property fails, and Vickrey payments are not supported in CE, even with non-
linear and non-anonymous prices. Bykowsky et al. [12] present an analysis of the
free-riding problem for Example 3, in standard ascending-price combinatorial
auction designs. Finally, we introduce Examples 4(a) and 4(b), which will be
used in Section 4.3 to illustrate iBEA. Agents are substitutes fails in Example
4(a), but holds in a simple variation, Example 4(b).

3.3.1 Examples 1 and 2: Motivating Combinatorial Auctions

Consider a problem with 2 goods, {A, B}, and 2 agents, {1, 2}. Two examples
of agent valuation functions are illustrated in Figure 1. The efficient allocations
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A B C AB BC AC ABC
Agent 1 60 30 30 100 60 100∗ 156
Agent 2 30 62 20 90 82 94 170
Agent 3 40 75∗ 20 115 95 60 161

Example 3

Figure 2: Free-riding can occur in standard ascending combinatorial auctions in this
problem because agents 1 and 3 must coordinate their bids to out-bid agent 2. Agents
are not substitutes and Vickrey payments are not supported in competitive equilib-
rium.

are indicated ∗; i.e. (AB, ∅) in Example 1 and (A, B) in Example 2. The Vickrey
payments are (5, 0) in Example 1, and (6, 4) in Example 2.

First, consider Example 1. Linear CE prices do not exist in this problem:
linear CE prices require p(A) ≥ 4, p(B) ≥ 4, and p(A) + p(B) ≤ 6, which is
impossible. The essential problem is that the items are synergies to agent 1
but complements to agent 2. The absence of linear CE prices leads to an expo-
sure problem in a simultaneous ascending auction; by bidding straightforwardly
agent 1 risks exposure to receiving just a single item, and a negative payoff. To
avoid exposure, the agent should bid at most 1 for A and 1 for B, which results
in inefficiency. A combinatorial auction can readily handle this synergy, since
agent 1 can express its contingency, “A only if B”, through a bid on bundle AB.

Second, consider Example 2. Linear CE prices do exist in this problem,
but the group-minimal CE prices, p(A) = 6, p(B) = 7, do not support Vickrey
payments. However, in this problem, and in Example 1, agents are substitutes
holds and non-linear and non-anonymous prices can support Vickrey payments
in competitive equilibrium. Group-minimal CE prices are p1 = (6, 7, 10) and
p2 = (2, 4, 10), with p1(A) = pvick,1 and p2(B) = pvick,2. Universal CE prices,
for example p1 = (7, 8, 11) and p2 = (3, 5, 11), provide enough information to
compute Vickrey payments: pvick,1 = p1(A) − ∆adjust,1 = p1(A) − (P (12) −
P (2)) = 7− (12− 11) = 6 and pvick,2 = p2(B)−∆adjust,2 = 5− (12− 11) = 4.

3.3.2 Example 3: A Problem with Free-riding

Now, consider the problem illustrated in Figure 2, with 3 goods, {A, B, C}, and
3 agents, {1, 2, 3}. In this problem, the efficient allocation, S∗ = (AC, ∅, B),
and Vickrey payments are (95, 70).

The free-rider problem characterizes standard ascending combinatorial auc-
tion designs for this example, because agents 1 and 3 must coordinate their
bids to defeat agent 2 but each agent prefers to wait while the other agent
bids and accepts more of the cost of out-bidding agent 2. As we might expect,
both agents 1 and 3 are critical (Def 8), and agents are substitutes fails to
hold, because V (123) − V (23) = 175 − 70 > V (12) − V (2) = 170 − 170, and
the marginal product of agent 1 is greater with agent 3 than without agent 3.
Group minimal CE prices require p1(AC) + p3(B) = 170, 94 ≤ p1(AC) ≤ 100,
and 62 ≤ p3(B) ≤ 75, with p2(S) = v2(S), while Vickrey payments require
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A B AB
Agent 1 30∗ 0 30
Agent 2 0 40∗ 40
Agent 3 0 20 40

Example 4(a).

A B AB
Agent 1 30∗ 0 30
Agent 2 0 40∗ 40
Agent 3 0 20 40
Agent 4 25 0 25
Agent 5 0 25 25

Example 4(b).

Figure 3: Example 4(a): agents are not substitutes, and Vickrey payments are not
supported in competitive equilibrium. Example 4(b): with the addition of agents 4
and 5, agents are substitutes. iBEA terminates with the Vickrey outcome in both
problems.

p1(AC) + p3(B) = 165 < 170. Notice that individual minimal CE prices equal
Vickrey payments: pind,1(AC) = 170− 75 = pvick,1 and pind,2(B) = 170− 100 =
pvick,2.

In this example, Universal prices require that agents 1 and 3 face prices
p1(AC) = v1(AC) = 100 and p3(B) = v3(B) = 75. Neither agent is in the
efficient allocation in the subproblem induced by removing the other agent from
the auction, and must face (at least) its full value for an empty allocation to
maximize its surplus.

3.3.3 Example 4: iBEA Problem Instances

Finally, consider Example 4(a) and 4(b) in Figure 3. Example 4(b) is the same
as 4(a), with the addition of agents 4 and 5. In both problems the efficient
allocation is to allocate A to agent 1 and B to agent 2, however Vickrey payments
in Example 4(a) are (0, 20, 0) while Vickrey payments in Example 4(b) are
(25, 25, 0, 0, 0). In Section 4.3 we illustrate iBEA on both Example 4(a) and
Example 4(b), and demonstrate that it terminates with the Vickrey outcome in
both cases.

Figure 4 illustrates the space of CE prices in Example 4(a), in which agents
are not substitutes, and Vickrey payments are not supported in competitive
equilibrium. Group minimal CE prices require p1(A)+p2(B) ≥ 40, p1(A) ≤ 30,
and 20 ≤ p2(B) ≤ 40, and cannot support Vickrey payments. Universal CE
prices require, p1(A) ≥ 20, to provide equilibrium for agent 1 without agent
2, and p2(B) = 40, to provide equilibrium for agent 2 without agent 1. For
instance, p1 = (20, 0, 20), p2 = (0, 40, 40), and p3 = (0, 20, 40) are UCE prices.

In comparison, in Example 4(b) agents 4 and 5 act as substitutes for agents 1
and 2, the agents are substitutes condition holds, and Vickrey payments can be
priced. In this example, the group-minimal CE prices across all non-linear and
non-anonymous prices, are anonymous, panon = (25, 25, 25), to agents {1,2,4,5},
and individualized, p3 = (0, 20, 40), to agent 3, and support Vickrey payments.

The agents are complements condition holds for agents 1 and 2, in both
Examples 4(a) and 4(b). It follows, from the analysis in Section 3.2, that we
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<=30

<=40

>=20
CE prices

p(A)+p(B)>=40

vick1

p2(B)

p1(A)

vick2
2

group-minimal

1

Figure 4: Example 4(a). The shaded region is the space of feasible CE prices, the
open circles represent individual-minimal CE prices, and the dashed line is the set
of group-minimal CE prices. Moving from prices 1 to 2, we construct Universal CE
prices, from which individual-minimal prices can be computed with discounts ∆adjust,j .

can compute group-minimal CE prices with CE prices that are Quasi-CE on
a chain of subproblems induced by removing agent 1, and then agent 1 and
2. For instance, in Example 4(a), prices p1 = (20, 0, 20), p2 = (0, 30, 30), and
p3 = (0, 20, 40) satisfy this property; e.g. p2 = (0, 30, 30), p3 = (0, 20, 40) satisfy
quasi-CE in the subproblem without agent 1, because the preferred allocation
to the seller is (∅, ∅, AB), which is consistent with best-response bids from agent
3. These are not, however Universal CE prices, because agent 2 has surplus for
item B but receives no allocation. With these prices, the greedy method first
computes discount ∆∗

1 = P (123)− P (23) = 50− 40 = 10 to agent 1, and then
∆∗

2 = P (23) − P (3) = 40 − 40 = 0 to agent 2, providing group-minimal CE
prices, p1 = (10, 0, 10), p2 = (0, 30, 30) and p3 = (0, 20, 40).

4 iBundle Extend & Adjust

In this section we introduce iBEA, an efficient ascending-price combinatorial
auction. iBEA is an indirect mechanism for the direct VCG mechanism for the
combinatorial allocation problem. iBEA terminates with Universal CE prices,
that are adjusted after termination to Vickrey payments, and myopic best-
response is an ex post Nash equilibrium, with agents submitting truthful demand
sets in response to ask prices in each round.

At the center of iBEA is a price-update, bidding, and winner-determination
rule very much like that introduced in iBundle [40, 44], an earlier auction that
terminates with the efficient allocation with straightforward bidding strategies,
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but only implements Vickrey payments when agents are substitutes [42], and for
which the straightforward bidding strategy is not always in Nash equilibrium.

The auction has two distinct phases, that are designed to be indistinguish-
able to participants. In Phase I prices are increased until they are in competitive
equilibrium, and maintained in Quasi-CE in each subproblem induced by drop-
ping one agent from the auction. In Phase II prices are increased until they are
in Universal CE, i.e. in CE for all subproblem induced by dropping one agent,
at which point the auction terminates and final prices are adjusted to Vickrey
payments.

The analysis of iBEA, presented in the next section, uses linear-programming
duality theory to prove the theoretical properties of the auction. iBEA, with
straightforward agent bids, implements a primal-dual algorithm for the VCG
mechanism.

4.1 Auction Specification

iBundle Extend & Adjust is an ascending-price combinatorial auction. The auc-
tion proceeds in rounds, t ≥ 1, and maintains both ask prices and a provisional
allocation. In general, ask prices can be both non-linear and non-anonymous.
Agents can submit exclusive-or bids for bundles in each round, to indicate a
demand for at most one of the bundles. The provisional allocation is computed
to maximize the revenue of the seller given the current bids, with the bids from
one agent ignored during each round of Phase II.

It is useful to define weak-dominance:

Definition 12 (weak dominance). Bid (S ′, p′) weakly-dominates bid (S, p),
written (S′, p′) � (S, p), if and only if S ′ ⊆ S and p(S′) ≥ p(S).

By analogy, bid (S′, p′) strongly-dominates bid (S, p), if and only if S ′ ⊆ S and
p(S′) > p(S).

4.1.1 Prices and Bidding Rules

In general the ask prices in any round can be both non-linear and non-anonymous.
However, non-anonymous (or discriminatory) pricing is introduced incremen-
tally.

In any particular round, t, a subset, anon t ⊆ I, of agents still face anony-
mous ask prices, while the remaining agents face individualized ask prices. Ini-
tially, anon1 = I. Let pt

anon(S) denote the anonymous price for bundle S in
round t, and pt

ind,j(S) denote the individualized price on bundle S to agent

j ∈ (I \ anont). It is convenient to define a combined ask price, pt
ask,i(S), to

agent i in round t:

pt
ask,i(S) =

{

pt
anon(S) , if i ∈ anont

pt
ind,i(S) , otherwise.

At all times ask prices are maintained to be consistent with free-disposal,
such that:

pt
ask,i(S

′) ≥ pt
ask,i(S) ∀S′ ⊇ S, ∀t ≥ 1 (1)
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The basic auction provides bidders with an exclusive-or (xor) bidding lan-
guage, such that a bid, Bt

i , from agent i in round t can include a request for
multiple bundles. The xor interpretation restricts the auctioneer to selecting at
most one bundle from each agent’s bid set for the current provisional allocation
in each round.3

Let pt
bid,i(S) denote the bid price for bundle S in round t from agent i,

and write S ∈ Bt
i if bids contain bundle S. We rule out jump bids, and require

instead that an agent bids no more than the ask price for a bundle. Let ε denote
the minimal bid increment, which is the rate with which prices are increased
across rounds.

Bidding rules:

• The bid price must equal the ask price, except if submitting a last-and-
final bid, or repeating a bid that was successful in the previous round for
a bundle that has increased in price. In both cases an agent can bid at ε
below the ask price.

• An agent must bid for any bundle that it received in the provisional allo-
cation in the previous round.

• Once an agent has made a last-and-final bid is made on a bundle, no future
bid from the agent can strongly-dominate this bid; i.e., the agent cannot
submit a bid with a higher (or higher implied) bid price on this bundle in
a future round.

The purpose of the last-and-final bid is to allow an agent to continue to bid
for a bundle while the bid price is narrowly above its value. The purpose of the
ε-discount when repeating a bid is to allow a winning agent to continue to bid
at the same price until another agent actually bids and wins at a higher price.

In a practical implementation, an auctioneer might maintain the set of last-
and-final bids submitted by agents, and throw out any future bids that violate
the strict-dominance rule. An auctioneer could also automatically resubmit win-
ning bundles on behalf of participants. In Section 6.1 we discuss a proxy-bidding
extension of iBEA in which bidders communicate with automated bidding agents
that follow straightforward bidding strategies.

4.1.2 Winner Determination

In each round, t, the auctioneer selects a provisional allocation to maximize rev-
enue given the current bids. During Phase I, bids from all agents are considered,
while during Phase II, the winner determination problem is solved without bids
from one of the agents.

3Although xor bids are completely expressive, other languages can be more compact in
special cases [39]. We expect to identify interesting future extensions of iBEA for alternative
bid description languages, including restrictions to bundles for which the winner-determination
problem is worst-case polynomial solvable [18].
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Procedure: SelectPivot
1) Initialize, δt = ∅, select an agent j ∈ (open t \ δt) at random, and

compute [wd
t(I \ j)].

2) From this, if unhappy t(I \ j) = ∅, then add j to δt and select
another agent.

3) Continue, until either (a) open t \ δt = ∅, or (b) unhappy t(I \ j) 6= ∅
for some j ∈ opent, which becomes the new pivotal agent.

Figure 5: Selecting the Pivotal Subproblem in each round of Phase II.

Definition 13 (Pivotal Subproblem). The bids from agents in the pivotal
subproblem, Kt

pivot ⊆ I, in round t, are used to determine the provisional allo-
cation.

During Phase I there is no pivotal agent, and the winner-determination
problem is solved with bids from all agents. During Phase II, at the end of
each round and once bids have been received, the auctioneer selects a pivotal
subproblem for which the provisional allocation leaves at least one agent still
bidding without a bundle, or terminates if no such subproblem exists.

Suppose that bids, Bt, are submitted by agents in round t. The winner-
determination problem, [wd

t(K)], defined with respect to agents in set K is:

max
k∈Γ(Bt)

∑

i∈K,[i,S]∈k

pt
bid,i(S) [WDt(K)]

where Γ(Bt) is the set of feasible allocations consistent with the set of bids, and
respects the xor bid language.

Definition 14 (competitive bid). Given bid, Bt
i , from agent i, and ask prices

pt
ask,i(S), agent i’s competitive bid, Bt+

i , contains only bundles not weakly-
dominated and priced at the current ask price.

Let St(K) denote the provisional allocation that solves [wd
t(K)]. Agent

i ∈ K is said to be unhappy with allocation St(K) if Bt+
i 6= ∅ but St

i (K) = ∅.
Let unhappy t(K) ⊆ K denote the set set of unhappy agents.

Call the agent missing from the pivotal subproblem the pivotal agent, de-
noted pivot t. At the start of Phase II, initialize a candidate set of pivotal
agents, open t = T ∗, where T ∗ are the agents in the provisional allocation at
the end of Phase I. Figure 5 summarizes the method to select the pivotal sub-
problem in each round of Phase II. In termination case (a), the entire auction
will terminate (see Section 4.1.4). Otherwise, in termination case (b), then
Kt

pivot = (I \ j), the solution to [wd
t(I \ j)] becomes the provisional allocation,

and opent+1 = opent \ δt.
A simple variation continues with the same pivotal subproblem until all

agents are happy, and then switches to another subproblem. We use this method
in the worked example of iBEA in Section 4.3. The actual method used to
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select the next pivotal agent is not critical to our results as long as a pivotal
subproblem is selected to contain at least one unhappy agent.4

Breaking ties when solving winner-determination can be an issue. We pro-
pose to break ties as follows: (i) first, in favor of bids included in the previous
provisional allocation; (ii) then, in favor of bids that are at the current ask
price; (iii) then in favor of including more agents; (iv) then at random. In some
applications, such as the FCC wireless spectrum auction, there may be legal
issues that make it particularly important to break ties at random. In this case
we suggest (i) and then (iv); step (i) remains useful to prevent cycles.

Example: Pivotal Subproblem Selection

Consider the pivotal subproblem selection problem in rounds 15 and 16 of iBEA,
on Example 4(a), see Section 4.3.

Phase I ends in round 15, and the auction selects a pivotal subproblem. Bids
are {(A, 15)} from agent 1, {(B, 25)} from agent 2, and {(B, 20), (AB, 40)}
(last-and-final bids) from agent 3. The efficient allocation is (A, B, ∅), and
T ∗ = {1, 2} at the end of around 15. Initialize open15 = {1, 2}, and suppose
agent j = 2 ∈ open15 is selected, with corresponding K = {1, 3}. Solving
wd

15({1, 3}), we have allocation (∅, ∅, AB), and agent 1 is unhappy. Therefore,
set pivot15 = 2, K15

pivot = {1, 3}, and open16 = {1, 2}.
In round 16, the new bids are {(A, 20)}, {(B, 25)} and agent 2, and {(B, 20),

(AB, 40)}, and allocation (A, ∅, B) solves wd
15({1, 3}). Therefore, δ16 = {2},

and select j = 1. Allocation (∅, ∅, AB) solves wd
16({2, 3}), and agent 2 is

unhappy. Therefore, set pivot 16 = 1, K16
pivot = {2, 3}, and open17 = {1}.

4.1.3 Price Increases

At the end of round t, after the provisional allocation and pivotal subproblem
has been determined, prices are increased based on bids from unhappy agents.
The price increase rule generalizes the price-update rule in the English auction,
increasing the price on a bundle to ε above the highest bid price from an un-
successful agent. In Section 5 we bound the accuracy of the final allocation and
Vickrey payments with respect to the minimal bid increment ε.5

The general price increase rule is designed to minimize price discrimination
during the auction. We also describe a simplified rule in which every agent faces
individualized prices throughout the auction, for which the theoretical analysis
continues to hold. We expect the variation with dynamic price discrimination
to have better information revelation and performance in terms of the number
of rounds to termination because the information exchange is more efficiently

4The proposed method provides quite robust termination as it does not allow cycles, once
there are no unhappy agents in a subproblem in some round that subproblem is never consid-
ered again. Theoretical results show that with myopic BR bids, once a subproblem is in CE
then it will remain in CE for all future bids (Lemma 4) and will not need to be reconsidered.

5In earlier work, we reported the results of computational experiments in iBundle, that
demonstrate order-of-magnitude speed-increases over computation in the VCG as the bid
increment is increased and less rounds are required.
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coupled between participants when price increases are on anonymous prices that
everyone faces.

In round t, a subset anont of agents face anonymous prices. This set weakly
monotonically increases across the auction. The price increase rule has two
components: (i) determine anont+1, and (ii) determine price increases given
anont+1. For now, let us assume anon t+1 and present the rules to compute
price increases with this information.

Definition 15 (bid safety). A bid, Bt
i , from agent i is safe if all bundles in

competitive, Bt+
i , are mutually disjoint.

Let safet ⊆ I denote the set of agents submitting safe bids in round t. The
importance of bid safety vis-a-vie anonymous price increases in the CAP was
first identified in Parkes [40]. In the following definitions, remember that the
unhappy agents for a particular pivotal subproblem never include the pivot
agent itself.

Definition 16 (anonymous price increase). For every unhappy agent, i,
submitting safe bids that continues to face anonymous prices in round t + 1,
increase the price on bundle S ∈ Bt+

i to pt+1
anon(S) = pt

anon(S) + ε. Finally,
adjust the anonymous ask prices to make them consistent with weak-dominance.

The only bids that can increase non-anonymous prices to agent i are bids
from agent i itself, and then only if the agent is unhappy and submitted com-
petitive bids.

Definition 17 (non-anonymous price increase). For every unhappy agent,
i, that faces non-anonymous prices in round t + 1, increase the price on bundle
S ∈ Bt+

i to pt+1
ind (S) = pt

ind(S) + ε. Then, adjust the individualized ask prices to
make them all self-consistent with respect to weak-dominance.

In the special case of an agent that faces individualized prices for the first
time in round t + 1, its prices pt+1

ind,i are first initialized to pt
anon, and then

increased.
The only agents that can begin to face non-anonymous prices in the next

round are those which are unhappy. To continue to face anonymous prices, we
must consider the effect that the price increases due to their bids would have
on anonymous prices.

It is useful to introduce the idea of a redundant set of bids, with respect to
another set of bids.

Definition 18 (redundant). Bid, Bi, from agent i is said to be redundant,
given a set of bids from Bj from agents j ∈ K, written redundant(i,K), if every
bundle in bid Bi is weakly-dominated by some bundle one of the bids from an
agent in K.

For a particular pivotal subproblem, Kt
pivot, the method used to determine,

anont+1, is described in Figure 6. Set Lanon is the set of all unhappy agents
that submitted safe bids and will continue to face anonymous prices in the
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Procedure: SelectDrop
Notation: unhappy t = unhappy t(Kt

pivot); Lanon = unhappy t ∩ anont+1 ∩ safet;

Lextra = {i : i /∈ unhappy t, i ∈ anont+1, i ∈ safe t, redundant(i,Lanon)}.
1) initialize anont+1 = anont; compute Lanon.
2) ok ← true; compute Lextra.
3) for each j ∈ unhappy t ∩ anont+1 but j /∈ safet,

if ¬redundant(j,Lanon) then anont+1 ← anont+1 \ {j}.
4) for each j ∈ Lanon, if ¬redundant(j, (Lanon \ j) ∪ Lextra)

then anont+1 ← anont+1 \ {j}; Lanon ← Lanon \ {j}; ok ← false.
5) if ¬(ok ) then goto 2) else stop.

Figure 6: Dynamically Introducing Additional Price Discrimination

next round. Set Lextra is the set of agents that submitted safe bids, will con-
tinue to face anonymous prices in the next round, are happy, and for which
redundant(i,Lanon) holds. At the end of the procedure, the dropped agents,
dropt(Kt

pivot), are computed as anon t+1 \ anont.
Step 3) checks unhappy agents that submit unsafe bids. Such an agent can

remain in the anonymous price set and increase anonymous prices if the price
increases are redundant given the anonymous price increases due to safe bids
from agents, Lanon.

Step 4) checks that the anonymous price increases will continue to make
progress towards CE in every subproblem. This additional check is the key de-
parture from the price-update rules in iBundle, and is essential to make progress
towards Universal CE prices. In particular, the concern is to check that anony-
mous price increases due to an agent j submitting safe bids are consistent with
price increases due to bids from agents in the pivotal subproblem without j.
Agent j’s bids must be redundant with respect to bids from a subset of agents
except j with safe bids that will continue to face anonymous prices, the set
(Lanon \ j) ∪ Lextra.

Steps 2), 3) and 4) repeat whenever one or more unhappy agents that submit
safe bids are removed from the anonymous price set, and drop out of Lanon. The
decision is reconsidered on every unhappy agent that is currently assigned to
face anonymous prices in the next round.

Example: Dynamic Price Discrimination

Consider a problem with 4 goods, {A, B, C, D}, and 7 agents. Suppose that bids
{(AB)}, {(CD)}, {(AB), (CD)}, {(AB)}, {(CD), (AC)}, {(AC)}, {(A), (CD)} are
received from the 7 agents in round t. In addition, suppose that anon t =
{1, 2, 3, 4, 5, 6, 7}, all bids are at the current anonymous ask prices, the auction
is in Phase I so that Kt

pivot = {1, 2, 3, 4, 5, 6, 7}, and the provisional allocation

gives AB to agent 4 and CD to agent 5. We have unhappy t = {1, 2, 3, 6, 7},
anont+1 = anont, and Lanon = {1, 2, 6} because the bids from agents 3 and 7
are not safe.
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In step 2), the candidate agents for Lextra are agents 4 and 5, because
they are both in the provisional allocation and submitted safe bids. Check-
ing redundant(4,Lanon), this holds because AB is bid by agent 1. Checking
redundant(5,Lanon), this also holds because CD is bid by agent 2 and AC is
bid by agent 6. So, Lextra = {4, 5}.

In step 3), we check redundant(j,Lanon) for agents j ∈ {3, 7}. This redun-
dancy check holds for agent 3, because bundle AB is also bid by agent 1 and bun-
dle CD is also bid by agent 2. However, this redundancy check fails for agent 7
because no agent in Lanon bids for item A. Therefore, anon t+1 ← anont+1\{7}.

In step 4), we check redundant(j, (Lanon \ j) ∪ Lextra) for each j ∈ {1, 2, 6}.
The result is that redundant(1, {2, 4, 5, 6}), redundant(2, {1, 4, 5, 6}), and redund
ant(6, {1, 2, 4, 5}) all hold. The method terminates, with anon t+1 = anont\{7},
and anonymous price increases based on bids from agents {1,2,6}. Even though
agent 3’s bid is unsafe and unsuccessful, agent 3 continues to face anonymous
prices because it has a redundant effect on anonymous prices given increases
due to agents {1,2,6}.

4.1.4 Termination and Vickrey Price Adjustment

Phase I terminates as soon as the provisional allocation computed with bids from
all agents assigns a bundle to all agents submitting competitive bids. Phase II
terminates as soon as, for each pivotal subproblem, a provisional allocation
has been computed that assigns a bundle to all agents in the subproblem that
submit competitive bids. With respect to the method proposed to select the
pivotal subproblem, the auction terminates as soon as there are no open pivotal
subproblems.6 Notice that it is not necessary to satisfy bids from agents that
submit only last-and-final bids at ε-discount.

Let S∗ denote the allocation computed in the last round of Phase I, and
T ∗ denote the agents that receive a bundle in allocation S∗. In addition, let
S∗(I\j) denote the provisional allocation computed in the round in which there
were no unhappy agents for pivotal subproblem cap(I \ j).7

Let pT
ask,i(S) and pT

bid,i(S) denote the ask and bid price for bundle S and
agent i at the end of Phase II. Of course, agent i will not bid for every bundle; de-
fine pT

bid,i(S) =∞ when bundle S receives neither a bid nor a weakly-dominating

bid. Let p∗i (S) = min{pT
ask,i(S), pT

bid,i(S)}, denote the combined price, for bundle

S to agent i.8

6As a stronger termination condition, that is equivalent to this termination condition with
straightforward bidding strategies, we can require the auction to terminate in a round in which
each pivotal subproblem simultaneously allocates bundles to all agents with competitive bids.

7In fact, with straightforward bidding strategies, allocations S∗ and S∗(I \ j) continue to
be optimal for the masterproblem and the respective subproblems in all future rounds. The
method stated here is suggested to provide additional robustness against alternative agent
strategies.

8If agents follow MBR strategies, then every bundle allocated to agent i in S∗ and S∗(I\j),
for all j ∈ T ∗, will receive a bid from agent i in the last round of Phase II. The combined price
is constructed to provide robustness in the case that agents do not follow MBR strategies. It
is possible that agents are not even still bidding for the bundles in the allocation at the end
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Procedure: UnhappyCertain
1) Lsafe = K′ ∩ safet; Lunhappy = ∅.
2) while ∃i ∈ Lsafe s.t. redundant(i,Lsafe \ {i}), then

Lsafe → Lsafe \ {i}; Lunhappy ← Lunhappy ∪ {i};

Figure 7: Method to Determine Unhappy-Certain Agents.

At the end of Phase II, compute discounts, ∆iBEA,j , to agents as:

∆ibea,j =

{

[πs(p∗, S∗)− πs(p∗, S∗(I \ j))]+ , if j ∈ T ∗

0 , otherwise.

where πs(p, S) is defined as the surplus to the seller from allocation S at prices
p. The auction terminates with allocation S∗ and agent payments pibea,j =
p∗j (S

∗
j )−∆ibea,j for agents j ∈ T ∗, and pibea,j = 0 otherwise.

4.1.5 Example: Price-Adjustment

Consider the price adjustment at the end of Phase II of iBEA, on Example 4(b),
see Section 4.3. Phase II ends with provisional allocation, S∗ = (A, B, ∅, ∅, ∅),
and pivotal allocations, S∗({2, 3, 4, 5}) = (∅, B, ∅, A, ∅), and S∗({1, 3, 4, 5}) =
(A, ∅, ∅, ∅, B). All bundles in these allocations receives bids in the last round,
with p∗1(A) = 30, p∗2(B) = 30, p∗4(A) = 25, p∗5(B) = 25. The price adjustments
are ∆ibea,1 = πs(p∗, S∗) − πs(p∗, S∗({2, 3, 4, 5})) = 60 − 55 = 5, and similarly,
∆ibea,2 = 60 − 55 = 5. Finally, allocation S∗ is implemented, and agent 1’s
payment is pibea,1 = 30−∆ibea,1 = 25, similarly pibea,2 = 30− 5 = 25. This is
the outcome of the VCG mechanism on Example 4(b).

4.2 An Asynchronous Auction Variation

In one important variation, iBEA allows asynchronous bids and price increases
without updated bids from all agents. This allows the auction to make progress
towards termination with less information from agents, and can significantly
boost the information revelation and valuation cost advantages of iBEA in com-
parison to the one-shot VCG. As a special case, this asynchronous price update
rule implements the English auction, in which the price is increased while at
least two agents are bidding at the current price.

We make no assumptions about agent preferences in stating this asynchronous
variation. Instead, we identify conditions on a partial set of bids for which par-
ticular price increases must occur for any completion of the bids. The provi-
sional allocation from the last full round is retained in any round in which an
asynchronous price-update is used, because the partial bids provide insufficient
information to determine the new provisional allocation.

Definition 19 (unhappy-certainty). Given bids from agents K′, we say that
bid Bi from agent i ∈ K′, is unhappy-certain if, for all bids from agents (I \K′),

of Phase I by the end of the auction.
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Procedure: AnonCertain
Notation: L∗

extra = {i : i ∈ Lsafe ∩ anont, redundant(i,L∗
anon)};

1) Initialize L∗
anon = Lunhappy ∩ anont;

2) compute L∗
extra; ok ← true;

3) for each j ∈ L∗
anon, if ¬redundant(j, (L∗

anon \ j) ∪ L∗
extra), then

L∗anon ← L
∗
anon \ {j}; ok ← false;

4) if ¬(ok ) then goto 2), else stop.

Figure 8: Method to Determine Anon-Certain Agents.

the winner-determination problem, WD(I), has an optimal solution that does
not accept any bids from agent i.

Notice that if agent i is unhappy-certain with respect to all possible solutions
to the winner-determination problem with all agents, it is all also unhappy-
certain with respect to all possible solutions to the winner-determination prob-
lem for any pivotal subproblem.

In Figure 7 we describe a simple method to determine agents, Lunhappy, that
are unhappy-certain given bids from agents K′. The method checks for agents
with bids that are redundant given bids from other agents, considering both
agents that face anonymous and non-anonymous prices. Recall that agent i’s
bids are redundant with respect to bids from agents in some set K if every bid
from i is weakly-dominated by some bid from an agent in K.

Proposition 10 (unhappy test). All agents, Lunhappy, satisfy unhappy-certainty.

Proof. Given final Lsafe, for all i ∈ Lunhappy, then redundant(i,Lsafe), and con-
sider a feasible allocation, S, over all agents in K′. Suppose that Si 6= ∅, then
allocation S can be transformed into a feasible allocation, S ′, with at least as
much surplus by substituting a bid from an agent, i′, in Lsafe that weakly-
dominates the bid from agent i. Because agent i′ submits safe bids and weakly-
dominates agent i’s bid, agent i′ must receive no bundle in S, and allocation S ′

is feasible. ut

Definition 20 (anon-certainty). Given bids from agents K′, we say that bid
Bi from agent i ∈ K′∩anont, is anon-certain if, for all bids from agents (I\K′),
agent k will continue to face anonymous prices in the next round.

Figure 8 describes a simple method to determine agents, L∗
anon, that are

anon-certain given bids from agents K′. Taking the agents, Lunhappy, that sub-
mitted safe bids and are unhappy-certain, and the agents Lsafe, that submitted
safe bids and may or may not be unhappy in the next round, the method com-
putes a subset of those agents that will remain in the anonymous price set in
the next round once all bids have been received.

Proposition 11 (anonymous test). All agents that satisfy Lanon are anonymous-
certain.
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Proof. The proof is by comparison with the Proc. SelectDrop, which is used
in the standard iBEA auction to determine which agents will continue to face
anonymous prices. First, notice that the set L∗

anon ⊆ Lanon, where Lanon is
the initial set of unhappy, anonymous, and safe bids in the complete infor-
mation method (Figure 6). Similarly, an agent in L∗

extra, that submits safe
bids and currently faces anonymous prices will be in Lanon or Lextra with
complete information, depending on whether the agent is eventually happy or
unhappy, because redundant(i,L∗

anon) implies redundant(i,Lanon). Finally, if
redundant(j, (L∗

anon \ j) ∪ L∗
extra) then redundant(j, (Lanon \ j) ∪ Lextra), and j

will face anonymous prices for any completion. ut

Pulling this together, a simple anonymous-price asynchronous update rule,
for pivotal subproblem, Kt

pivot, is:

compute Lunhappy and Lsafe; compute L∗
anon; use bids from agents L∗

anon to in-
crease anonymous ask prices;

As a special case, it is interesting to consider the effect of the asynchronous
price-update rules in the special case that two agents that face anonymous prices
submit identical safe bids.

Proposition 12. If two agents that face anonymous prices submit identical safe
bids then the anonymous ask prices can be increased based on the bids from one
of the agents.

Proof. Consider agents {1,2}, and suppose without loss of generality that agent
1 is selected first in Proc. UnhappyCertain. Then, 1 ∈ Lunhappy, because
redundant(1, 2). Agent 2 may end-up in Lunhappy or in Lsafe. Then, in Proc.
AnonCertain, set L∗

anon initially contains agent 1. Either 2 ∈ L∗
anon (if 2 ∈

Lunhappy), or 2 ∈ L∗
extra because redundant(2, 1). Then, redundant(1, (L∗

anon \
1) ∪ L∗

extra), because 2 ∈ L∗
anon ∪ L

∗
extra. Finally, at least agent 1 ∈ L∗

anon, and
will increase the anonymous ask price. ut

Notice that the asynchronous anonymous price-update variation of iBEA re-
duces to the English auction for a single item, increasing the ask price whenever
at least two bids are received at the current price.

Turning to individualized price increases, the problem is to determine from a
subset of bids whether an agent is unhappy-certain and will face non-anonymous
prices in the next round. Clearly this holds if an agent is unhappy-certain
and currently faces anonymous prices. Rather than propose a complex rule to
determine special cases in which iBEA will drop an agent from the anonymous
prices for the first time, we propose to implement this simple rule.

compute Lunhappy; increase non-anonymous ask prices to agents (Lunhappy \
anont);
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agent Bids
Agent 1 (AB, 20) (ABC, 30)
Agent 2 (AB, 20) (ABD, 40)
Agent 3 (ABC, 30) (CD, 30)
Agent 4 (CD, 30) (BD, 20) (DEF, 50)
Agent 5 (ABD, 40) (BD, 20)
Agent 6 (CD, 30) (ABD, 40)

Figure 9: A partial set of bids in a particular round of iBEA.

In implementing asynchronous price updates, the auctioneer has a choice
about when to increase prices, waiting for additional bids beyond the first in-
stance in which the minimal conditions hold for some asynchronous prices in-
creases. The unhappy-certain, Lunhappy, and anon-certain, L∗

anon, sets of agents
increase monotonically as more bids are received. The appropriate timing deci-
sion represents a tradeoff between the cost of interrupting the decision-processes
of bidders, and the benefits of providing new information to guide decisions just
as soon as possible.

Example: Asynchronous Price Updates

Consider a particular round of iBEA, in which the bids in Figure 9 have been
received by the auctioneer in round t.

Variation 1. Suppose that anon t ⊇ {1, 2, 3, 4, 5, 6}. First, compute Lunhappy,
the set of unhappy-certain agents. Initialize Lsafe = {1, 2, 3, 4, 5, 6}, and Lunhappy =
∅. Agent 1 is added to Lunhappy, because redundant(1, {2, 3, 4, 5, 6}) (by agents 2
and 3). Then, agent 5 is added to Lunhappy, because redundant(5, {2, 3, 4, 6}) (by
agents 2 and 4). Then, agent 6 is added to Lunhappy, because redundant(6, {2, 3, 4})
(by agents 2 and 3). At this stage, Lsafe = {2, 3, 4}, and none of agents
j ∈ {2, 3, 4} are redundant with respect to Lsafe \ {j}. The method terminates,
with Lunhappy = {1, 5, 6} representing the unhappy-certain agents.

Second, initialize L∗
anon = Lunhappy ∩ anont = {1, 5, 6}. Initialize L∗

extra =
∅. Then, for each i ∈ {2, 3, 4}, check redundant(i, {1, 5, 6}). This holds for
{2,3} but not agent 4, and L∗

extra = {2, 3}. Then, for each j ∈ L∗
anon, check

redundant(j, (L∗
anon \ j)∪L

∗
extra). Testing, we have redundant(1, {5, 6, 2, 3}) and

redundant(6, {1, 5, 2, 3}), but not redundant(5, {1, 6, 2, 3}). Looping back to 2),
the set L∗

extra is unchanged, and redundant(1, {6, 2, 3}) and redundant(6, {1, 2, 3})
continue to hold. The method terminates with L∗

anon = {1, 6}, and the anony-
mous ask prices on bundles {(AB, 20), (ABD, 40), (CD, 30), (ABD, 40)} can be
increased.

Variation 2. As a simple non-anonymous variation, suppose that the same
bids are received but that agents {1,5} are not in anon t. Agents {2,3,4,6} re-
main in anont. Again, Lunhappy = {1, 5, 6} and Lsafe = {2, 3, 4}. This time we
initialize L∗

anon = Lunhappy = {1, 5, 6} ∩ anon t = {6}. Computing L∗
extra, none

of agents {2,3,4} are redundant given L∗
anon, and L∗

extra = ∅. Finally, agent 6
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fails redundant(6, ∅), and L∗
anon = ∅. Even though agents {1,5,6} are definitely

unhappy, we cannot increase the anonymous prices based on their bids with-
out more information about the bids from the other agents. However, we can
increase non-anonymous prices to agent 1 based on bids {(AB, 20), (ABC, 30)}
and non-anonymous prices to agent 5 based on bids {(ABD, 40), (BD, 20)}.

4.3 iBEA Example

Figure 10 illustrates the progress of iBEA on Example 4(a), with the minimal bid
increment, ε = 5, in which agents are not substitutes. For comparison, Figure
11 illustrates the progress of iBEA on Example 4(b), in which two additional
agents are introduced to act as close substitutes for agents 1 and 2, and agents
are substitutes. Comparing iBEA on 4(a) and 4(b), we notice that: (i) much
less price-discrimination is required in 4(b), which in turn allows the auction to
terminate in fewer rounds; and (ii) iBEA terminates at the end of Phase I in
4(b), the first set of CE prices provide enough information to compute Vickrey
payments.

Example 4(a). In Figure 10, all strict-positive individualized ask prices for
an agent are indicated in each agent’s column, and all strict-positive anonymous
ask prices are indicated in the righthand column. Most bids are at the ask price,
but when a bid is placed for bundle S at ε below the ask price, this is indicated as
S−ε. The provisional allocation in each round is denoted with ∗. Special tags, I,
and, II, in the label column indicate the last rounds of Phase I and II respectively.
During Phase II, between rounds 16–19, the tag (e.g. {1,3}) indicates the agents
in the current pivotal subproblem. For example, label {1,3} in round 15 indicates
that the provisional allocation, (∅, ∅, AB), corresponds to the solution to the
winner-determination problem without bids from agent 2. In any round in which
multiple pivotal subproblems are considered, each subproblem is represented as
an additional row (although this cycling through subproblems, checking for CE,
is hidden from agents). For example, in round 16, it is first determined that
the auction is in competitive equilibrium for subproblem {1,3}, and the next
subproblem {2,3} is considered.

Agent 3 is removed from the anonymous price set at the end of round 1.
Stepping through the dynamic price-discrimination method in Figure 6, initially
set Lsafe = {3}, anon2 = {1, 2, 3}, and there are no unhappy agents submitting
unsafe bids in step 2). In step 3), neither agent 1 not agent 2 are in Lextra

because their bids are not redundant with respect to the bid from agent 3.
Then, agent 3’s bid fails redundant(3, ∅), and anon2 = {1, 2}. Based on agent
3’s bid, B1

3 = {(AB, 0)}, its individualized ask price in round 2 is p2
3(AB) = 5,

the minimal bid increment. Similarly, agents 1 and 2 are removed from the
anonymous-price set because the bids of agents 1 and 2 are for different items,
and not mutually-redundant.

The auction terminates in round 19, with Universal CE prices. The final
row, labeled II, repeats the allocation, S∗ = (A, B, ∅), computed in round 15 at
the end of Phase I. This is the allocation implemented at the end of the auction.
The efficient allocations for each pivotal subproblem are S∗({2, 3}) = (∅, B, ∅)
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round label agent 1 agent 2 agent 3 anon
prices bids prices bids prices bids prices

1 A∗ B∗ AB
2 A B (AB, 5) AB∗

3 (A, 5) A∗ (B, 5) B∗ (AB, 5) AB
4 (A, 5) A∗ (B, 5) B∗ (AB, 10) AB
5 (A, 5) A (B, 5) B (AB, 15) B, AB∗

6 (A, 10) A∗ (B, 10) B∗ (AB, 15) B, AB
7 (A, 10) A∗ (B, 10) B∗ (B, 5), (AB, 20) B, AB
8 (A, 10) A (B, 10) B (B, 10), (AB, 25) B, AB∗

9 (A, 15) A∗ (B, 15) B∗ (B, 10), (AB, 25) B, AB
10 (A, 15) A∗ (B, 15) B∗ (B, 15), (AB, 30) B, AB
11 (A, 15) A∗ (B, 15) B (B, 20), (AB, 35) B∗, AB
12 (A, 15) A∗ (B, 20) B (B, 20), (AB, 35) B∗, AB
13 (A, 15) A∗ (B, 25) B∗ (B, 20), (AB, 35) B, AB
14 (A, 15) A∗ (B, 25) B∗ (B, 25), (AB, 40) B−ε, AB
15 I (A, 15) A∗ (B, 25) B∗ (B, 25), (AB, 45) B−ε, AB−ε

{1,3} (A, 15) A (B, 25) B (B, 25), (AB, 45) B−ε, AB∗
−ε

16 {1,3} (A, 20) A∗ (B, 25) B (B, 25), (AB, 45) B∗
−ε, AB−ε

{2,3} (A, 20) A (B, 25) B (B, 25), (AB, 45) B−ε, AB∗
−ε

17 {2,3} (A, 20) A (B, 30) B (B, 25), (AB, 45) B−ε, AB∗
−ε

18 {2,3} (A, 20) A (B, 35) B (B, 25), (AB, 45) B−ε, AB∗
−ε

19 {2,3} (A, 20) A (B, 40) B∗ (B, 25), (AB, 45) B−ε, AB−ε

II (A, 20) A∗ (B, 40) B∗ (B, 25), (AB, 45) B−ε, AB−ε

Figure 10: Progress of iBEA on Example 4(a). Minimal bid increment, ε = 5.
Label I indicates the end of Phase I, labels such as {1,3} indicate the current pivotal
subproblem. Label II indicates the end of Phase II. The final allocation is S∗ =
(A,B, ∅), with ∆ibea,1 = 20, ∆ibea,2 = 20, and pibea,1 = 20−20 = 0, pibea,2 = 40−20 =
20. The set of non-zero anonymous ask prices is empty in this example because price-
discrimination is quickly introduced.
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round label agent 1 agent 2 agent 3 agent 4 agent 5 anon prices
pr bids pr bids pr bids pr bids pr bids A B AB

1 A∗ B∗ AB A B
2 A−ε B−ε AB A∗ B∗ 5 5 5
3 A B (5, 5, 10) AB A∗ B∗ 5 5 5
4 A∗ B∗ (5, 5, 15) AB A−ε B−ε 10 10 10
5 A∗ B∗ (5, 5, 20) B, AB A B 10 10 10
6 A−ε B−ε (5, 10, 25) B, AB A∗ B∗ 15 15 15
7 A B (5, 15, 30) B, AB A∗ B∗ 15 15 15
8 A∗ B∗ (5, 20, 35) B, AB A−ε B−ε 20 20 20
9 A∗ B∗ (5, 25, 40) B−ε, AB A B 20 20 20
10 A−ε B−ε (5, 25, 45) B−ε, AB−ε A∗ B∗ 25 25 25
11 A B (5, 25, 45) B−ε, AB−ε A∗ B∗ 25 25 25
12 I A∗ B∗ (5, 25, 45) B−ε, AB−ε A−ε B−ε 30 30 30

{2,3,4,5} A B∗ (5, 25, 45) B−ε, AB−ε A∗
−ε B−ε 30 30 30

{1,3,4,5} A∗ B (5, 25, 45) B−ε, AB−ε A−ε B∗
−ε 30 30 30

II A∗ B∗ (5, 25, 45) B−ε, AB−ε A−ε B−ε 30 30 30

Figure 11: Progress of iBEA on Example 4(b). Minimal bid increment, ε = 5. Phase
I ends in round 12, and Phase II ends immediately, after cycling through subproblems
defined over agents {2,3,4,5} and {1,3,4,5} to check that that prices are CE in the
pivotal subproblems. The final allocation, with label II, is (A, B, ∅, ∅, ∅), with ∆ibea,1 =
60 − 55 = 5, ∆ibea,2 = 60 − 55 = 5, and pibea,1 = 30 − 5 = 25, pibea,2 = 30 − 5 = 25.

and S∗({1, 3}) = (A, ∅, B). The final combined prices, p∗, are equal to agent
bid prices on the bundles in allocations S∗, S∗({2, 3}) and S∗({1, 3}). Agent 1
receives bundle A, discount ∆ibea,1 = πs(p∗, S∗)−πs(p∗, S∗({2, 3})) = 60−40 =
20, and makes payment pibea,1 = p∗1(A) − ∆ibea,1 = 20 − 20 = 0. Agent 2
receives bundle B, discount ∆ibea,2 = 60− (20 + 20) = 20, and makes payment
pibea,2 = p∗2(B)− 20 = 20. This is the VCG outcome for Example 4a).

Example 4(b). In Example 4(b), in which agents are substitutes, only
agent 3 faces individualized prices and price increases are propagated more
quickly across agents, with the auction terminating after 12 rounds. Phase II is
unnecessary and the auction terminates at the end of Phase I, with Universal
CE prices and Vickrey payments.

To illustrate dynamic price-discrimination, consider the end of round 3, in
which agents 1 and 2 continue to face anonymous prices are unhappy and cur-
rently face anonymous prices. First, set Lanon = {1, 2}, and anon4 = {1, 2, 4, 5}.
Agents 4 and 5 are introduced to Lextra, because the bids of agents 4 and 5 are
redundant with respect to the bids of agents 1 and 2. Step 3) is skipped, because
there are no unhappy agents submitting unsafe bids. In step 4), both agents 1
and 2 remain in Lanon because redundant(j, {1, 2} \ {j} ∪ {4, 5}) is satisfied for
j ∈ {1, 2}, with agent 4 making agent 1’s bid redundant and agent 5 making
agent 2’s bid redundant. Agents 1 and 2 remain in the anonymous price set,
and price increases p4

anon(A) = p4
anon(B) = p4

anon(AB) = 10 are implemented in
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the next round.
The auction terminates with allocation, S∗ = (A, B, ∅, ∅, ∅), and agent pay-

ments, pibea,1 = p∗1(A)−(πs(p∗, S∗)−πs(p∗, S∗({2, 3, 4, 5}))) = 30−((30+30)−
(30 + 25)) = 25, and pibea,2 = p∗2(B) = (πs(p∗, S∗) − πs(p∗, S∗({1, 3, 4, 5}))) =
30− ((30 + 30)− (30 + 25)) = 25. This is the VCG outcome for Example 4(b).

4.3.1 Information Revelation

We propose to provide only minimal information to bidders during the auction
to minimize strategic opportunities that are not available in the one-shot VCG
mechanism. One concern, discussed in Section 6, is to minimize opportunities
for collusion during Phase II, by making it difficult for an agent to determine
that the auction is in Phase II. We propose the following:

• Agents are provided with information about the prices that they face, i.e.
anonymous prices or their own set of non-anonymous prices, and informed
about any bundle allocated in the provisional allocation.

• Agents are not provided with information about the prices faced by other
agents, bids place by other agents, bundles allocated to other agents, or
the current revenue from the provisional allocation.

A further complication arises for pivotal agents during Phase II. For exam-
ple, consider agent 2 in round 15. Agent 2 is not in the provisional allocation
(because 2 is the pivotal agent), but neither does agent 2 face higher prices.
Taken together, and because the agent submitted competitive bids, this would
by itself indicate that the auction is in Phase II. One approach could report
item B to agent 2, which was its allocation in round 14, although this has the
additional problem that agents 2 and 3 could now determine together that the
auction is in Phase II, because they are both apparently allocated B. A better
solution may be to hide information about the rounds in the auction, and in-
stead provide a more asynchronous interface such that agents do not necessarily
know when a round passes in which they were the pivotal agent. Essentially, an
agent is just aware of its current allocation and the current ask prices. Proxy
bidding agents provide yet another level of information hiding, as discussed in
Section 6.1.

5 Theoretical Properties

We prove that iBEA is efficient, and terminates with the outcome of the GVA,
when agents follow myopic best-response (MBR) bidding strategies, which is an
ex post Nash equilibrium of the auction. The methodology used to establish
the theoretical properties of iBEA builds on Bertsekas’ primal-dual analysis an
an auction-based algorithm for the basic assignment problem [9]. Related ap-
proaches are also taken in Demange et al. [19], and more recently Parkes&Ungar
[44] and Bikchandani et al. [10]. In equilibrium, iBEA implements a primal-
dual algorithm for the GVA. In Section 5.1 we show that the auction maintains
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complementary-slackness conditions (CS1a) between ask prices and the provi-
sional allocation for all agents, and maintains complementary-slackness condi-
tion (CS2) with respect to the provisional allocation in each round. At the
end of Phase I, condition (CS1b) also holds for all agents, the prices are in
competitive equilibrium, and the allocation is efficient.

In Section 5.2 we show that the auction maintains Quasi-CE prices in every
pivotal subproblem in all rounds, and terminates at the end of Phase II with
Universal CE prices. From the analysis in Section 3.1, the adjusted prices
implement the Vickrey payments. We establish error-bounds on the efficiency
of the final allocation and the distance between agent payoffs and Vickrey payoffs
in terms of the minimal bid increment ε, and show that as ε → 0, the auction
implements the VCG mechanism. In Section 5.3, we prove that myopic best-
response is an ex-post Nash equilibrium of iBEA.

5.1 Efficient Allocation

First, we show that with MBR strategies, iBEA maintains a relaxation of
(CS1a), ε-CS1a, and maintains a relaxation of (CS2), ε-CS2. At the end of
Phase I, condition (CS1b) also holds, and prices are approximately in competi-
tive equilibrium with the provisional allocation.

Associating ask prices, pask,i, with dual prices, pi(S), in [DLP3], and with

πi = [maxS(vi(S)− pask,i(S))]+, then (ε-CS1a) is defined as:

xi(S) > 0⇒ πi + pask,i(S) ≤ vi(S) + 2ε (ε-CS1a)

where xi(S) = 1 iff agent i is assigned bundle S in the provisional allocation.
In words, any bundle allocated to agent i in the provisional allocation should
approximately maximize its surplus.

Let pt
br,i(S) denote the effective ask price for agent i, and let πt

br,i = [maxS vi(S)−

pt
br,i(S)]+. This effective price is equal to ask price, pt

ask,i(S), except in the spe-
cial cases that an agent repeats a bundle from the provisional allocation in the
previous round that has increased in price, or has value within ε of the ask
price, in which case pt

br,i(S) = pt
ask,i(S) − ε. A myopic best-response (MBR),

or straightforward bidding strategy, submits bids, Bt
BR,i, that ε-maximize the

agent’s surplus at the current prices, with no regard to the effect of a bid on
future prices or the bidding strategies of other agents.

Bt
BR,i = {(S, pt

br,i(S)) : vi(S)− pt
br,i(S) + ε ≥ πt

br,i}

The following two lemmas hold for both pivotal subproblems, Kt
pivot = (I \

pivot t), and for the problem with all agents, Kt
pivot = I.

Lemma 3 (cs1a). If agent i follows its MBR bidding strategy in round t, then
the provisional allocation St(Kt

pivot) for pivotal subproblem, Kt
pivot, satisfies (ε-

CS1a) for agent i whenever St(Kt
pivot) 6= ∅.
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Proof. Let Si = St
i (K

t
pivot), and pt

br,i denote the effective ask price for agent i.

By MBR, if Si 6= ∅, then vi(Si)− pt
br,i(Si) + ε ≥ maxS′ vi(S

′) − pt
br,i(S

′), from

which vi(Si) − pt
ask,i(Si) + 2ε ≥ maxS′ vi(S

′) − pt
ask,i(S

′), since pt
ask,i(S) − ε ≤

pt
br,i(S) ≤ pt

ask,i(S) for all S. Now, if maxS′ vi(S
′) − pt

ask,i(S
′) ≥ 0 then πi =

maxS′ vi(S
′)−pt

ask,i(S
′) and (ε-CS1a) immediately follows. Otherwise, if πi = 0,

we must have 0 ≤ vi(Si) − pt
br,i(Si), from which 0 ≤ vi(Si) − (pt

ask,i(Si) − ε).

Since πi = 0, we have vi(Si) + ε ≥ πi + pt
ask,i(Si), and (ε-CS1a). ut

Lemma 4 (maintenance). If all agents follow MBR in every round, then
once prices satisfy (ε-CS1a) for every agent in a pivotal subproblem, Kpivot, and
prices satisfy (CS1b), then (ε-CS1a) and (CS1b) are maintained in Kpivot in all
future rounds.

Proof. Let t′ denote the round in which provisional allocation St′(Kpivot) first
satisfies (ε-CS1a) and (CS1b). We prove that this allocation continues to solve
WDt(Kpivot) in all future rounds, and therefore satisfy (CS2). Price increases
may still occur because of unhappy agents in other pivotal subproblems, but
because (CS1b) holds for all agents in Kpivot, only agents that receive a bundle
in S∗(Kpivot) will continue bidding in other pivotal subproblems and cause price
increases. Moreover, a single agent can only increase the price on any one allo-
cation by ε in any round, since anonymous price increases are due to safe bids,
and trivially for non-anonymous price increases. In addition, the redundancy
check performed in step 4) of SelectDrop (Figure6) ensures that all anonymous
price increases are covered by an agent in every pivotal subproblem, even if price
increases are due to the pivotal agent for Kpivot in another pivotal subproblem.
Suppose x agents drive up the price in a particular round, then the revenue
from the current provisional allocation increases by xε, and it remains maximal
for the seller across all feasible allocations. ut

Continuing, introduce (ε-CS2),

y(k) > 0⇒ πs −
∑

[i,S]∈k

pt
ask,i(S) ≤ min {m, n} ε (ε-CS2)

in which πs = maxk∈K

∑

[i,S]∈k pt
ask,i(S), and K is the set of all feasible allo-

cations. In words, the provisional allocation must approximately maximize the
revenue to the seller at the current prices, across all feasible allocations.

Before establishing (ε-CS2), we must first introduce some technical lemmas.
First, a couple of useful definitions.

Definition 21 (cover). If bundle S is covered by agent j in round t then the
agent will bid for the bundle, or some bundle S ′ that weakly dominates S, (at
least) until the ask price to agent j for the bundle is increased due to bids from
another agent.

Definition 22 (strict positive price). Bundle S has a strict positive price
at prices, pt, if no bundle weakly dominates S at the prices.
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In addition, we say there is a strict price increase on bundle S if pt+1(S) > pt(S)
and bundle S has a strict positive price at pt+1.

Lemma 5 (covering property). If agent i follows MBR, and effects a strict
increase in the anonymous ask price on bundle S in round t, then both agent i
and at least one other agent will cover bundle S in future rounds.

Proof. See the appendix. ut

Notice that an agent that covers a bundle in the final round that it faces
anonymous prices will then cover the bundle indefinitely while it faces non-
anonymous prices because the individualized price on the bundle can never be
increased by bids from another agent. The last-and-final bid ε-discount is essen-
tial to allow an agent to continue to cover a bundle in all future rounds. This
covering property provides a level of redundancy to price-increases, the same
anonymous price increases would occur without any one agent. The following
lemma is immediate, since strict positive anonymous ask prices can only exist
as the result of a price increase.

Lemma 6 (anonymous cover). If agents follow MBR, all bundles with strict
positive anonymous ask price are covered by at least two agents.

Let us refer to the bundles covered by an agent as a result of strict anonymous
price increases the anonymous cover of an agent.

Lemma 7 (cover safety). If agents follow MBR, the set of bundles with strict
positive ask price in the anonymous cover of any one agent in a particular round
are all mutually non-disjoint.

Proof. An MBR agent bids for all bundles in its anonymous cover in every
round, and whenever additional bundles are introduced to its anonymous cover
the agent must have submitted safe bids. ut

Lemma 8 (non-anonymous cover). If agents follow MBR, then for every
agent, i, facing non-anonymous prices, and all bundles, S ′, with a strict positive
non-anonymous ask price, pt

ind,i(S
′), then either (a) the bundle receives a bid

from agent i, or (b) the anonymous ask price, pt
anon(S′) ≥ pt

ind,i(S
′), and the

smallest bundle that weakly-dominates S ′ at anonymous prices is covered by
some other agent.

Proof. See the appendix. ut

Recall that Γ(B) is the set of allocations consistent with agent bids, B. The
challenge in proving (ε-CS2) is to show that this restriction is unimportant.
Given allocation, S, let πs(p, S) =

∑

i pi(Si) denote the revenue to the seller
given prices p. Ignoring for now the possibility that bid prices may be slightly
less than ask prices, the following transformation lemma states that it is not
restrictive to only consider allocations that are compatible with agent bids.
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Lemma 9 (transformation). If agents follow MBR, then any allocation, S,
that is not consistent with bids from agents can be transformed to a bid-consistent
allocation, S′, with at least as much revenue at the ask prices, in all rounds.

Proof. See the appendix. ut

The transformation is quite straightforward when every agent faces anony-
mous prices, as the safety of bids in an agent’s cover set immediately implies
that there exists a reallocation of bundles in an allocation to covering agents.
At the other extreme, if every agent faces non-anonymous prices in every round,
then the initial allocation is already consistent with bids from agents, by Lemma
8.

The transformation lemma leads to a statement about ε-CS2, or the payoff
to the seller in each round, both in Phase I and Phase II of the auction.

Lemma 10 (CS2-master). If agents follow MBR, the provisional allocation
that solves the winner-determination, WD(I), problem with all agents satisfies
(ε-CS2), in all rounds.

Proof. By contradiction. Assume that the solution to wd
t(I), St(I), has value

∑

i pt
bid,i(S

t
i ) < πs −min{m, n}ε. Let S denote the allocation that maximizes

surplus at ask prices, solving πs. By Lemma 9, a transformed allocation, S ′,
has at least as much surplus at ask prices, and is consistent with agent bids.
Now, for any allocation S ′′, we have

∑

i pt
bid,i(S

′′
i ) ≥

∑

i pt
ask,i(S

′′
i )−min{m, n}ε,

because there can be no more bundles allocated than there are items or agents,
and pt

bid,i(S) ≥ pt
ask,i(S)− ε for all i, all S. Therefore, the value of transformed

allocation, S′, at bid prices,
∑

i pt
bid,i(S

′
i) ≥ πs−min{m, n}ε, and St(I) cannot

be an optimal solution to wd
t(I). ut

Proposition 13 (phase I termination). If agents never bid for bundles with
negative surplus, then Phase I terminates.

Proof. Phase I continues while there is at least one agent bidding unsuccessfully
at the ask price on at least one bundle, and the price on that bundle increases
by ε in the next round. Termination follows from the finiteness of the problem,
and the boundedness of agent values. ut

Proposition 14 (CE prices). If agents follow MBR, the ask prices are com-
petitive equilibrium prices for cap(I) at the end of Phase I, and throughout
Phase II, as the bid increment, ε→ 0.

Proof. By definition, when Phase I terminates, then (CS1b) holds, in addition
to (ε-CS1a) and (ε-CS2), which hold by Lemmas 3 and 10. Together, this
establishes that Phase I terminates with CE prices as ε → 0. Then, because
of the maintenance of the CS conditions (Lemmas 4 and 10), CE prices are
maintained throughout Phase II. ut

Theorem 4 (allocative efficiency). If agents follow MBR, the total value of
the allocation computed at the end of Phase I is within 3 min{m, n}ε of the total
value of the efficient allocation, for bid increment ε, m goods, and n agents.
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Proof. At the end of Phase II prices continue satisfy (ε-CS1a), (CS1b) and (ε-
CS2) for allocation, S∗, computed at the end of Phase I. Let pT

ask denote the
ask prices at the end of Phase II. Summing (ε-CS1a) over all agents in the final
allocation, and with πi = 0 for agents not in the allocation by (CS1b), then
∑

i∈I πi ≤
∑

i vi(S
∗
i )−

∑

i pT
ask,i(S

∗
i ) + 2 min{m, n}ε, because an allocation can

include no more bundles than there are items or agents. Introducing (ε-CS2),
and with y(k∗) = 1 for allocation, k∗, that corresponds with allocation, S∗, then
πs ≤

∑

i pT
ask,i(S

∗
i ) + min{m, n}ε. Finally, adding these two equations, we have:

πs +
∑

i

πi ≤
∑

i

vi(S
∗
i ) + 3 min{m, n}ε (2)

Since π +
∑

i πi ≥ V (I) for all dual solutions by weak duality, then V (I) ≤
∑

i vi(S
∗
i ) + 3 min{m, n}ε. ut

As ε→ 0 then iBEA terminates with the efficient allocation.

5.2 Vickrey Payments

In this section we prove that the adjusted prices at the end of iBEA implement
Vickrey payments when agents follow MBR strategies.

The first lemma describes an important robustness property of iBEA. The
(ε-CS2) property holds for the subproblem cap(I \ j), whatever the bidding
strategy of agent j. This is despite of the fact that bids from agent j can change
the anonymous prices in the auction, and follows from the choice embedded in
the proof of the transformation lemma 9, which in turn follows from the robust-
ness provided in the anonymous-covering lemma 6. This robustness property is
used to prove that MBR is an ex post Nash equilibrium of the auction.

Lemma 11 (CS2-pivot). For any pivotal subproblem, Kpivot, if the agents in
Kpivot follow MBR then the provisional allocation, St(Kpivot), satisfies (ε-CS2)
for subproblem cap(Kpivot) in all rounds.

Proof. The same transformation used to prove Lemma 9 can be used to trans-
form any allocation, St ∈ Γ(Kpivot), to one consistent with bids from agents in
set Kpivot. Each step of the transformation presents a choice of agents, because
there are always at least two agents that cover any bundle with strict-positive
anonymous price (Lemma 6). Simply choose an agent j ∈ Kpivot that covers the
bundle. ut

It is quite a pleasing property of iBEA that additional preference elicitation,
beyond that required to first adjust to competitive equilibrium, is not necessary
in the special case that Vickrey payoffs can be supported in a single competitive
equilibrium.

Proposition 15 (agents are substitutes). If agents follow MBR, and agents
are substitutes, iBEA terminates immediately at the end of Phase I.
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Proof. Prices are approximately Quasi-CE in all subproblems, cap(I \ j), in all
rounds by Lemma 11. By Proposition 8), when agents are substitutes, then as
soon as prices are also CE (at the end of Phase I), then these Universal Quasi-
CE prices are also Universal CE prices, and iBEA terminates. ut

Proposition 16 (Phase II termination). If agents never bid for bundles
with negative surplus, then Phase II terminates.

Proof. Straightforward, using a similar argument as that made for termination
of Phase I. ut

Theorem 5 (Universal CE). If agents follow MBR, then iBEA terminates
with prices that approach Universal CE prices as the minimal bid increment,
ε→ 0.

Proof. When Phase II terminates, (ε-CS1a) and (CS1b) was achieved for each
agent in every pivotal subproblem in some earlier round, and continue to hold
by Lemma 4. In addition, prices continue to satisfy (ε-CS2) in all subproblems
by Lemma 11. Finally, prices continue to be in CE for cap(I) by Proposition
14, and as ε→ 0 these CS conditions imply that prices are Universal CE. ut

Lemma 12 (pivotal efficiency). If agents follow MBR, the total value of the
final allocation, S∗(Kpivot), in pivotal subproblem, Kpivot, is within 3 min{m, n}ε
of the total value of the efficient allocation for subproblem cap(Kpivot).

Proof. From the Universal-CE property of prices, using the same error-bounding
techniques as in the proof of the error-bound on allocative efficiency for the
problem with all agents in Theorem 4. ut

At the end of Phase II, the adjusted payment to agent j ∈ T ∗ is computed
as pibea,j = p∗j (S

∗
j ) − ∆ibea,j , where ∆ibea,j = πs(p∗, S∗) − πs(p∗, S∗(I \ j)),

with πs(p∗, S∗) =
∑

i p∗i (S
∗
i ) and πs(p∗, S∗(I \ j)) =

∑

i6=j p∗i (S
∗
i (I \ j)), and

p∗ = min{pT
bid,i, p

T
ask,i}. As before, let πs(K) denote the maximal seller surplus

over all allocations consistent with agents in K, and πs(k) denote the surplus
from allocation k, both evaluated at the final ask prices. Shorthand πs is used
to denote πs(I).

Theorem 6 (Vickrey payoffs). If all agents follow MBR, then iBEA termi-
nates with individual agent payoffs πibea,i ≥ πvick,i − (2ε + 4 min{m, n}ε), and
total agent payoffs

∑

i πibea,i ≤
∑

i πvick,i + (4n− 2) min{m, n}ε, for bid incre-
ment ε, m goods, and n agents.

Proof. First, establish the lower-bound, πibea,i ≥ πvick,i − (2ε + 4 min{m, n}ε),
on the final payoff to an individual agent. Substituting terms, payoff πibea,j =
vj(S

∗
j ) − p∗j (S

∗
j ) + πs(p∗, S∗) − πs(p∗, S∗(I \ j)). Now, πs(p∗, S∗) ≥ πs −

min{m, n}ε, by (ε-CS2), and πs ≥ V (I) −
∑

i πi for all feasible dual solu-
tions. Also, πs(p∗, S∗(I \ j)) ≤ πs(I \ j), since p∗i (S) ≤ pT

ask,i(S) for all S, and
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πs(I \ j) ≤ V (I \ j) −
∑

i6=j πi + 3 min{m, n}ε by Lemma 12. Putting this all
together, we have:

πibea,j ≥vj(S
∗
j )− p∗j (S

∗
j ) + V (I) −

∑

i

πi −min{m, n}ε

− V (I \ j) +
∑

i6=j

πi − 3 min{m, n}ε

Substituting, vj(S
∗
j )− p∗j (S

∗
j ) ≥ vj(S

∗
j ) − pT

ask,j(S
∗
j ), and vj(S

∗
j ) − pT

ask,j(S
∗
j ) ≥

πj − 2ε by (ε-CS1a), we have πibea,j ≥ V (I)−V (I \ j)− 4 min{m, n}ε− 2ε, and
the lower-bound with πvick,j = V (I)− V (I \ j).

Second, establish the upper-bound on the total payoff over all agents,
∑

i πibea,i ≤
∑

i πvick,i+(4n−2) min{m, n}ε. Substituting terms, the total payoff,
∑

i πibea,i =
∑

i vi(S
∗
i )−

∑

i p∗i (S
∗
i )+

∑

i πs(p∗, S∗)−
∑

i πs(p∗, S∗(I \ i)). Now,
∑

i vi(S
∗
i ) ≤

V (I), and
∑

i p∗i (S
∗
i ) ≥ πs − min{m, n}ε by (ε-CS2). Also, πs(p∗, S∗(I \

i)) ≥ πs(I \ i) − min{m, n}ε by (ε-CS2) in the pivotal subproblems. Finally,
πs(p∗, S∗) ≤ πs because p∗i (S) ≤ pT

ask,i(S) for all S. Putting this all together,
we have:
∑

i

πibea,i ≤ V (I)− πs + min{m, n}ε +
∑

i

πs −
∑

i

πs(I \ i) +
∑

i

min{m, n}ε

Substituting, πs ≤ V (I)+3 min{m, n}ε−
∑

i πi, from Theorem 4, and πs(I\i) ≥
V (I \ i)−

∑

j 6=i πj , valid for all feasible dual solutions, we have:

∑

i

πibea,i ≤ V (I) + (n− 1)

(

V (I) + 3 min{m, n}ε−
∑

i

πi

)

−
∑

i

V (I \ i)−
∑

i

∑

j 6=i

πj + (n + 1) min{m, n}ε

=
∑

i

πvick,i + (4n− 2) min{m, n}ε

where
∑

i

∑

j 6=i πj cancels with
∑

i πi. ut

As ε→ 0, the adjusted prices in iBEA converge to the VCG payments.

5.3 Strategic Analysis

We prove that myopic best-response is an ex post Nash equilibrium of iBEA.
The approach is to show that any feasible strategy from agent i has the effect of
selecting a Vickrey outcome for some reported valuation function, v̂i, given that
the other agents play MBR, for any values v−i. It follows from the dominance
of truth-revelation in the VCG that it is always weakly preferable to select the
Vickrey outcome that corresponds with its true valuation function, and follow
MBR. A similar proof method is adopted in Gul & Stacchetti [26], to establish
the incentive-compatibility of an ascending-price auction for gross-substitutes
preferences.
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Theorem 7 (incentive-compatibility). Myopic best-response is an ex-post
Nash equilibrium of iBEA, as the minimal bid increment ε→ 0.

Proof. Without loss of generality, let v = (v1, . . . , vn) denote agent valua-
tions, and suppose that agent 1 follows some strategy, σ̂1, while the other
agents follow MBR. Let p∗ denote the prices at the end of Phase II, from
which price adjustments are computed, and let Ŝ denote the allocation im-
plemented by iBEA, which is the allocation computed at the end of Phase I.
Agent 1 receives bundle Ŝ1 and makes payment pibea,1(σ̂1) = p∗1(Ŝ1) −∆ibea,1,

where ∆ibea,1 = [πs(p∗, Ŝ) − πs(p∗, Ŝ(I \ 1))]+, and Ŝ(I \ 1) is the alloca-
tion computed for subproblem cap(I \ 1). The payoff to agent 1 is π1(σ̂1) =
v1(Ŝ1)− p∗1(Ŝ1) + [πs(p∗, Ŝ)− πs(p∗, Ŝ(I \ 1))]+.

First, let us consider the outcome of the auction from the perspective of
agents j 6= 1. Conditions (ε-CS1a) and (CS1b) hold for all agents j 6= 1 in
allocation Ŝ at the end of Phase I, trivially by Lemma 3 and the termination
properties of Phase I. Notice that (CS2) does not necessarily hold, because of
the strategy of agent 1. We must show that conditions (ε-CS1a) and (CS1b) are
maintained for Ŝ and agents j 6= 1 in Phase II, despite agent 1’s strategy. The
concern is to make sure that agents j 6= 1 facing anonymous prices continue
to bid for bundles Ŝj . It is sufficient to observe from the redundancy in the
anonymous-cover lemma 6 that any anonymous price increases due to agent 1
are redundant with respect to safe bids from some agent, k 6= 1 in allocation
Ŝ. From this, agent k will continue to bid for its bundle Ŝk, even while it faces
anonymous prices, and while anonymous prices are increased by agent 1.

Prices are in full competitive equilibrium for subproblem cap(I \1), without
agent 1, because of the redundancy in Lemma 11; i.e. it is only necessary that
agents j 6= 1 follow a MBR strategy for this property to hold.

Let πs(p) denote the maximal surplus to the seller at prices p. We show that
the payoff to agent 1, π1(σ̂1), is equivalent to its payoff in the VCG mechanism
for a reported valuation function, v̂1, which we construct as:

v̂1(S) =

{

p∗1(S) , for S = Ŝ1

[p∗1(S)− δ]
+

, for S 6= Ŝ1

where δ = πs(p∗)− πs(p∗, Ŝ), the amount by which allocation Ŝ violates (CS2)
for the seller. We construct prices, p̂, that are: CE prices for cap(I); and CE
prices for cap(I \1), with agent values (v̂1, v2, . . . , vn). Let p̂1(S) = v̂1(S), with
p̂j(S) = p∗j (S) for all j 6= 1. For CE prices, first we have (CS2) for the seller,

because the prices to agent 1 were reduced by δ on all bundles except Ŝ1 and
πs(p̂) = πs(p̂, Ŝ) = πs(p∗) − δ. Then, (ε-CS1a) and (CS1b) trivially hold for
agent 1, because v̂1 = p̂1, and continue to hold for all j 6= 1 because nothing
has changed for those agents. Similarly, this is easy to show for CE prices in
cap(I \ 1) because the prices, valuations, and allocation to agents j 6= 1 are
unchanged.

Now, the prices are CE in subproblem cap(I \ 1), and we can compute the
payment in the VCG mechanism to agent 1 with reported values (v̂1, v2, . . . , vn)
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with the ∆adjust,1 discount, and pvick,1(v̂1) = p̂1(Ŝ1)− [πs(p̂, I)−πs(p̂, I \ 1)] =

p∗1(Ŝ1)−
[

πs(p∗, Ŝ)− πs(p∗, Ŝ(I \ 1))
]

, since Ŝ and Ŝ(I \1) satisfy (CS2). This

payment, pvick,1(v̂1), is equivalent to the payment, pibea,i(σ̂1), made by agent 1
in iBEA with strategy σ̂1. Moreover, the bundle allocated to agent 1 is efficient
given preferences (v̂1, v2, . . . , vn), and iBEA implements the VCG outcome for
agents with preferences (v̂1, v2, . . . , vn).

We have shown that the effect of any strategy, σ̂1, is to select a VCG outcome
for some possibly non-truthful, v̂1. By the strategyproofness of the VCG, the
payoff from playing MBR and selecting its Vickrey payoff, πvick,1 = V (I)−V (I\
1), always weakly-dominates any other outcome. This is true for any values,
v−1, of the other agents, and therefore MBR is an ex post Nash equilibrium of
the auction. ut

6 Discussion

iBEA stands out as the first ascending combinatorial auction design to terminate
with Vickrey payments in all CAP instances, and the first ascending combinato-
rial auction design to supports Vickrey payments in problem instances in which
Vickrey payoffs are not supported simultaneously to every agent in any com-
petitive equilibrium. The main advantage of iBEA over other proposed ascend-
ing combinatorial auction designs follows from this robust equilibrium solution
concept, straightforward bidding is an ex post Nash equilibrium. This means
that for all preferences of other agents, as long as they follow a straightforward
bidding strategy (or myopic best-response), then an agent’s best-response is
truthful straightforward bidding. iBEA achieves this strong property of truth-
revelation from implementing the Vickrey outcome.

Earlier ascending Vickrey auctions were proposed for special cases of CAP.
Demange et al. [DGS86] [19] stands out as the first non-trivial theoretical result
that connects ascending-price auctions with Vickrey auctions, proposing an as-
cending Vickrey auction for the unit-demand problem. Recently, Bikchandani
et al. [10] demonstrate that the [DGS86] auction implements a primal-dual al-
gorithm for the LP relaxation of the CAP, which was shown to support Vickrey
payments in the minimal dual solution by Leonard [34].9 Ausubel [5] proposed
a clinching-mechanism for a multi-unit homogeneous item auction, that imple-
ments Vickrey payments when agents have decreasing-marginal values for items.

A number of ascending auctions for the general combinatorial allocation
problem have been proposed, including AUSM [8] and RAD [20], and more re-
cently AkBA [55], iBundle [40, 44] and an ascending-price proxy auction [4].

9Earlier, Crawford & Knoer [15], for linear-additive preferences, and Kelso& Crawford [29],
for gross-substitutes preferences, had proposed ascending auctions that terminated with CE
prices, but not necessarily Vickrey payments. The auction of Gul & Stacchetti [GS00] [26] is a
generalization of Demange et al. to a combinatorial auction, allowing agents to bid for bundles
of items while still retaining linear ask prices. The auction terminates with group-minimal
linear CE prices for gross-substitutes preferences, but these do not necessarily support Vickrey
payoffs.
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Parkes & Ungar [44] prove the efficiency of iBundle with straightforward bid-
ding, and recently, and Parkes [42, 43, chapter 6] proved that iBundle(3), the
variation of iBundle in which non-anonymous prices are maintained for all agents
throughout the auction, implements the Vickrey outcome in the special case of
agents are substitutes. iBEA is an extension of this earlier iBundle design, that
requires more dynamic price-discrimination and an extra phase to elicit addi-
tional preference information when agents are not substitutes. Just as in stan-
dard one-shot VCG mechanisms, iBEA remains vulnerable to collusion. During
Phase II of iBEA an agent’s bids neither affect the final allocation or the agent’s
final price. Instead, the only effect of continued bidding is to decrease the final
payment made by other agents in the efficient allocation.

Ausubel & Milgrom [4] introduce an interesting equilibrium analysis for their
ascending-price proxy auction design, which is a slight variation on iBundle(3).
The analysis provides a formal motivation for the free-riding strategies observed
in ascending combinatorial auctions when Vickrey payoffs are not supported in
the group-minimal competitive equilibrium. An asymmetric equilibrium is de-
veloped in which one agent bids slowly and receives its Vickrey payoff, while the
other agents share the cost of implementing an equilibrium outcome. Ausubel
& Milgrom claim revenue advantages and robustness to collusion in equilibria,
in comparison with the equilibria in the VCG, but selection of the equilibrium
across participants remains a significant problem. Essentially participants are
bargaining about how to share the cost of the gap in seller-revenue between
the VCG outcome and the group-minimal CE outcome. iBEA nicely avoids
this bargaining problem, defaulting to the uniquely defined payoffs in the VCG
outcome.

6.1 Proxy Bidding Agents

Proxy bidding agents may provide a useful method to reduce the strategy space
available to agents in iterative mechanisms [45, 42, 43, 4]. Consider a proxy bid-
ding agent as a device that sits between a real participant and the auction, with
partial (and perhaps untruthful) information about a participant’s preferences.
In one reasonable implementation, the proxy agents follow myopic best-response
for participants, only submitting bids when there is enough preference informa-
tion to identify the appropriate best-response strategy, requesting additional
preference information otherwise.

Proposition 17. If an agent must follow MBR for some ex ante fixed reported
valuation function, v̂i, then it is a weakly dominant strategy to choose truthful
v̂i = vi.

Proof. Trivial, since with MBR strategies for fixed (v̂1, . . . , v̂n), iBEA has a
simple interpretation as an algorithm to compute the VCG outcome with bids
(v̂1, . . . , v̂n). ut

In practice, the appropriate use of proxy agents represents a tradeoff be-
tween the positive effect that proxy agents can have to boost the robustness of
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the equilibrium solution concept, and the negative effects that less incremental
preference revelation can have on preference elicitation costs. At one extreme,
if an agent must report its preferences to a proxy agent, then the auction is
completely identical to the VCG mechanism and loses all the preference elicita-
tion benefits associated with iterative auctions. The proposed iBEA design lies
somewhere closer to the other extreme, in one sense we already force “click-box”
style proxy bidding by making agents bid at the current ask price and forbidding
jump bids.

One important role for proxy bidding agents is to restrict opportunities
for collusion between agents in iBEA. In fairly static environments without
common-value learning, it is reasonable for a proxy-agent to enforce consistency
of preference information across rounds. An interesting question for future anal-
ysis is to understand the extent to which this is successful at curtailing the op-
portunity to drive up prices and collude towards the end of the auction. Notice
that proxy agents also provide an additional level of information-hiding between
the current prices and allocation in iBEA, and the auction participants, which
can in itself be useful to reduce the ability of a participant to determine when
iBEA is in Phase II.

7 Conclusions

We propose an efficient ascending-price combinatorial auction, in which my-
opic best-response is an ex post Nash equilibrium, preference elicitation is min-
imized, and final bid prices are adjusted to implement Vickrey payments. Lin-
ear programming duality is used to analyze iBEA, and primal-dual methods
are extended beyond the agents are substitutes case that has previously been
considered a significant barrier to progress in iterative auction design [25, 10].
iBEA elicits just enough information, beyond that required to compute a single
competitive equilibrium, to implement the Vickrey outcome.

In future work it would be interesting to design special-cases of iBEA for
particular restrictions on agent preferences that violate the agents are substi-
tutes condition, but allow computationally tractable winner-determination and
price-adjustment [49, 18]. Empirical tests will be useful to compute average
preference elicitation costs in the GVA, with iBEA, with and without asyn-
chronous price-updates, and with and without dynamic price-discrimination.
Finally, it would be interesting to explore proxy-agent interfaces into iBEA, to
enhance the preference-elicitation languages supported within the auction, to
further accelerate auction progress, and as a method to restrict opportunities
for collusion.
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Appendix

Lemma 1 (ntv1).

Proof. To show that CE and NTV prices are sufficient for group-minimal CE
prices, we first substitute for P (I) = V (I)−

∑

i∈T ∗ cce,i and

P (I \ L) = max
K⊆I\L

[

V (K) −
∑

i∈K

cce,i

]

, ∀L ⊆ T ∗,L 6= ∅

into [RD-CS’], where this second expression follows because NTV prices satisfy
CE conditions in subproblem cap(I\L) for those agents selected in the surplus-
maximizing allocation in that subproblem, but not necessarily for all agents.

Now, consider the term max
K⊆I\L

[

V (K)−
∑

i∈K cce,i

]

, and consider a con-

straint defined on some set L′ for which K∗ ⊂ I \L′ is optimal. This constraint
is redundant, by comparison with the constraint defined over set L′′ = (I \K∗).
Notice that K∗ ⊇ T ∗, because cce,i = 0 for all i /∈ T ∗, and that V (K) is
(weakly) increasing in K. Also, we have L′′ ⊇ L′, because K∗ ⊂ I \L′. We have
L′ ⊂ L′′ ⊆ T ∗, and the constraint for L′′ dominates that for L′.

We are free to replace the constraint on L′ with the weaker constraint,
∑

i∈L′ ∆i ≤ V (I) −
∑

i∈T ∗ cce,i − [V (I \ L′) −
∑

i∈I\L′ cce,i]. Finally, the con-

straints in [RD-CS’] can be expressed as
∑

i∈L ∆i ≤ V (I)−V (I\L)−
∑

i∈L cce,i,
for all L ⊆ T ∗, since −

∑

i∈T ∗ cce,i +
∑

i∈I\L cce,i = −
∑

i∈L cce,i.

A simple variable substitution, with ∆′
i = ∆i +cce,i, changes the objective to

max−
∑

i cce,i +
∑

i ∆′
i, subject to exactly the constraints in the group-minimal

CE price formulation [RD’]. Therefore, at the optimal solution
∑

i ∆′
i =

∑

i πi,
for group-minimal agent payoffs π, and a solution (∆g

adjust,1, . . . , ∆
g
adjust,n) to

[RD-NTV] satisfies
∑

i ∆g
adjust,i =

∑

i πi −
∑

i cce,i. Since the payoff to agent i
at the initial NTV and CE prices is precisely cce,i, the total adjusted payoff is
equal to the total agent payoff at some set of group-minimal CE prices. ut

Lemma 2 (ntv2).

Proof. Let P (K) denote the maximal surplus to the seller at Quasi-CE prices,
pqce, over all allocations restricted to agents in set K. Let πi = vi(S

∗
i )−pqce,i(S

∗
i )

for all i ∈ T ∗ and πi = 0 otherwise. To show that NTV prices can be constructed
with the same surplus properties as Quasi-CE prices, the proof is to construct
NTV prices:

pntv,i(S) =

{

[vi(S)− πi]
+ , if i ∈ T ∗

vi(S) , otherwise.

and show that the prices on all bundles in surplus-maximizing allocations to the
seller in cap(I) and cap(K) for all K ∈ C remain unchanged, while the price
on every other bundle (weakly) decreases. First, consider prices to an agent
i ∈ T ∗. Initially pqce,i(S) = vi(S) − πi on any bundle S it is allocated in the
solution to P (I) or P (K) for some K ∈ C, by Quasi-CE. In addition, the initial
price pqce,i(S) ≥ vi(S) − πi on any other bundle, and therefore the adjusted
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prices are (weakly) smaller than the initial prices on these bundles. Second, for
an agent i /∈ T ∗, because initial prices are CE then pi(S) ≥ vi(S) for all S, and
the adjusted prices are (weakly) smaller. ut

Lemma 5.[covering property]

Proof. Consider bundle S′ with a strict increase in its anonymous ask price in
round t, and show that at least two agents cover this bundle.

There must be some agent, i ∈ unhappy t, with i ∈ anont+1 and i ∈ safe t,
with pt

bid(S
′) = pt

anon(S). Without loss of generality, consider only bids on
bundles S′′ with pt

br,i(S
′′) = pt

anon(S
′′). Proceed by case analysis on the rela-

tionship between πt
br,i and πt+1

br,i . Case (a), πt+1
br,i = πt

br,i − ε. Let πt
br,i(S) =

vi(S) − pt
br,i(S). Since S′ ∈ Bt

i , we have πt
br,i(S

′) + ε ≥ πt
br,i, and therefore

πt+1
br,i (S

′)+ε = πt
br,i(S

′) ≥ πt
br,i−ε = πt+1

br,i , and bundle S′ remains in the agent’s

MBR set. Case (b), πt
br,i ≥ πt+1

br,i > πt
br,i − ε. Now, no bundle S′′ /∈ Bt

i can solve

πt+1
br,i , even if the price on every other bundle falls by ε. For πt+1

br,i > πt
br,i − ε,

the new maximal surplus must equal the surplus on some bundle Ŝ ∈ Bt
i with

the same bid price across rounds. This requires either pt
br,i(Ŝ) < pt

ask,i(Ŝ) and

pt
ask,i(Ŝ) ≤ vi(Ŝ), or vi(Ŝ)−pt

ask,i(Ŝ) ≤ ε; either way we have vi(Ŝ)−pt+1
br,i(Ŝ) ≤ ε,

and πt+1
br,i ≤ ε. Finally, πt+1

br,i (S
′) ≥ 0, and bundle S′ remains in the agents MBR

set.
In addition, the test in step 4) of SelectDrop (Figure 6) requires redundant(i,

(Lanon \ i)∪Lextra) for all agents i ∈ Lanon that cause an increase in anonymous
prices. In this expression, the set used to check redundancy includes safe bids
from agents other than i that continue to face anonymous prices in t + 1 and
for which anonymous price increases based on their bids would be redundant
in the next round. An equivalent analysis to that made above for agent i, then
shows that at least one of these agents j 6= i will also cover the anonymous price
increase on any bundle S′ that is caused by agent i. ut

Lemma 8(non-anonymous cover).

Proof. Let t′ denote the first round in which agent i faced non-anonymous ask
prices. To show that bundle S ′ with strict-positive non-anonymous ask price,
pt
ind,i(S

′), in some round t ≥ t′ is covered, we first observe that (a) the bundle
had a strict-positive anonymous ask price in round t′ − 1, or (b) the bundle
received a bid from agent i in some round t′′ ≥ t′. In case (a), then either agent
i covered S′ in round t′−1 and continues to bid for S ′ by the covering property,
or another agent must cover a bundle that weakly-dominates S ′ at the current
ask prices, which can only have increased from round t′ − 1. In case (b), agent
i will continue to bid for S′, because bundle S′ was in its surplus-maximizing
set in round t′′ and it it easy to show that once a bundle enters the surplus-
maximizing set it never leaves. ut

Lemma 9 (transformation).

Proof. To show that an allocation S can be transformed into some allocation
S′ that is compatible with agent bids, while maintaining seller surplus given
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the current ask prices, we can first restrict attention to allocations over bundles
with strict-positive ask prices. In addition, suppose that agents 1, . . . , l face
anonymous prices, while agents l + 1, . . . , n face non-anonymous prices. To
transfer S to S′, successively implement one of the following steps until every
bundle in the allocation is either associated with an agent that covers the bundle,
is allocated to an agent that faces non-anonymous ask prices and has a strict-
positive ask price. Notice that in each step, every bundle reallocated receives a
bid from the associated agent, by covering lemmas 6 and 8.

(i) agent i ∈ anon t is allocated a bundle Si that it does not cover, and
an agent, j, that covers the bundle faces anonymous prices and is not
currently allocated a bundle: move the bundle to agent j.

(ii) agent i ∈ anon t is allocated a bundle Si that it does not cover, and an
agent, j, that covers the bundle faces anonymous prices and is currently
allocated a bundle, Sj : switch the bundles between the two agents.

(iii) agent i ∈ anon t is allocated a bundle Si that it does not cover, and
an agent, j, that covers the bundle faces non-anonymous prices and is
not currently allocated a bundle: move the smallest bundle that weakly
dominates Si at non-anonymous prices pt

ind,j(S) to agent j.

(iv) agent i ∈ anon t is allocated a bundle Si that it does not cover, and an
agent, j, that covers the bundle faces non-anonymous prices and is cur-
rently allocated bundle, Sj : switch the bundles, agent j receives the small-
est bundle that weakly dominates Si at non-anonymous prices pt

ind,j(S),
and agent i receives the smallest bundle that weakly dominates Sj at
anonymous prices pt

anon(S).

Each step (weakly) increases the revenue to the seller. Steps (i) and (ii)
have a neutral effect. Step (iii) has a (weakly) positive effect because the ask
price on the bundle can have only increased since the covering agent started
facing non-anonymous prices. For step (iv), let t′ denote the round in which
agent j first faces non-anonymous prices. Define δj = pt

ind,j(Si) − pt′

ind,j(Si),

and note that pt
anon(Si) = pt′

anon(S′), so that pt
ind,j(Si) − pt

anon(Si) = δ, since

pt′

ind,j(Si) = pt′

anon(Si). Now, we must have pt
ind,j(Sj) − pt′

anon(Sj) ≤ δ because

agent j bids for Si whenever it bids for Sj . Then, with pt
anon(Sj) ≥ pt′

anon(Sj), we
have pt

ind,j(Sj)− pt
anon(Sj) ≤ δ, which gives pt

anon(Sj)+ pt
ind,j(Si) ≥ pt

anon(Si)+

pt
ind,j(Sj). Finally, the transformation procedure terminates because each step

successfully allocates at least one more bundle to an agent. Only bundles allo-
cated to agents facing anonymous prices that do not cover a bundle are moved,
and every time a bundle is moved at least one new bundle is associated with an
agent that covers the bundle, and no agent is ever removed from a bundle that
it covers. ut
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